解方程数学教案设计(热门15篇)

格式:DOC 上传日期:2023-12-07 11:28:14
解方程数学教案设计(热门15篇)
时间:2023-12-07 11:28:14     小编:FS文字使者

教案是指教学活动实施中所依据的一种详细计划,对于教师来说,写好教案是保证教学有效进行的重要保障。教案的编写应当符合学生的年龄特点和认知规律。希望大家能够从这些教案范例中找到适合自己的教学思路和教学模式。

解方程数学教案设计篇一

1.教材背景。

作为曲线内容学习的开始,“曲线与方程”这一小节思想性较强,约需三课时,第一课时介绍曲线与方程的概念;第二课时讲曲线方程的求法;第三课时侧重对所求方程的检验.

本课为第二课时。

主要内容有:解析几何与坐标法;求曲线方程的方法(直译法)、步骤及例题探求.

2.本课地位和作用。

承前启后,数形结合。

曲线和方程,既是直线与方程的自然延伸,又是圆锥曲线学习的必备,是后面平面曲线学习的理论基础,是解几中承上启下的关键章节.

“曲线”与“方程”是点的轨迹的两种表现形式.“曲线”是轨迹的几何形式,“方程”是轨迹的代数形式;求曲线方程是用方程研究曲线的先导,是解析几何所要解决的两大类问题的首要问题.体现了坐标法的本质——代数化处理几何问题,是数形结合的典范.

后继性、可探究性。

求曲线方程实质上就是求曲线上任意一点(x,y)横纵坐标间的等量关系,但曲线轨迹常无法事先预知类型,通过多媒体演示可以生动展现运动变化特点,但如何获得曲线的方程呢?通过创设情景,激发学生兴趣,充分发挥其主体地位的作用,学习过程具有较强的探究性.

同时,本课内容又为后面的轨迹探求提供方法的准备,并且以后还会继续完善轨迹方程的求解方法.

数学建模与示范性作用。

曲线的方程是解析几何的核心.求曲线方程的过程类似于数学建模的过程,它贯穿于解析几何的始终,通过本课例题与变式,要总结规律,掌握方法,为后面圆锥曲线等的轨迹探求提供示范.

数学的文化价值。

解析几何的发明是变量数学的第一个里程碑,也是近代数学崛起的两大标志之一,是较为完整和典型的重大数学创新史例.解析几何创始人特别是笛卡儿的事迹和精神——对科学真理和方法的追求、质疑的科学精神等都是富有启发性和激励性的教育材料.可以根据学生实际情况,条件允许时指导学生课后收集相关资料,通过分析、整理,写出研究报告.

3.学情分析。

我所授课班级的学生数学基础比较好,思维活跃,在刚刚学习了“曲线的方程和方程的曲线”后,学生对这种必须同时具备纯粹性和完备性的概念有了初步的认识,对用代数方法研究几何问题的科学性、准确性和优越性等已有了初步了解,对具体(平面)图形与方程间能否对应、怎样对应的学习已经有了自然的求知欲望.

二、目标分析。

1.教学目标。

知识技能目标。

理解坐标法的作用及意义.

掌握求曲线方程的一般方法和步骤,能根据所给条件,选择适当坐标系求曲线方程.

过程性目标。

通过学生积极参与,亲身经历曲线方程的获得过程,体验坐标法在处理几何问题中的优越性,渗透数形结合的数学思想.

通过自主探索、合作交流,学生历经从“特殊——一般——特殊”的认知模式,完善认知结构.

通过层层深入,培养学生发散思维的能力,深化对求曲线方程本质的理解.

情感、态度与价值观目标。

通过合作学习,学生间、师生间的相互交流,感受探索的乐趣与成功的'喜悦,体会数学的理性与严谨,逐步养成质疑的科学精神.

展现人文数学精神,体现数学文化价值及其在在社会进步、人类文明发展中的重要作用.

