通过天文学的学习,我们可以更好地理解我们自身在宇宙中的位置,增加对宇宙的敬畏之心。善于总结需要我们在学习过程中积累经验,通过反思和思考来提升总结的质量。小编整理了一些精选的总结范文,供大家参考和学习。
教学设计解决问题的策略篇一
1.提高学生在具体情境中运用列举法解决实际问题的能力。
2.使学生深入感受使用列举法时的有序性。
3.培养学生运用数学方法解决生活问题的意识,提高解决问题的能力。
教学光盘。
一、复习导入。
通过谈话,复习前两节课的学习内容并了解学生的学习收获。
二、指导练习。
1.完成练习十一中的第6题。
让学生说出他们是怎么想的,然后总结出在使用列举法解决问题时需要注意的内容。
2.完成练习十一中的第7题。
指名读题,让学生观察表格并回答问题:“48个1平方厘米的正方形拼成的.长方形周长是多少?”
引导学生认真思考问题,然后给出解题方法。
3.完成练习十一中的`第8题。
指名读题,让学生理解“只是向东、向北走”的含义,并使用字母代替路线上的直线交点。
4.完成练习路线十一中的第9题。
出示题目,并要求学生仔细阅读题目。
三、完成思考题。
出示思考题并让学生独立完成,并进行集体订正。
教学设计解决问题的策略篇二
教学目标:
1、梳理以前学习过程中的解决问题的策略---画图。
2、能积极尝试从数学角度运用所学知识和方法寻求解决问题的策略。
教学重点和难点:
结合具体情境体会画图的重要性。
教学过程:
自学导航:人们在解决问题时,使用一定的策略是非常重要的,今天我们就总结一下我们常用的解题策略--画图。
我们可以通过画图列举出所有搭配方法,试一试。
(画图有利于我们列举出所有的可能)。
二、数的认识我们也是从图画上理解。
(1)。
(2)数的运算:
(3)变化的量之间的关系。
说一说公共汽车从解放路到商场之间,行驶的时间与速度之间的关系。
(画图能帮助我们直观的理解所学内容)。
(画图能帮助我们分析数量之间关系,有利于用算术方法解决问题。)。
综上三个方面,画图有助于学生对问题的直观理解,可以帮助学生找到解决问题的思路,学生画的图只要能有效的帮助解决问题即可。
作业设计。
板书设计:
1、画图有利于列举出所有情况。
2、画图能帮助我们直观理解所学内容。
3、画图有利于我们分析数量之间的关系。
课后记:
教学目标:
1、梳理在以前学习过程中用到的解决问题的策略,如画图、列表、猜想与尝试、从特例开始寻找规律。
2、能积极尝试从数学的角度运用所学知识和方法寻求解决问题的策略,体会解决问题策略的多样性。
教学重点和难点:
列举教材中使用以上策略的例子。
教学准备:
投影片。
自学导航:
一、列表法。
(1)学校组织了足球、航模和电脑兴趣小组,淘气,笑笑和小明分别参加了其中一种。笑笑不喜欢踢足球,小明不是电脑兴趣小组的,淘气喜欢航模。画一表来帮忙,把信息记录下来,并进行推理。
足球航模电脑。
淘气。
笑笑×。
小明。
(2)下表是小明体重的变化情况。
年龄出生时6个月1周岁2周岁6周岁10周岁。
体重/千克3.57.010.514.021.031.5。
说一说小明10周岁前体重是如何随年龄增长而变化。
(列表可以帮助我们整理信息,进行推理;也能帮助我们分析两个量之间的关系,寻找规律。)。
二、猜想与尝试。
(1)鸡图同笼,有20个头,54条腿,鸡、兔各有多少只?
头/个鸡/只兔/只腿/条。
20101060。
2011958。
…………。
(2)。
长方体的体积 正方体的体积 猜想圆柱体的体积公式,
v=sh v=sh 并验证你的猜想。
(第1题培养学生对数的感觉和估计的能力,使学生经历建立假设、检验假设的过程,发展自己的判断能力;第2题引导学生了解归纳和类比是获取猜想的重要方式。)。
三、从特例开始寻找规律。
答案是9+8+7+6+5+4+3+2+1=45(场)。
(这种策略体现了数学中把复杂问题转化为简单问题的“退”的思路。)新课标第一网。
四、教师鼓励学生对教材中使用以上策略的例子进行总结,进一步理解各种策略的作用。教师一定要重视此活动,并组织学生进行交流。
作业设计。
板书设计:
一、列表法。
二、猜想与尝试。
三、从特例开始寻找规律。
教学设计解决问题的策略篇三
二、教材简析(见教学用书)。
三、教学目标。
1、知识技能方面:使学生在解决有关面积计算的实际问题的过程中,初步学会用画直观示意图的方法整理相关信息,能借助所画的示意图分析实际问题中的数量关系,确定正确的解决问题的思路;能正确解答与长(正)方形面积计算的有关实际问题。
2、数学思考和解决问题方面:使学生经历画示意图描述和分析问题的过程,积累一些整理条件和问题、借助图形直观分析数量关系的经验,感受画示意图对理解题意和分析数量关系的作用,提高分析问题和解决问题的能力,发展几何直观。
3、情感与态度方面:使学生在解决问题的过程中,进一步体会数学与生活的联系,让学生体验经过克服困难而获得解决问题的成功体验,提升学好数学的信心。
四、教学重难点。
学会用画图的方法表示图形面积增加或减少的情况,帮助理解题意,得到解决问题的方法。
五、教具学具。
多媒体课件,
六、教学过程。
一、引入新课。
1、出示复习题。
师:观察这三幅示意图,你能说说每一题的条件和问题分别是什么吗?
谁能口答算式?(数量关系式)。
教学设计解决问题的策略篇四
运用加法和减法两步计算解决问题(p4例1)。
[教学目标]。
1、使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法。
2、学会运用加法和减法两步计算解决实际问题。
3、在解决问题的过程中,让学生感受可以用不同的方法解决问题。
4、初步培养学生发现问题、提出问题、解决问题的能力。
[教学重点]。
学会运用加法和减法两步计算解决实际问题。
[教学难点]。
培养学生在实际生活中多角度观察问题、发现问题、提出问题、解决问题的能力。
[教学过程]。
一、情景导入,激发兴趣。
观察主题图问:图上有谁,他们在干什么,还有想去做什么的,数一数分别有多少人?这幅主题图将告诉我们什么数学知识呢?我们具体来看。
二、合作交流,探索新知。
1、引导学生观察木偶戏的情景图。
(1)说一说,图上给我们提供了那些信息?(文字信息:原来有22人在看戏,又来了13人,图中信息:走了6人)。
(2)要解决什么问题?(有多少人在看木偶戏)。
2、小组交流讨论,提出解决问题的方案。
3、选派组内代表在班中交流解决问题的方法。
4、把学生解决问题的方法记录在黑板上,试着用文字说说每道算式的意思。
方法一、22+13=35(人)35-6=29(人)。
(原来的人数+又来的人数=总人数总人数—走了的人数=现在看戏的人数)。
方法二、22-6=16(人)16+13=29(人)。
(原来的人数—走了的`人数=还剩下的人数还剩下的人数+又来的人数=现在看戏的人数)。
方法三、13-6=7(人)7+22=29(人)。
(又来的人数—走了的人数=多来的人数多来的人数+原来的人数=现在看戏的人数)。
5、比较以上方法的异同。明确这三种方法的结果都是求现在看戏的有多少人,只是在解决问题的思路上略有不同。让学生体会对于一个实际的问题可以有多种不同的解答方法。
6、你能把每种计算方法的两个小算式写成一个算式吗?学生尝试列综合算式。
板书:(1)22+13-6(2)22-6+13(3)13-6+22。
再次交流:你是怎么想的?