2.教学重点和难点。

难点:几何条件的代数化。

依据:求曲线方程是解几研究的两大类问题之一,既是重点也是难点,是高考解答题取材的源泉.主要包括两种类型求曲线的方程:一是已知曲线形状时常用待定系数法;二是动点轨迹方程探求,本课的重点主要是探索动点的曲线方程.

曲线与方程是贯穿平面解几的知识,是解析几何的核心.求曲线方程是几何问题得以代数研究的先决,求曲线方程的过程类似数学建模的过程,是课堂上必须突破的难点.

三、教学方法及教材处理。

1.教学方法:探究发现教学法.

遵循以学生为主体,教师为主导,发展为主旨的现代教育原则,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,通过学生主动探索、积极参与、共同交流与协作,在教师的引导和合作下,学生“跳一跳”就能摘得果实,于问题的分析和解决中实现知识的建构和发展,通过不断探究、发现,让学习过程成为心灵愉悦的主动认知过程,使师生的生命活力在课堂上得到充分的发挥.

2.学法指导。

学生学法:互相讨论、探索发现。

由于学生在尝试问题解决的过程中常会在新旧知识联系、策略选择、思想方法运用等方面遇到一定的困难,需要教师指导.作为学生活动的组织者、引导者、参与者,教师要帮助学生重温与问题解决有关的旧知,给予学生思考的时间和表达的机会,共同对(解题)过程进行反思等,在师生(生生)互动中,给予学生启发和鼓励,在心理上、认知上予以帮助.

这样,在学法上确立的教法,能帮助学生更好地获得完整的认知结构,使学生思维、能力等得到和谐发展.

解方程数学教案设计篇二

1.小明用天平测量物体的质量(如下图),已知每个小砝码的质量为1克,此时天平处于平衡状态.若设大砝码的质量为x克.

考查说明:本题主要考查等式基本性质1.

答案与解析:根据等式基本性质1:等式两边同时加或减去同一个数或式子,结果仍为等式.

2.方程3y=。

两边都除以3得y=1。

改正:________________________________________________.

考查说明:本题主要考查等式基本性质2并熟练运用.

答案与解析:得y=。

两边同时除以3时,右边也要除以3,不是乘以3。

3.当x=时,60-5x=0.

考查说明:本题主要考查利用等式两条基本性质来解简单方程.

答案与解析:12.由原方程和等式性质1得5x=60,再由等式性质2,两边同除以5,得x=12.

4.方程的解是(36,48中选填一个)。

考查说明:本题考查的知识点是方程的解的概念,使得等号成立即可.

答案与解析:36.方程的解使等式两边相等,把两个数代入验算即可.

5.一年三班55人,一年八班29人,因植树需要从三班中抽出x人到八班,使得两班人数相同,则根据题意可列方程为_____________.

考查说明:本题主要考查根据题意找等量关系,从而列出方程.

答案与解析:55-x=29+x.等量关系为:抽调后,三班人数=八班人数,关键要理解三班少了x人的同时,八班多了x人.

二、选择题。

6.下列方程中,是一元一次方程的是()。

a、

b、

c、

d、

考查说明:本题主要考查一元一次方程的概念.

答案与解析:a.a和b都需要化简后再判断,c明显是二元的,d分母中含未知数,不是整式方程.

7.根据下列条件能列出方程的是()。

a.一个数的'与另一个数的的和。

b.与1的差的4倍是8。

c.和的60%。

d.甲的3倍与乙的差的2倍。

考查说明:本题考查的知识点是方程与代数式的区别.

答案与解析:b.其余几个答案都不能列出等号.

三、解答题。

考查说明:本题考查的知识点是列一元一次方程解应用题,并会利用等式性质解简单的一元一次方程.本题等量关系为:教师票价+学生票价=910.

答案与解析:设:学生有x人,根据题意。

列出方程得70+70x×=910,

解方程得70x×=840,

即35x=840,

所以x=24.

解方程数学教案设计篇三

3、能解二元一次方程组的方法求两条直线的交点坐标。

2、用解二元一次方程组的方法求两条直线的交点坐标。

1、做图像时要标准、精确,近似值才接近。

先自学课本,用心思考自主学习部分,努力独立完成,再与其他同学讨论未明白的内容。课上展示,针对自己不明白问题多听多问。

自主学习部分:

问题1.(1)方程x+y=5的解有多少组?写出其中的几组解。

(3)在一次函数y=5-x的图像上任取一点,它们的坐标适合方程x+y=5吗?

(5)由以上的探究过程,你发现了什么?

问题2.

(3)由以上探究过程,我们发现解二元一次方程组的方法除了加减消元法和代入消元法,还可以用法解方程组;我们还发现可以利用解二元一次方程组的方法求两条直线交点的坐标。

合作探究:

1、用做图像的方法解方程组。

2、用解方程的方法求直线y=4-2x与直线y=2x-12交点。

解方程数学教案设计篇四

预设5:

解:设海洋面积为x亿平方千米。那么陆地面积可以表示为实际问题与方程教学设计亿平方千米。

地球表面积-海洋面积=陆地面积。

预设:第一种方法最好,解方程的过程最简单。

师:同学们你们简直太聪明了,想出来这么多解决这道题目的方法,不过我们要在这么多的方法之中选择最优的做法,一般遇到这类求两个未知量的题目,我们要设一倍量为x,再利用题目中的等量关系来解决问题。

师:接下来请同学们思考,列方程解决实际问题一般需要哪几个步骤呢?

(3)总结方法。

1、设(找出未知数,用字母x表示)。

2、找(找出题目中的等量关系)。

3、列(根据等量关系列出方程)。

4、解(运用等式的性质解方程)。

5、验(将解出的结果代入方程检验)。

6、答(完整地写好答话)。

三、巩固练习。

1、果园里苹果树和梨树一共300棵,梨树是苹果树的5倍,苹果树和梨树各有多少棵。下列说法正确的是()。

a、解:设梨树为x棵,则苹果树为5x棵。

b、解:设苹果树为x棵,则梨树为5x棵。

通过这道题目的练习,使学生更深一步掌握设两个未知量的方法。

2、找出下列各题中的等量关系。

解方程数学教案设计篇五

列方程解应用题是在第七册学习列出含有未知数的等式解一步计算应用题的基础上进行教学的。共分四个层次,首先教学比较容易的两步计算的应用题,其次教学两、三步计算的应用题,本课内容是第三个层次,第四是用方程和算术方法解应用题的比较。列方程解含有两个未知数的应用题,是第一次出现在全国统编教材上。例6的内容,在算术中称为和倍和差倍问题,由于是逆向思考题,解法特殊,不易掌握,现在用方程来解,不仅思路较简单,而且这两类问题的思路统一,解法一致,既可减轻学生负担又提高了解应用题的能力,是今后小学学习分数等应用题的基础,也是今后到中学继续学习代数方程解应用题所必须具备的知识,必须重视这部分内容的教学。

本节课的重点是正确设未知数和列出方程,关键要找出等量关系,列方程也是教学的难点。

二、对教学方法的选择。

列简易方程解应用题是中学列代数方程解应用题的基础,选择教学方法时,要注意中小学教学的衔接。

本节课首先要考虑正确运用迁移原理,这对中、小学的学习都将具有积极作用。在准备阶段的练习题中,不论是数量关系和解题的方法对学习例6都具有迁移的作用,利用这一原理可引导学生直接去做例6后的想一想,这既能培养迁移推理能力,也能促使学生养成独立思考的习惯。

其次,由于小学生仍处在从形象思维向抽象思维过渡的关键时刻,所以要考虑怎样做好这个过渡,在教学中采用画线段图帮助分析数量关系。线段图能使数量关系明显地呈现出来,有助于帮助学生设未知数,找等量关系和列出方程。

第三还要考虑学法指导。本课要教会学生阅读、分析应用题的方法、验算的方法,从不同角度思考问题的方法。在教学检验方法时,采用阅读的方式,让学生边读边想并说出两个检验式子的含义与作用,从中悟出检验的方法。教完例6后引导学生想不同的解题思路,列出不同的方程,就是教学生如何从不同角度思考问题的方法。这些方法对今后继续学习数学是十分必要的。

三、对教学环节的安排。

解方程数学教案设计篇六

只列方程不求解:

4.兄弟两人的年龄之和是59,弟弟比哥哥小5岁,兄弟各几岁?