(1)学生尝试自己说。
(2)小组内互相说。
(3)全班交流说,老师适时纠正说的过程中出现的问题。引导学生如何去掉中间量,把分步计算变成综合算式。
三、指导学生脱式计算。
=35-6(先算加)=16+13(先算减)=7+22(先算减)。
=29(再算减)=29(再算加)=29(再算加)。
比较计算的方法,你发现了什么?
(在一个算式里,只有加减法,按照从左往右的顺序,依次计算)。
四、练习巩固,应用实践。
1、给得数相等的两个算式连线.。
2、p6第1题,让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生以启发。
3、p7第4题,让学生自己独立完成。汇报解决问题的思路时,教师结合题目的具体内容,适当渗透思想教育。
五、课堂总结。
你能用我们今天学会的数学知识解决我们身边的实际问题吗?
教学设计解决问题的策略篇五
1、正确、流利、有感情地朗读课文。
2、了解作者是怎样写荷花的。
3、理解课文内容,激发学生热爱大自然的感情,陶冶审美情趣。教学重点、难点:
1、学习第二自然段,品味词句;体会“我”忽然觉得自己仿佛就是一朵荷花时眼前出现的景象。
2、想象荷花图片,用生动优美的语言描绘荷花。
教学准备:小黑板。
教学时间:二课时。
第二课时。
教学过程:
一,直观激趣,进入课文情境。导语:今天我们将继续学习叶圣陶爷爷写的--齐读课题《荷花》。想不想亲眼看看荷花?看之前,老师有个小小的建议,你可以指指点点,可以和身边的伙伴讨论交流,看完后,请你描述一下你最喜欢的那朵荷花。
1、看挂图。
2、描述自己最喜欢的那朵荷花。
二、读悟结合,突破重点,学习第2小节。是啊,这么多的荷花,一朵有一朵的姿势,看看这一朵很美,看看那一朵也很美,眼前的这一池荷花简直就是一大幅画,叶圣陶爷爷笔下的这幅画是什么样的呢?还是让我们一起来读读课文吧。
1、自由读第2小节,划出你认为最美的句子,多读几遍,说说自己的感受。
三、以演促读,读中想像,学习第4小节。
过渡:听着听着,想着想着,我忽然觉得自己仿佛就是一朵荷花……配乐范背第四自然段,美吗?想读吗?那就美美地读吧,可爱的荷花仙子们。
1、指名个别读。
2、数人齐读,边听边配以动作。
1、说说画家是谁?
2、展示数幅各色荷花图片,引导学生说说你还有哪些好办法来夸夸荷花,夸夸大自然。
3、交流。
五、抒情表达、总结课文。
1、师:让我们再一次有滋有味全神贯注地看看这美丽、动人的荷花。边看边想,你打算用怎样的语言来赞美这美丽的荷花、动人的荷花。可按句式:“荷花!”。例如:荷花!你美丽动人的形象将永远留在我的心里。
将本文的word文档下载到电脑,方便收藏和打印。
教学设计解决问题的策略篇六
1、知识技能方面:使学生在解决有关面积计算的实际问题的过程中,初步学会用画直观示意图的方法整理相关信息,能借助所画的示意图分析实际问题中的数量关系,确定正确的解决问题的思路;能正确解答与长(正)方形面积计算的有关实际问题。
2、数学思考和解决问题方面:使学生经历画示意图描述和分析问题的'过程,积累一些整理条件和问题、借助图形直观分析数量关系的经验,感受画示意图对理解题意和分析数量关系的作用,提高分析问题和解决问题的能力,发展几何直观。
3、情感与态度方面:使学生在解决问题的过程中,进一步体会数学与生活的联系,让学生体验经过克服困难而获得解决问题的成功体验,提升学好数学的信心。
学会用画图的方法表示图形面积增加或减少的情况,帮助理解题意,得到解决问题的方法。
多媒体课件,
一、引入新课。
1、出示复习题。
师:观察这三幅示意图,你能说说每一题的条件和问题分别是什么吗?
谁能口答算式?(数量关系式)。
教学设计解决问题的策略篇七
1、引导学生经历解决问题的过程,能有序、有效地思考、分析数量关系,初步学会用假设的策略解决含有两个未知数的实际问题。
2、能对解决问题的过程进行反思,初步感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
能有序、有效地思考、分析实际问题中的数量关系。
感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
课件、导学单、教具。
一、复习铺垫。
1、出示下面的问题,让学生列式解答。
把720毫升果汁倒人9个同样的小杯子里,正好倒满。平均每个杯子的容量是多少毫升?
数量关系:个小杯的容量=720毫升。
口头列式解答。
提问:和第1题相比,这道题难在哪里?(第1题是把720毫升果汁倒入一种杯子里,可以直接用除法计,这一道题是把720毫升果汁倒入两种杯子里,题中有两个未知数量。)。
3、揭示课题:这道题可以怎样解答呢?今天我们就来研究解决这样的实际问题的策略。(板书课题:解决问题的策略)。
二、探索策略。
1、教学例1。
(1)理解题意。
谈话:请同学们先观察题中的条件和问题,想一想,根据题意,你。
能找到怎样的数量关系,和小组里的同学说说你是怎样理解这些数量关系的。
揭示:6个小杯的容量+1个大杯的容证=720毫升。
大杯的容量x=小杯的容量小杯的容量x3=大杯的容量。
(2)确定思路。
谈话:我们知道,在遇到比较复杂的问题时,要想办法把复杂的问题转化成简单的问题。你有办法把这个问题变得简单吗?请先联系刚才理解数量关系式想一想,再和同学说说你准备怎样解决这个问题。
反馈:请把你的解题思路分享给大家。
学生想到的思路可能有以下几种,结合学生的交流,分别作如下引导:
思路一:假设把720毫升果汁全部倒入小杯。
问:把720毫升果计全部倒入小杯,1个大杯要换成几个小杯?把大杯换成小杯后,正好倒满多少个小杯?先画线段图分析。
思路二:假设把720毫升果汁全部倒入大杯,6个小杯换成几个大杯?把小杯换成大杯后,正好倒满多少个大杯?先画线段图分析。
思路三:列方程解。
小结:根据题中的数量关系,同学们想到了解决问题的.不同思路。上面的'几种思路都是抓住哪一个数量关系展开思考的?像这样通过假设把复杂问题转化为简单问题的方法,也是常用的解决问题的策略。(板书:假设)。
(3)列式解答并检验。
谈话:选择一种方法完成解答,并检验解题的过程和结果。
完成解答后,让学生说说列式、检验的方法和结果。
(4)回顾反思。
(5)教学第二种思路。
学生独立思考,列式计算,教师巡视。
指名交流解题时的思考过程,以及列式计算的过程和结果。
(6)比较和回顾。
提回:通过解答上面的问题,你有哪些收获和体会?