(1)长方形游泳池占地600平方米,长30米,游泳池宽多少米?

(2)面积为15平方厘米的三角形纸片的底边长6厘米,这条底边上的高是多少厘米?

(3)一块梯形草坪的面积是30平方米,量得上底长4米,高6米,它的下底长多少米?

三、提高练习。

解方程数学教案设计篇七

一、教学目标:

1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

2、通过观察,归纳的概念。

3、积累活动经验。

二、重点和难点。

归纳的概念。

感受方程作为刻画现实世界有效模型的意义。

三、教学过程。

1、课前训练一。

(1)如果||=9,则=;如果2=9,则=。

(2)在数轴上距离原点4个单位长度的数为。

(3)下列关于相反数的说法不正确的是()。

a、两个相反数只有符号不同,并且它们到原点的距离相等。

b、互为相反数的两个数的绝对值相等。

c、0的相反数是0。

d、互为相反数的两个数的和为0(字母表示为、互为相反数则)。

e、有理数的相反数一定比0小。

(4)乘积为1的两个数互为倒数,如:

(5)如果,则()。

a、,互为倒数b、,互为相反数c、,都是0d、,至少有一个为0。

(6)小明种了一棵高度为40厘米的树苗,栽种后每周树苗长高约为12厘米,问大约经过几周后树苗长高到1米?设大约经过周后树苗长高到1米,依题意得方程()。

a、b、c、d、00。

2、由课本p149卡通图画引入新课。

3、分组讨论p149两个练习。

4、p150:某长方形的足球场的周长为310米,长与宽的差为25米,求这个足球场的长与宽各是多少米?设这个足球场的宽为米,那么长为(+25)米,依题意可列得方程为:()。

课本的宽为3厘米,长比宽多4厘米,则课本的面积为平方厘米。

解:设每个练习本要元,则每个笔记本要元,依题意可列得方程:

6、归纳方程、的概念。

7、随堂练习po151。

8、达标测试。

(1)下列式子中,属于方程的是()。

a、b、c、d、

(2)下列方程中,属于的是()。

a、b、c、d、

解:设甲队胜了场,则平了场,依题意可列得方程:

解得=。

答:甲队胜了场,平了场。

(4)根据条件“一个数比它的一半大2”可列得方程为。

(5)根据条件“某数的与2的差等于最大的一位数”可列得方程为。

p151习题5.1。

解方程数学教案设计篇八

在小学数学教学中,列方程解应用题是难点。这一部分内容融入了等式的性质,利用四则运算各部分的关系,有助于对所学的算术知识进行巩固和加深理解,初步渗透代数的思想,然而在这一部分教学中存在一定的难点。

一、审清题意:

审题,理解题意。即全面分析题目中的已知量、未知量及二者之间的关系。特别要把牵涉到的一些概念术语弄清,如同向,相向,增加到,增加了等。

二、确立未知数:

三、寻找等量关系:

“含有未知数的等式称为方程”因而是“等式”是列方程比不可少的条件。所以寻找等量关系是解题的关键。常见的等量关系有以下几种:

1、总量相等;2、成倍数相等;3、按公式相等;

小学常用数量关系总结:

解方程数学教案设计篇九

上海市小学数学新教材三年级第2单元:“用两位数除”小单元。

1、通过复习,进一步理解和掌握除数是两位数除法的计算法则,提高计算能力。

2、通过自主探索和共同探讨活动,引导学生理清知识脉络、学会分析归纳、有序整理的方法,提高学习能力。

整理知识结构,构建知识网络。

一、情景引入:

1、师:春天到了,勤劳的蚂蚁们在干什么呢?

7227÷53900÷45467÷538304÷279082÷7。

师:你们能估一估商是几位数吗?你有什么好办法来判断的?

2、揭题。

观察这些算式有什么相同的特征?

师:除数是两位数的除法是我们这个单元学习的内容,今天我们就来回顾与整理一下这个单元的内容。(板书:回顾与整理)。

二、知识整理:(通过改错训练引导学生回忆与整理有关知识)。

1、纠错1。

师:判断对与错。错在哪里?我们用哪些方法可以判断错与对?

(板贴:除到哪一位,商就写到那一位)(哪一位不够商1,就商0)(估计商是几位数,除数×商+余数=被除数)。

2、纠错2。

师:错在哪里?(板贴:余数要比除数小)(及时调商最关键)。

3、小结:看来小朋友们不仅掌握了除数是两位数除法的计算法则,而且掌握了检验的方法。理清了思路,我们去解决一些实际问题。

三、解决问题:

师:从图上获得了什么信息?能解决什么问题?

师:每人选择2条线路,来计算小巧所花的时间。

(抽5人板演)。

师:现在你知道每条线路需要多少时间?

师:我们一起来回顾一下这5道题的计算过程。

1、前2题有什么明显的特征?(0是怎么得来的?)。

2、第3题有什么特征呢?(同头无除商9、8)。

3第4、5题你又是如何试商的?

师:根据不同的题目选择适合的试商方法,这样计算又对又快?(选择合适的试商方法进行试商,能提高计算速度和准确率)。

四、拓展训练:

师:通过刚才的问题解决,老师发现小朋友不但会做,而且会说算理。

那接下来的题目你还能又快又准确的完成吗?

五、课堂总结:

通过今天这节课的复习和整理,你对除数是两位数的除法的计算,有什么话想对同学和老师说。

六、独立作业:

竖式计算并验算。

7416÷5623434÷7813066÷32。

解方程数学教案设计篇十

1.让学生学会运用转化的策略,用简便的方法解决有关分数的实际问题。

2.让学生在学习过程中加深对转化策略的认识,增强策略意识,培养思维的灵活性。

3.感受转化策略对学习的作用,能有意识、有目的、适当地运用转化策略。

掌握用转化的策略解决分数问题的方法,增强策略意识。

根据具体问题,确定转化后要实现的目标和转化的具体方法。

讨论、观察。

多媒体课件。

老师这儿有一个图形,你能求出阴影部分的面积吗?你是怎么求的?为什么这样做呢?通过转化,我们把不规则的图形转化为了规则的图形。今天我们继续学习如何用转化的策略解决问题。

出示练习十六第4题,学生在书上独立完成。交流汇报时说说自己是如何思考的。

提问:在刚才的做题、交流过程中,你有什么感受或发现?

1.教学例2。

课件出示例2,学生观察。提问:你有什么发现?你会做这道题吗?每个学生用自己的方法独立解答,交流汇报,说说自己是怎么做的。

能不能转化成更简单的算式?

出示题目右边的正方形图,提出要求:你能说说图中哪一部分表示这几个数的和吗?

引导:看图想一想,可以把这一算式转化成怎样的算式计算?

提问:这时该怎么做呢?学生独立列式计算。

和刚才的方法比较,这2种方法哪种更简单呢?你有什么体会呢?

小结:在解决问题时,要善于从不同的角度灵活地分析问题,有时候画图可以帮助我们找到合理的转化方法。

2.练一练。

1.练习十六第5题比较几种方法哪种更简单呢?你有什么体会呢?

2.练习十六第6题。

出示问题,指导学生理解图意。

明确图中每一排的点分别表示每一轮参加比赛的球队,把两个点合成一个点的过程表示进行了一场比赛。单场淘汰制就是每场比赛都要淘汰1支球队。

如果不画图,有更简便计算方法吗?