让学生先在小组里说一说,再组织全班交流。
2、完成“练一练”。
(1)出示题目,提问:要求桌子和椅子的单价、可以怎样进行假设?让学生按自己的思路完成解答,教师巡视。
(2)让不同思路的学生展示自己解题的过程。
三、巩固练习。
完成练习十一第1—3题。
四、课堂总结。
今天这节课我们学了什么?你有哪些收获和体会?还有什么疑问?
教学设计解决问题的策略篇八
1、让学生初步学会用“替换”的策略分析数量关系,并能根据问题的特点确合理的解题步骤,学会正确解答这类问题。
2、让学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、让学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学信心。
教学重、难点:
用“替换”的策略解决问题。
教学过程:
课前欣赏:播放《曹冲称象》录像,感受策略。
一、引入。
1、刚才课前我们一起看了《曹冲称象》的故事。最后是谁帮曹操解决了问题。
(曹冲)曹冲真了不起啊!曹冲是用什么方法解决了这个问题的?(生答)。
2、师:石块的重量等于大象的重量,把大象替换了石块,这样就可以很容易地称出来了。
3、这节课我们就一起来用“替换”的方法解决一些实际问题。(板书:替换)。
二、展开。
1、出示例1。
2、那老师把刚才题目中的条件换一下:大杯的容量是小杯的4倍。
(1)师:又如何解决这个问题呢?每个同学有作业纸,请同学们自己先画一画,画出替换过程,并计算出来。
(2)指名上台展示并讲述。
过渡:同学们都很棒!老师再把题目换一下,好吗?
3、出示“小杯的容量比大杯少160毫升”。
(1)师:现在我们可不可以用替换的方法了?(上课时有的说可以,也有人说不可以)。
(2)请小组讨论一下怎样替换?小组讨论时注意这几个问题(手指屏幕)生读。
(3)小组汇报。(生答时演示过程)。
三、课堂练习。
1、过渡:我们班的洪老师遇到了一个问题,请同学们用刚才学过的知识来帮忙解决。
(1)出示题目。
(2)师:同学们先再作业纸上自己做做看。
(3)指名汇报。(找不同做法的学生汇报)。
(1)出示题目。
他们进了公园,来到水上乐园,其中有40人去划船。
每只大船比每只小船多坐2人,每只大船和每只小船各坐几人?
(2)左边三组完成第一个问,右边三组完成第二个问。
(3)指名汇报。
3、过渡:其实在我们的生活中还有很多这种替换的现象。
(1)播放视频。(生活的替换现象)。
(2)老师真心希望同学们能用智慧的眼睛去发现,并能灵活运用替换的策略解决问题。
[在最后我播放了一段视频,是让学生了解在我们生活中到处都有替换现象。]。
四、全课总结师:那么通过这节课的学习你有什么收获?
五、综合实践。
过渡:最后老师留给同学们一个综合实践题,课后想一想。
苏果超市用3个空啤酒瓶可以换一瓶啤酒。
王叔叔买了12瓶啤酒,他最多能喝到多少瓶啤酒?
教学设计解决问题的策略篇九
本节课是解决问题中的一种策略——倒推,是在学生已经学习了用画图和列表的策略解决问题的基础上,引导学生用倒推的策略分析问题,解决问题。这对发展学生的逆向思维是有价值的。同时,能进一步增强学生运用策略分析问题的意识,提高解决问题的能力。
通过阅读《现代心理学》,我知道人们解决问题一般有两种搜索策略,即算法式和启发式。算法式即指按照解决问题的各种可能性逐个去尝试,最终找到答案的方式。这种不依赖已有知识,通过尝试错误找到答案的方式是解决问题的弱方法;启发式,即指人们根据规律或根据已有的知识、经验和窍门解决问题的方式。该种方式只是进行选择性的搜索。虽然冒着不能解决问题的风险,但可把尝试的次数减到最小,而迅速、经济地解决问题。
在心理学理论的指导下,我更明确地认识到我们的数学教材不可能把所有的问题都编入,我们的教学也不可能把各种各样的问题一一讲全,把每种解决问题的方法都教给学生,让学生一一认识。教学的功能是帮助学生获得解决问题的一些常用的基本方法,并引导他们灵活应用这些方法,适应问题的千变万化,这就涉及到“策略”,所以我们把教学生会解决问题作为课程目标。
在本节课的教学中,让学生通过分析具体情境中的实际问题,学会运用“倒过来推想”的策略寻找解决问题的思路,并能根据问题的具体情况确定合理的解题步骤,从而有效地解决问题。同时,使学生在对解决实际问题过程的不断反思中,感受“倒过来推想”的策略对于解决特定问题的价值,进一步发展分析、综合和进行简单推理的能力,使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验。
在读书中,我了解到,教学的真谛是“授人以鱼不如授人以渔”,学习方法的掌握,是当今学习的一个根本问题,“学会学习”的达成应该是衡量一个教学好坏的重要指标,而学习策略的研究与实践是解决这个问题的一条途径,我下大力气于于小学数学学习策略的培养,收到了积极的教学效果。
本节课充分体现新课改理念,尊重学生的认知规律,重视学生多种能力的培养,突出学生学习的主体地位,每一个教学环节都体现了教师对教材的理解与合理运用。如课前谈话,既激发了学生学习的兴趣,又揭示了倒过来推想的策略在生活中的应用。新知学习层次分明,由易到难,遵循学生的认知规律。例1让学生理解倒退策略的要点是从现在出发到推出原来;例2让学生掌握倒推的方法;发奖品送卡片活动,使学生在获得知识,形成技能的同时,情感态度、价值观等方面都得到和谐发展;练一练巩固新知并强调倒推的次序。本节课最后环节,告诉学生生活中许多地方应用倒推策略,让数学回归生活,体验数学的价值,培养学生应用数学的素养。使学生学会运用“倒推”的策略分析问题、解决问题,并能根据问题的具体情况确定合理的解题方法和步骤。在解决问题过程中体验“倒推”的策略对于解决特定问题的价值,并主动运用策略解决问题。
教学设计解决问题的策略篇十
教学目标:
1.进一步学会用“替换”“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2.在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3.进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
灵活运用多种解题策略解决稍复杂的实际问题。
教学过程:
一、揭示课题。
谈话:前几节课,我们学习了新的解题策略,你能举例说明吗?(请几位学生交流。)今天这节课,老师准备了一些实际问题,请同学们灵活运用我们学过的解题策略来解决这些稍复杂的实际问题。(板书课题)。
二、基本练习。
6.1元钱买4分一张和8分一张的邮票共20张,应买4分邮票多少张?
小结:运用“替换”或“假设”的策略解决问题后都应该及时进行检验。
三、拓展练习。
鼓励学生用自己理解的方法来解决这些问题,解答后给学生充分的时间进行交流,教师及时评价学生。
四、全课总结。
谈话:今天我们综合运用一些策略来解决实际问题。你们又有什么新的收获吗?
五、布置作业:
教学设计解决问题的策略篇十一
【教材分析】例题用文字叙述,学生一般能读懂题意,但不会利用其中的数量关系思考。而通过课件利用“小杯的容量是大杯的1/3”这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。可见,在学生的经验结构里有替换,不过是潜在的、无意识的,教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。再引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。这是十分重要的教学环节,使例题的教学意义超越解答一道题目,得到一组答案,体会一种思想方法。
【教学目标】。
1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤。
2、使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
【教学重点】。
用等量替换的方法实现问题的简单化,并相应的解决问题。
【教学过程】。
一、曹冲称象导入。
师:同学们,你们听过“曹冲称象”这个故事吧?好,下面我们一起来看曹冲他是怎么称象的。(点击播放)。
播放结束后提问:曹冲称象,为什么不直接称大象而要称石头?(生自由回答)。
生:当时还没有这种技术。
了不起。其实,他就是运用了“替换”这种方法解决了问题。(板书“替换”)。
二、教学例题1。
师:大臣们的问题大致是(口述):把720毫升果汁倒入7个杯子,正好都倒满,杯子的容量各是多少毫升?你会列式吗?(课件没有出示杯子)。
生自由说。
师:720÷7?真的这么简单?就能难倒聪明的曹冲?看看,大臣们给的到底是什么样的杯子。(出示杯子)。
师:看,这样的杯子,能用720÷7吗?生:不能。
师:为什么?
生:(因为杯子的大小不一样)――可以多问几个学生。
师:是的,杯子不一样,所以我们就不能直接用720÷7。那如果,装满的都是?
让生答:装满的都是小杯或者都是大杯,我们就可以直接算出每个杯子的容量了。
师:好,我们一起来看看大臣们出的问题具体是:(课件出示:把720毫升果汁倒入6个小杯和1个大杯,正好倒满。小杯的容量是大杯的1/3。大杯和小杯的容量是多少毫升?)。请同学们把题目读一读。
师:你从题目中获得到什么信息?
(720毫升果汁、6个小杯、1个大杯)(师板书)。
理解关键句。
师:你是怎么理解小杯的容量是大杯的1/3这句话的?(多问几个同学)。
(预设之一:把大杯当做标准量,小杯是比较量;反过来那如果把小杯当作标准量(单位一)那大杯的容量是可以说一个大杯的容量相当于3个小杯的容量,也可以说3个小杯的总容量等于1个大杯的容量)。
师:其实,也就是一个大杯的容量相当于3个小杯的容量。
独立思考,合作探究。
1、师:那你想用什么策略解决这个问题?把你的想法和你的同桌说一说,然后把你的解题过程写出来。
同桌讨论,生列算式的过程中(师巡视指导,并请两位学生上台板演。)。
2、师:好,同学们请看:(指着算式)做对了吗?你来解释一下你的解题过程!3、课件演示学生所回答的思路。
师:老师听明白了,你们呢?(演示):他是把1个大杯换成3个小杯,这时候就有??(生:9个小杯)现在就可以先求出??(小杯的容量),然后我们再根据大杯和小杯之间的关系,求出大杯的容量。
4、板书小结:
师:简单的说就是把1个大杯替换成3个小杯,再加上原来的6个小杯,一共就有9个小杯。
5、请学生说第二种方法的思路。
师:诶?这组算式呢?对吗?谁知道他的想法?生回答。
6、学生讲完第二种方法后,课件演示。(也要问到点子上,比如:你是根据)。
师:真不错,是把每三个小杯换成一个大杯,这么一替换,得到的就是(大杯)。就可以求出??(大杯的容量),我们在根据大杯和小杯之间的关系求出小杯的容量。
7、完成板书:
师:是的,我们还可以把6个小杯替换成2个大杯,再加上原来的1个小杯,一共就有3个大杯。
师:你们也都像他们这样解决吗?
检验。
师:到底正不正确呢?我们还要对它进行?
生:检验。
师:怎么检验呢?试一试!(留给学生检验的时间)好,谁来说?生:用240+80=720ml所以正确。
师:哦,你是验证了一个大杯和6个小杯的容量等于720毫升这个条件,但是请你们好好思考思考,只符合这个条件就可以了吗?(240÷80=3)。
师:所以,我们在检验时不能只考虑一个方面,要从整体去思考。总结:
师:刚才我们用什么策略帮助曹冲解决难题的?生:替换师:对,替换就是解决问题的一种策略。(板书课题:解决问题的策略)。
师:那为什么要替换?
生:因为杯子不同,替换了就能变成同一种杯子,问题变得简单了。师:你替换的依据是?
生:小杯是大杯的三分之一。
师小结:是的,解这道题的时,我们先把两种不同的杯子替换成同一种杯子,也就是说把两种不同的量替换成同一种量来解决问题。这样,复杂的问题就简单化了!(板书:两种不同的量替换同一种量)。
师:看来呀,替换真是一种有效的解决问题的策略。那咱们继续用“替换”这种策略来解决生活中的一些问题。请看:(出示练习)。
三、巩固应用。
师:你打算填几?跟你的同桌说一说。学生思考后,指名回答。
从题目中,我们知道小杯的容量是大杯的(),也可以理解为1个大杯的容量等于()个小杯的容量。
如果把小杯替换成大杯,那么8个小杯的容量+2个大杯的容量=()个大杯的容量。
如果把大杯替换成小杯,那么8个小杯的容量+2个大杯的容量=()个小杯的容量。
2、有2个大箱和4个小箱,每个小箱的容量是大箱的1/2,1个大箱可以换成()个小箱,4个小箱可以换()个大箱,如果把大箱都换成小箱,则共有()个小箱。
3、买15支铅笔和4支钢笔共50元,5支铅笔可以换2支钢笔,每支铅笔和钢笔各是多少元?(留足够的时间给学生做题,展示学生作业时,要问:这个算式表示什么?算得的又是什么?每个数字各表示什么等。)。
四、全课总结:
师:你觉得这种替换的策略神奇吗?你有什么样的感想说一说,和大家分享分享。
师:像这样的问题,我们也可以用替换的策略来解决。只要我们从不同的角度去分析和思考,我想:我们将会有许多不同的收获和发现,韦老师期待着,那我们下一节课再一起来探讨。
教学设计解决问题的策略篇十二
教学内容:课程标准实验教科书苏教版六年级上册教材第89~90页例一、练一练和练习十七第一题。
教学目标:
1、初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定解题步骤,有效地解决问题,同时体会画图、列表等策略在解决问题过程中的价值。
2、在对解决实际问题过程的不断反思中,感觉“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
教学重点:让学生体会替换策略的优越性。
教学难点:对替换前后数量关系的把握。
教学准备:
课前学生自学《曹冲称象》,并分组,准备大量铅笔约20支。
课前给学生合作要求纸。正面题目1和要求,反面自编题目。
打开课件。
教学过程:
一、创设情景导入:
有谁带了钢笔吗?(学生举手)。
老师真是健忘啊,今天忘了带钢笔,谁能借老师用一下?