进一步提问:如果有64支球队,产生冠军一共要比赛多少场?

3.练习十六第7、8、10题。

弄清27+19的和就是最大长方形的长与宽的长度之和。

作业布置练习十六第9、11、12、13题。

解方程数学教案设计篇十一

教科书第71—72页的例1、“试一试”和“练一练”、练习十四的第1-3题。

1.教材让学生在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积,等周长的变形。

2.在解决实际问题过程中体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。

3.进一步积累解决问题的经验,增强解决问题的"转化"意识,提高学好数学的信心。

感受“转化”策略的价值,会用“转化”的策略解决问题。

会用“转化”的策略解决问题。

;学生每人一张例1的格子图。

一、创设情境,感知策略。

1.谈话导入。

(分别演示蝴蝶平移的过程,第二幅图顺时针和逆时针分别旋转一次,第三幅图从左往右顺时针平移一周的过程)。

提问:(1)蝴蝶是按怎样的顺序变化而来的?

(2)花环两次变化又是怎样形成的?

(3)最后一幅又是怎样变化的呢?

学生回答,师依次板书:平移,旋转,顺时针,逆时针。

二、合作交流,探究策略。

1.出示例1。

提问:这两种平面图形,我们以前学过吗?(没有)你觉得它们象什么呢?(生发挥想象力回答,但要说明的是平面图形。)。

2.引导交流。

提问:你能从图上准确地数出它们的面积分别是多少吗?(不能)面积会相等吗?请同学们4人一小组讨论,并可以在刚发下的作业纸上涂涂画画,验证你的结论。

小组交流,教师巡视,并指导。

3.指导验证。

师:你们组是怎么想的?指名回答。你在观察这两幅图的时候有什么发现吗?

学生说想的过程,并投影出示学生的作业纸。

(生可能回答上半圆平移下来就是下半圆,他们的面积吻合;“花瓶”突出来的半圆就是瓶口凹下去的半圆,只要分别把他们旋转180度就可以了)。

教师及时评价并用演示刚才学生说的过程。

提问:这两幅图经过旋转和平移后都变成了什么图形?(生:长方形。)。

提问:变成长方形后它们的面积相等吗?为什么?(生:相等,长和宽一样,所以面积一样。)。

教师再次演示变化过程,提问:在两幅图变化的过程中,什么不变?(面积)都把它变成了谁的面积?(生:长方形。)。

小结:因为我们无法一下子看出这两个平面图形的大小,但分别把它们转化成一个长方形后,我们就能比较这两个图形的大小了。在解决问题的过程中,我们经常会用到这样的策略——转化。(板书:解决问题的策略——“转化”)。

三、应用策略,归纳方法。

1.谈话:刚才,我们运用转化的策略把不规则的图形变成规则图形来比较大小。在有关平面图形的计算中经常会用到“转化”的策略。请同学们试着来解决以下问题。

(1)练习十四第2题的左边两幅图。

学生独立思考后口答,教师相机演示。

(2)“练一练”右边的图形和练习十四第3题的第一幅图。

提问:你能用比较简便的方法快速地求出图形的周长吗?

学生先独立思考,然后和同桌交流。

个别学生介绍自己的方法,教师相机演示。

小结:在解决这些问题的过程中,我们都用到了怎样的策略?(转化)我们要把复杂的图形转化未为简单的图形,具体地说又是用到了以前学习的哪些知识呢?(平移和旋转)。

四、回顾知识,体验转化。

1.谈话:其实我们以前学过的知识中,很多都运用了转化的策略,哪位同学来说说看。

指名回答,生可能会说:1.推导三角形公式时,把三角形转化成平行四边形。2.推导梯形时把梯形转化成平行四边形。3.推导圆面积时,把圆面积转化成长方形。4.计算小数乘法时把小数乘法转化成整数乘法。5.计算分数除法时把分数除法转化成分数乘法等等。