要不这样吧,有谁愿意让老师用一枝铅笔来换你的钢笔?(学生困惑)。
(严肃,让学生觉得真换)。
怎么啦?(学生说说)。
是啊!
那你倒是说说看希望老师拿几枝铅笔,你才肯和我交换?
为什么?(老师:成交!)。
用铅笔换钢笔依据。
那你说说看为什么非要老师用十支铅笔才肯换呢?
(引导学生说出价钱差不多)。
紧接板书:价格相当。
十枝铅笔和一支钢笔价格相当,这正是公平交换的前提和依据。
板书:依据。
二、温故知新:
课件打开到曹冲称象图片。
(他用什么替换了什么?)。
你能联系上面情节讲一讲它替换的依据是什么呢?
(鼓励性评价:真聪明)。
石头和大象的重量相同作为替换的依据。
那曹冲是怎样来保证石头和大象的重量相同呢?
板书:添上----替换两字。
三、协作创新。
曹冲是三国时期的人物,谈到三国,大家一定都知道赤壁大战吧。这场著名的战斗主要是在水上进行的。
三国时期的水上兵器比较多,有走舸,艨艟,斗舰和楼船等等。
(简略介绍其中的走舸和楼船。)。
题目看不清楚的话,可以拿出老师发给你们的纸,上面也有。
生一起读题。
你知道了哪些信息?
这道题目能用“替换”的策略解决吗?
接下来请同学们按照题目下面的要求,来亲身体验一下替换。
同桌合作:
1用什么替换什么?(把题目中替换的双方圈一圈)。
2替换的依据是什么?(在题目关键句的下面画一画)。
3替换前后的数量关系各是什么?(分别把替换前后的数量关系写一写,也可以用图画或者线段图表示)。
小组交流:
知道怎么替换了的同学请举手。
你们在替换的时候,有没有想到替换有什么好处啊?
请你在四人小组里面和同学交流一下。看看同学们是不是想的都和你一样?
1替换有什么好处?
2你替换的方法和其他同学完全一样吗?
结合课件画面讲解,板书。
一艘楼船--替换--5艘走舸(每条走舸乘坐的士兵数量是楼船上士兵人数的1/5)。
课件展示:
替换前。
(10走舸与1楼船横排,出示数量关系:10艘走舸和1艘楼船上一共装了105名士兵)。
替换后。
(15走舸,出示数量关系:15艘走舸一共装了105名士兵)。
让学生计算。并讲一讲过程(数量关系)。
(注重:有什么不同的见解):还有其他的替换方法吗?(课件要可以在两种方法间自由切换)。
两种方法都讲解完后,让学生说说替换的好处。
四、巩固立新:
俗话说得好:兵马未动,粮草先行。
请学生说说如何替换?
板书:一条运粮船----------替换----------(一辆马车+15袋)。
让学生在自备本上用自己喜欢的方式画一画。
实物投影展示替换方法。(最好选文字和图画各一份)。
数学是需要简洁和凝练的,看赵老师怎么来做。。。
强调计算的时候是个倒推的过程,是先减还是先除,不能忘记什么?
课件演示思考过程。
同桌之间互相说说:替换前后的数量关系分别是什么?
学生自己列算式解答。
请学生说说替换的好处。
五、博古通今:
学校阅览室为了让大家能阅读三国的故事,进了3套《四大名著》和8本《三国演义》,一共花费了410.4元。每本《三国演义》比每套《四大名著》便宜31.2元。分别求《三国演义》和《四大名著》的单价。
学生独立完成。
让一学生上黑板进行板演(力求作出示意图)。
全班交流。
引导学生把四大名著换成三国演义。
并让学生体会把三国演义换成四大名著虽然也可以计算,但是比较繁琐。
六、自编自演:
大家家里都买过名著没有?小红她也想买些书来阅读,所以她就把平时的零花钱都放到储蓄罐里储存起来。
请大家开动脑筋,根据5角硬币1元硬币储蓄罐三个词语,抽象出一道可以用替换策略解决的应用题。(可适当加上数据条件)。
七、课堂小结:
今天我们学习了什么?你准备以后经常使用这个策略吗?说说原因。对于这个策略,你有什么要提醒在座的各位同学的呢?经验也可以。
教学设计解决问题的策略篇十三
教学目标:
1、使学生在解决简单实际问题的过程中,进一步体会用画图和列表的方法整理相关信息的作用,感受画图和列表是解决问题的一种常用策略。会用画线段图、直观示意图或列表的方法整理简单实际问题所提供的信息,会通过画线段图、直观示意图或列表的过程分析数量关系,寻找解决问题的有效方法。
2、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的自信心。
教学重点:会用画线段图、直观示意图或列表的方法整理简单实际问题所提供的信息。
教学难点:会通过画线段图、直观示意图或列表的过程分析数量关系,寻找解决问题的有效方法。
教学资源:实物投影仪。
教学过程:
一、游戏导入:
二、新知探究。
1、出示题目:指名读题目,并要求说说知道了些什么,还想到些什么?
2、引导学生认识到,当题目中的信息比较多时,可以用适当的方法把题目中的条件和问题进行整理,这样有利于更清楚地分析数量关系,确定解题思路。
3、学生尝试整理信息。
你能将题目中的这些信息整理出来吗?你打算用什么方法?(学生讨论)。
4、汇报交流:1、列表整理;2、画图整理。
5、学生整理,教师巡视。
三、.师生交流。
1、分别展示学生的整理方法,并让学生说说自己的想法。
3、解答:根据整理的结果,可以怎样列式计算。
4、比较两种解法有什么联系?
四、试一试。
1、出示第1题:让学生先独立画图整理条件和问题,再独立进行解答。
2、出示第2题:让学生先独立画图整理条件和问题并进行解答,
再评议订正并说说画图整理的方法有什么好处?
五、巩固反思。
1、做“想想做做”的第1题。
(1)出示题目,让学生先独立画图整理条件和问题,再独立进行解答,最后集体交流。
2、做“想想做做”的第2题。
(1)先帮助学生理解183元是购买8瓶墨水和9枝钢笔的钱,要从183元中去掉8瓶墨水的钱就是9枝钢笔的钱。
(2)再让学生独立解答,最后交流反馈。
3、做“想想做做”的第3题。
(1)先引导学生画一个椭圆形跑道直观图,帮助学生理解跑道长应等于小张和小李所跑的路程之和。再让学生尝试画出线段图并解答。
五、总结质疑。
1、这堂课你有些什么收获?2、作业:想想做做第3~5题。
第二课时。
教学目标:
1、使学生在解决简单实际问题的过程中,进一步体会用画图和列表的方法整理相关信息的作用,感受画图和列表是解决问题的一种常用策略。会用画线段图、直观示意图或列表的方法整理简单实际问题所提供的信息,会通过画线段图、直观示意图或列表的过程分析数量关系,寻找解决问题的有效方法。
2、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的自信心。
教学重点、难点:
会用画线段图、直观示意图或列表的方法整理简单实际问题所提供的信息,并能正确解答。
教学资源:小黑板等。
教学过程:
一、复习导入:
1、同学们,还记得上课我们学习了什么知识吗?
二、新知探究。
1、出示题目:指名读题目,并要求说说知道了些什么。
2、讨论:打算用怎样的策略去解决这个问题?
3、学生尝试整理信息,教师巡视指导。
4、汇报交流:1、列表整理;2、画图整理。
分别将两种方法展示在黑板上,然后提醒学生画图时线段长度的比例应大致符合实际情况,并标出相应的已知条件;列表整理时提醒学生可以通过简单的计算,把扩建后的操场的长与宽直接填在表中,以有利于更好地把握主要数量关系。
5、学生纠正。
6、解答:通过刚才的整理,你现在能快速、准确地解答这道题目了吗?(学生独立解答)。
7、反馈交流答案。
三、试一试。
1、出示题目,指名读题后讨论用怎样的方法来解决?为什么?
2、引导学生说出用画出示意图的方法。然后指导学生画出示意图,再让学生结合示意图独立解答。
3、反馈交流答案。
四、巩固应用。
1、做“想想做做”的第1题。
(1)出示题目,让学生先独立画图整理条件和问题,再独立进行解答,最后集体交流。
2、做“想想做做”的第2题。
(1)先让学生画出长增加6米后的示意图,理解此时面积增加了48平方米,而48正好是原长方形的宽余的乘积,由此可以求出原长方形的宽,再用同样的方法求出长方形的长,最后计算出原来实验田的面积。
(2)再让学生独立解答,最后交流反馈。
3、做“想想做做”的第3题。
(1)先引导学生理解红花与谎话的摆法,四条边共可摆36盆,但由于4个顶点处被多计算了一次,所以红花的盆数是32盆。同样的道理,可以算出黄花的盆数是40盆。
(2)学生独立解答并交流答案。
五、总结质疑。
1、这堂课你有些什么收获?2、作业:想想做做第1~3题。
第三课时。
教学内容。
第103页例题通过场景图提供相关信息,启发学生根据解决问题需要采用不同的策略收集和整理信息,在此基础上用不同方法解决问题。
教学目的与要求。
教学目标。
1、使学生在解决简单实际问题过程中,体会用画图和列表方法整理相关信息的作用,感受画图和列表是解决问题的一种常用策略。
2、是学生积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学自信心。
教学重点与难点。
学习用画线段图和列表方法解决有关行程计算的实际问题。
教具学具。
投影仪、小黑板。
教学过程。
一、创设情境。
投影出示p103例题。
小组合作,讨论、交流。
联系现实场景,说说能知道些什么?还能想到些什么?
二、探索研究。
1、小组探讨:怎样用适当的方法把题中的条件和问题进行整理,更有利于分析数量关系,确定解体思路?教师巡视,给与恰当指导。
2、教师强调画线段图的方法。
(1)、让线段图正确反映小发明家、学校、小芳家的相对位置关系。
(2)、能在图中看出小明、效仿各自行走的速度和时间以及所需要解决的问题。
(3)、能从图中直观分析数量之间的关系。
3、小组汇报整理的方法,投影出示:
(1)、画图整理:
(2)、列表整理。
小明家到学校每分走70米走了4分。
小芳家到学校每分走60米走了4分。
4、根据整理结果,小组交流、探讨:
应先算什么、再算什么,教师鼓励学生富有个性解决问题。
学生汇报,教师投影展示:
704+604 (70+60)4。
=280+240 =1304。
=520(米) =520(米)。
答:他们两家相距520米。
5、比一比,两种解法有什么联系?
6、小结,通过例题的学习,你有哪些收获?
三、拓展延伸:
1、完成“试一试”
第1题,让学生根据题意先画图整理条件和问题,再独立进行解答。
第2题,让学生在列表整理的基础上,指导学生分析数量关系,明确解题思路。
2、完成“想想做做”中题目。
第2题,教师帮助学生理解题目意思,再引导学生通过思考和计算,填出括号里的数字。
第3题,教师先画一个椭圆形跑道直观图,帮助学生理解“跑道长应等于小张和小李所跑的路程之和”。
学生尝试画线段图表示题中的数量关系。
第4题,重点引导学生先列表整理条件再独立解答。
第5题,第(2)小题根据题意,师生合作化出相应线段图,然后再解答。
四、作业。
想想做做1、5题。
第四课时。
教学内容。
第106页例题主要通过解决有关面积计算的问题,让学生自主运用画图或列表的策略解决问题,并体会相同的策略可以有不同操作形式。
教学目的与要求。
1、使学生会通过画线段图,直观示意图或列表的过程分析数量关系,寻找解决问题的有效方法。
2、使学生积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验。
教学重点与难点。
重点学习用画直观示意图和列表的方法解决有关面积计算的实际问题。
教具学具。
投影仪、小黑板。
教学过程。
一、创设情境。
投影例题:学生读题,讨论用怎样的策略去解决问题。
二、探索研究:
小组合作,探讨、交流。
教师提示:画出的操场示意图中线段长度的比例大致符合实际情况,在图中应标出相应的已知条件。
1、小组汇报解决策略,教师投影展示。
列表:
长 宽 面积。
原来 50米 40米 ?平方米。
现在 ?米 ?米 ?平方米。
画图:如图书p106。
2、想想,要求操场的面积增加了多少平方米,可以先算什么,再算什么?再小组里说说自己的想法再解答。
板书:(50+10) (40+8) 50 40。
=60 48 =(平方米)。
=2880(平方米)。
2880-=880(平方米)。
或50 8+(40+8 10)。
=400+480。
=880(平方米)。
答:操场的面积增加了880平方米。
3、小结:通过例题的学习你有哪些收获?