在学生说的过程中请学生说说推导的过程,并相应演示推导过程。

小结:看来,“转化”的确是一种非常重要的解题策略,在刚才的交流和演示的过程中,你觉得这种策略有什么优点?(学生交流后教师相机板书:化复杂为简单,化未知为已知,化不规则为规则------)。

五、拓展运用,提升策略。

1.出示试一试:计算1/2+1/4+1/8+1/16。

提问:(1)这些分数分别表示什么意思?生根据分数的意义回答,并强调单位“1”相同。(2)相邻的分数是什么关系?(后一个是前一个的1/2)。

师:我们一起来画图表示看看。师根据题目依次画图。

师:这题我们又可以怎样转化呢?学生看图解答。

指名回答。1-1/16=15/16。

(如果学生回答不出,师提示:求阴影部分,空白部分又是多少呢?)。

小结:在解决这个分数加法的计算题时,我们借助图形来分析问题,把复杂的算式变成了简单的算式。这也是运用了“转化”的策略——数形结合。(板书)。

3、出示:比较大小:16/17和35/36。

你准备怎样比?先和同桌说一说,再组织交流。体会:异分母分数大小比较,一般要通分后比较大小,通分很麻烦,现在只要转化成比较1/17和1/36的大小就可以了。

2.谈话:在解决一些稍复杂的实际问题时,有时我们也可以用“转化”的策略思考问题将复杂问题变得简单些。请同学们看这一题:

出示练习十四第1题。

(1)学生读题理解单场淘汰制的比赛规则并看懂图的意思。

(2)提问:什么是单场淘汰制?你能结合示意图来说说淘汰赛的过程吗?你会列式计算吗?(学生列式计算后进行解释。)。

(3)提问:如果不画图,有更简便的计算方法吗?(提示:不管第几轮,每场比赛都要淘汰几支球队?到决出冠军为止,一共要淘汰多少支球队?那么一共要比赛多少场?这样看来求比赛了多少场就转化成了什么问题?)。

(4)如果有64支球队,产生冠军一共要比赛多少场?

3.出示练习十四第2题的第3幅图。

学生先独立思考,然后指名学生交流自己的想法,教师及时评价并演示。

4.出示练习十四第3题的第2幅图。

要求图形中红色部分的周长是多少,你有什么好方法?

学生独立思考后解答(思路:转化成2个圆的周长),集体校对。

小结:谁来说说我们是怎样运用“转化”的策略来解决这两个问题的?

六、课堂小结。

今天我们学习的解决问题的策略是什么?“转化”随时随地都在我们身边,你认为在什么时候采用“转化”的策略能较好地解决问题?生回答。

七、课堂作业:完成补充习题相关内容。

解决问题的策略——转化。

平移转化成体积相等的长方形。

旋转(顺时针,逆时针)不规则——规则。

s三角形——s平行四边形复杂——简单。

s梯形——s平行四边形未知——已知。

s圆——s长方形不熟悉——熟悉。

------。

小数乘法——整数乘法。

分数除法——分数乘法。

解方程数学教案设计篇十二

教科书第58页的“用数学”。

1.使学生会用学过的数学知识解决简单的实际问题。

2.培养学生用不同的方法解决同一个问题的能力。

3.初步感受数学在日常生活中的作用。

引导学生通过分析数量关系选择正确的计算方法解决问题。

教具学具准备。

课件,实物投影仪,展台,屏幕,练习用的图片。

教师:同学们,鹿老师组织了一个旅游团要到大森林里去游玩。你们想参加吗?

生:想。

师:坐上我们的小火车,准备出发了。(放音乐;火车开了。学生以小组为单位做律动)。

出示课件:美丽的大森林。

师:瞧,美丽的大森林到了,有这么多可爱的小动物,你们喜欢吗?

生:喜欢。

师:今天小动物们要请喜欢数学的同学去他们中间玩,你们谁想去呀?