三、拓展应用:
1、完成“试一试”
指导学生根据题意画出直观示意图,启发学生把图中“小路”适当分成几部分,分别算出面积后再求和;也可启发学生用外围大正方形面积减去里面的草坪面积,从而求得小路面积。
2、完成“想想做做”
第2题,让学生画出长增加6米后的示意图,理解面积增加了48平方米,而48正好是原长方形的宽与6的乘积,由此可以求出原长方形试验田的宽。再用同样的方法求出长方形试验田的长,最后计算出原来试验田的面积。
第3题,分别引导学生理解红花与黄花的摆法,红花应沿里面的正方形边摆,每边能摆9盆,四条边共可摆36盆,但由于4个顶点处各被多计算了一次,所以红花的盆数是32。同样的道理,可计算处黄花的盆数是40,红花和黄花一共要放72盆。
四、作业。
想想做做第1题。
教学设计解决问题的策略篇十四
1、使学生经历用"一一列举"的策略解决简单实际问题的过程,能有条理的分析数量关系,并获得问题的答案。
2、沟通"一一列举"和"列表"两种策略的联系,通过列表,帮助学生养成有序列举的习惯。3、在学生感受这一策略的特点和价值的同时,进一步发展思维的条理性和严密性。
同学们,以前我们曾学过哪些解决问题的策略?好的策略可以帮助我们顺利地解决问题,今天这堂课,我们要学习一种新的策略,这种策略和以前学习的策略还有很大的关系呢!
1、导语:我们来看看第一个问题。
出示:园艺工人用6根1米长的栅栏围成一个长方形花圃,他是怎样围的?
(1)师:你可以算一算,或者画一画。写好后和你的同桌说说你是怎样想的?
(2)学生汇报板书:长(m)2,宽(m)1。
师:说说你是怎样想的?和他想得一样的同学请举手。
小结:看来这个花圃只有一种围法。
2、导语:我们再来看看另一个花圃:
(1)师:长和宽都有哪些情况?请你思考之后写在作业纸上。
(2)学生汇报板书:长(m)43,宽(m)12。
师:你有几种围法?你呢?
师:还有没有其他的围法?看来我们已经找全了答案。(板书:全)。
小结:第一个花圃,我们找到了1种围法,第二个花圃,我们找到两种不同的围法,像这样把符合要求的答案一一的找出来,这种方法叫做一一列举,(板书:一一列举),"一一列举"这就是我们今天要学习的新策略。
3、导语:下面请同学们用这个策略来解决一个问题。
出示例1:王大叔用18根1米长的栅栏,围成一个长方形羊圈,有几种不同的围法?
(1)请你思考之后,把不同的围法一一列举到第一张表格上。
(2)学生汇报(投影展示三张作业纸:不全、全而无序、全而有序)。
教学设计解决问题的策略篇十五
单元教材分析。
二
单元目标要求。
1、 使学生在解决问题的过程中初步学会应用替换和假设的策略分析数量关系,确定解题思路,并有效地解决问题。2、 使学生在对自己解决实际问题过程的不断反思中,感受替换和假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。3、 使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学习数学的信心。
三
单元设计意图。
四
单元目标达成分析。
板块。
教师活动。
学生活动。
小明把720毫升果汁倒入6个小杯和1个大杯,正好都倒满。小杯的容量是大杯的1/3。小杯和大杯的容量各是多少毫升?2、提问:大杯和小杯的容量有着什么样的关系呢(小杯的容量是大杯的1/3)?根据这句话你能想到什么呢?教师追问:在替换的过程中什么变了,什么没有变?引导学生进一步理解“替换”的策略:杯子的数量发生了变化,但总容量没有发生变化。.3、小结策略。
虽然是两种不同的替换方法,但它们有什么共同的地方?(两种不同的物体根据它们之间的关系替换成一种物体。)。
4、怎样检验结果是否正确?学生口头检验。
集体交流小结。
指导学生做练习十七的第1题。
学生思考说说。学生说说数量关系后口答列式。学生读题,结合学生提出的已有经验,学生可能出现的情况是:a.把大杯换成小杯b.把小杯换成大杯学生自己操作(可以用画图等方法)学生独立完成,请两名学生板演,集体评讲每种方法的解题思路和方法。比较有什么不同和相同之处。学生检验结果,从两个方面进行,一是算一算总量是否是72毫升;二是算一算两个数量是否是1/3的关系。学生读题后,自己画图分析,解答。集体评讲不同方法的解题思路。比较有什么相同和不同之处。学生试着用替换的策略尝试着计算。集体交流学生明确:例题是倍比关系:替换时总量不变,数量会变;练一练是差比关系:替换时总量变了,数量不变。激活学生的生活经验,为学习新知作铺垫。学会用“替换”的策略通过理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤和方法。在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。通过解决生活中的一些实际问题,进一步巩固用“替换”策略来分析题意,理解数量关系,提高学生的分析、解题的能力。课题:解决问题的策略——假设第2课时教学目标:1、在解决实际问题的过程中,初步学会运用假设的策略分析数量关系,确定解题思路,并有效解决问题。
2、在对自己解决实际问题的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展学生分析、综合和简单推理的能力。
板块。
教师活动。
学生活动。
教学目标及达成情况。
一、激趣导入。二、新知探究。三、巩固发展。四、课堂总结。
(1)组织学生思考:有没有巧妙的办法,能很快的找到答案?
(2)组织学生把找到的答案和方法与同桌同学进行交流。
(3)组织学生进行全班交流解决问题的方法。
(1)针对学生提出几种问题解决的不同的方法,如把10条船全部看作大(小)船,把一部分船看作大船,一部分看作小船等画图、列表方法,利用课件组织学生进一步观察讨论,交流和体会“假设——比较——调整”替换策略思想方法。
(2)引导学生对所得结论进行检验。
(3)结合学生交流过程,整理小结例2的问题解决策略及推理过程。
1.组织学生完成练习第1题。
(1)组织学生用自己的方式“画一画,算一算”等进行问题解决。
(2)组织学生交流讨论问题解决的过程,进一步体会“替换”策略。
2.组织学生完成练习第2题(结合实际有所调整改编)。
3.组织学生完成练习第3题。
4.组织学生完成练习第4题。
5.感受数学文化。
组织学生阅读我国古代的数学名题——“鸡兔同笼”问题。 组织学生交流本课学习收获,进一步感受用“假设”解决问题策略。学生思考交流想法,说说判断结论。
学生观察,审理问题信息。
学生画图思考,可以把答案先与同桌进行交流,再集体交流。学生完成练习第1题。
可以用自己的方式“画一画,算一算”等进行问题解决。
完成练习第2题(结合实际有所调整改。学生独立完成后进行交流。学生独立完成后进行交流。学生独立完成后进行交流。在解决实际问题的过程中,初步学会运用假设的策略分析数量关系,确定解题思路,并有效解决问题。
2、在对自己解决实际问题的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展学生分析、综合和简单推理的能力。通过解决生活中的实际问题,巩固用假设的策略来分析题意,进一步发展学生分析、综合和简单推理的能力。课题:解决问题的策略(练习题)。
第三课时。
板块。
教师活动。
学生活动。
教学目标及达成情况。
教学设计解决问题的策略篇十六
1、使学生在解决实际问题的过程中初步学会从条件出发展开思考,分析并解决相关问题。
2、使学生在对解决实际问题过程的不断反思中,感受解决问题策略的价值,发展分析、归纳和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
用从条件想起的策略解决问题。
策略的体验和理解。
分了五个环节。
第一部分是导入,先出示一个条件,让学生初步体验只有一个条件无法求出问题,接着提供两个条件,让学生选择一个能解决问题的条件,让学生进一步体会只有两个相关联的条件才能解决问题。
第二部分是教学例题,感悟策略。出示例题后重点让学生理解“以后每天都比前一天多摘5个”,用自己的话来说说,从两个角度提炼出了数量关系,然后说解题思路,主要讲清楚根据哪两个条件求出什么,再根据哪两个条件什么。完成填表和列式后沟通了两者的关系,最后总结得出解决问题时我们紧紧抓住条件在思考。揭示课题。
第三环节是变式沟通,形成策略。通过两个变式的教学,让学生加深对策略的感知。接着安排了皮球那道题目,学生对条件的理解是比较困难的,所以我安排了一个动画,帮助学生理解。四个题目结束后,安排了回顾反思,这一环节是新教材比较强调的,让学生在回顾反思中提炼出解决问题的.经验。
第四环节是练习巩固,运用策略。选取了想想做做第一题的第一小题,让学生根据条件提出不同的问题,再解答,最后在分析中提炼出解决问题的第三个小窍门。紧接着请学生独立完成想想做做第4题,第5题。第5题的设计主要考虑到一是学生对游戏比较感兴趣,二是国际象棋是我们学校的特色,三是培养学生估算的能力,四是增加学生的课外知识。
第五环节是课堂总结,交流收获。回顾学习了什么内容,以及解决问题时是怎样一步步分析的。
教学设计解决问题的策略篇十七
你能根据题意自己独立画线段图整理。
展示学生的线段图,并让学生说说自己是怎样想的。
补充合适的问题后,学生独立解答。交流的时候分别说清楚自己是怎么想的。
2、比较两题,找联系。
说说两题有什么不同?(方向上的不同,一个是相向的,一个是相背的)做手势。
什么相同?(都是求两断之间的距离,可以先分别算出各自的距离再相加,也可以先算出合起来的`速度再算总的路程。……)
1、先画图整理,再解答。
2、读题后问:这道题和刚才的有什么不同?可以怎么想?把你的算式写在作业本上。
3、读题后问:这道题和例题有什么联系?你会解答吗?
教学设计解决问题的策略篇十八
进一步积累解决问题的经验,增加解决问题的策略意识,获得解决问题的成功体验。
教学过程:
一、积累铺垫。
4.从图中你能求出什么?
二、初步感知。
2.审题激需:你能想个办法让大部分同学都能理解题意顺利闯关呢?(画图)。
4.现在图有了,你能根据图来求出原来操场的面积吗?
(1)学生尝试,教师巡视。(2)讨论交流:
三、再次体验。
四、深入体验。
(一)第四关:
1.引入:应用画图的策略,我们来闯第四关。
2.分层出示:
到底增加了多少?学生解答后交流。(交流“整体”和“分块”两种思路)。
3.反思小结:从用经验猜测,到画图验证,最后到解决问题,你有什么启发吗?
(二)第五关:
1.引入:第四关我们都闯过了,下面我们要挑战——第五关!
(1)审题后问:与第四关有什么区别?(一个是“同时”,一个是“或者”)。
五、全课总结。
教学设计解决问题的策略篇十九
苏教版国标本四年级数学(下册)第89——90页。
教学目标。
1、使学生在解决有关面积计算的实际问题的过程中,学会用画直观示意图的方法整理相关信息,能借助所画的示意图分析实际问题中的数量关系,确定解决问题的正确思路。
2、使学生在对解决实际问题过程的反思中,感受用画示意图的方法整理信息对于解决实际问题的价值,体会画图整理信息是解决问题的一种常用策略。
3、使学生进一步积累解决问题的经验,增强解决实际问题的策略意识,获得解决实际问题的成功体验,提高学好数学的信心。
教学重点。
学会用画示意图的方法整理相关信息、分析数量关系,确定解决问题的正确思路。
教学难点。
掌握画示意图整理信息的方法,培养学生运用策略的能力。
设计理念。
使学生产生学习新知的心理需求,让学生在自主探索、反思的过程中获得知识。
教学步骤。
教师活动。
学生活动。
一、导入新课。
1、提问:
你能画一幅长30厘米、宽20厘米的长方形的示意图吗?画画看。
说一说画图时要注意什么?
你会求这个长方形的面积吗?
长方形的.长、宽和面积有什么关系?你会用哪些关系式来表达这三者的关系?
2、谈话:刚才你们画出了长方形的示意图,也解答了简单的求长方形面积的问题。这节课我们将学习运用画图的策略来解决稍复杂的面积计算问题。(板书课题)。
学生独立解决、汇报。
二、教学新课。
1、出示例题。
2、根据示意图分析、解决问题。
3、反思解题过程。
使学生明确:这是一个有关图形面积计算的问题,如果画个图就可以将题意表达的更清楚了。
(2)自主尝试画图。
要求画出的图能让人更清楚地看出题目的条件和问题。
组织交流:展示自己画的示意图,说说是怎么画出来的,结合示意图说说题目中的条件和问题。
引导学生比较展示出来的示意图,观察这些示意图,你觉得哪些画的好?哪些需要改进?
重点引导学生关注:a。题目中的条件和问题是否都作了准确的标注;b。画的图是否美观清晰,有关长方形的长与宽是否大致符合比例。
根据刚才的讨论,修正自己画的图。
看示意图分析:要求原来花圃的面积要先求什么?根据什么条件可以求出原来花圃的宽?
你认为解决这一类实际问题一般怎样做?
明确:
理解题意画示意图整理信息。
根据示意图分析数量关系。
学生自主阅读。
独立思考、交流。
学生尝试画图、交流汇报。
比较、改进自己的示意图。
小组交流,全班交流。
三、巩固练习。
1、指导完成试一试。
出示题目,提问:你准备用什么样的策略解决问题?
按要求在教材提供的图上画出减少的部分。
2、想想做做第1题。
3、想想做做第2题。
学生自主阅读,
独立思考后全班交流。
学生独立画图,同桌检查。
学生尝试列式计算解决问题并结合所列式子再说说解决问题的思路。
学生独立完成。交流时让学生展示自己所画的示意图,再结合示意图说明自己的解题思路。
学生独立完成。交流时,先让学生从自己所画的示意图中指出增加的部分,再让学生结合示意图或所列的表格说明自己的解题思路。
同桌交流,指名回答。
四、全课总结。
同桌交流,指名回答。
五、作业设计。
六、教后反思。
【本文地址:http://www.xuefen.com.cn/zuowen/17905750.html】