生:……(争先恐后地说想去)。

生:行。

师:我们先去看看草坪上的小动物都有什么问题呀?(课件拉近第一幅画面,并演示)。

师:你都看到了什么?

生:我看到了草地上原来有9只小鹿在吃草,后来走了3只。(课件出示:大括号和9只)。

师:那你能帮助小鹿提出一个数学问题吗?

生:草地上还剩几只鹿?(课件出示:?只)。

师:你的问题提得真好。谁能用学过的数学知识解决这个问题呢?先请你们集中五人的力量分小组研究一下。研究完以后,把算式写在小黑板上。然后进行汇报和订正。

师:哪个小组愿意来展示一下你们小组研究的结果?

生:我们组列的算式是:9—3=6,草地上还剩6只鹿。

师:谁有问题要问他们?(引导学生提问题)。

生提问:请问你们为什么要用减法计算?

生解答:因为原来草地上有9只小鹿,跑了3只,求草地上还有几只就是求还剩几只。这3只小鹿是从9只里面跑掉的,所以用从9只里面去掉3只,就是剩下的6只。

生提问:9-3为什么等于6?

生解答:因为9能分成3和6。或因为3+6等于9,所以9-3=6。

师小结:同学们真是太聪明了,这么快就帮助小鹿解决了问题,你们数学学得真好。老师真是太高兴了。

过渡:看着这幅画面,你还能发现什么数学问题?(引导学生看草地上的蘑菇)。

学生可能出现三种情况:

1.生提问:草地上一共有8个蘑菇,左边有6个,右边有几个?

师:谁能解决这个问题?

生解答:8-6=2。

生提问:你为什么用减法?

生解答:因为知道了一共有8个蘑菇,左边有6个蘑菇,从8个里面去掉左边的6个就是右边的2个,所以用减法。

师引导:还有发现不同问题的吗?

2.生提问:草地上一共有8个蘑菇,右边有2个,左边有几个?

师:谁能解决这个问题?

生解答:8-2=6。

生提问:你为什么用减法?

生解答:因为知道了一共有8个蘑菇,右边有2个蘑菇,从8个里面去掉右边的2个就是左边的6个,所以用减法。

师引导:还有发现不同问题的吗?

3.生提问:左边有6个蘑菇,右边有2个蘑菇,一共有几个蘑菇?

师:你发现的问题真好,同学们听清楚了吗?我们再请他说一遍,好吗?

(生说,课件依次出示:6只,大括号,?只)。

师:这个问题我们请同学们分小组来解决,好吗?

请一个小组来汇报。提要求:要说清楚你们小组采用的是哪种计算方法,为什么?怎样列的算式。

生汇报:我们小组采用的是加法,因为这个问题得求总数,我们只要把左边的6个和右边的2个合起来就行了,所以用加法。列的算式是:6+2=8。

(课件出示鸭子图。)。

师:你会解决这个问题吗?不告诉别人,自己把算式写在纸上。

学生独立完成,然后集体订正。

师小结:大家帮助小鸭子解决了问题,听它们在谢你们呢?(课件演示鸭子叫)。

课件演示声音:小鸭子的问题解决了,我们还有问题呢?

师:这是谁的声音呀?(课件出示猴子图)原来是小树林里的猴子们等急了,你们能解决猴子们的问题吗?自己完成。

学生写出算式,然后集体订正。

(一)做题小竞赛。

师过渡:同学们,你们还想不想继续帮助小动物们解决问题呀?

生:想。

学生独立做题。

集体订正。(指名直接说算式,集体判断,最后挑出一个题让学生说一说想法)。

(对全做对的同学进行奖励。)。

学生随意说。(教师相继进行热爱大自然,保护小动物的教育)。

让我们开启小火车回家吧。

(二)完成教科书第62页的第13、14题。

让学生独立完成,然后在小组里订正。最后集体订正。

(三)请学生想一想在日常生活中能用数学知识解决哪些实际问题。

学生随意说。

师:数学知识真重要呀,他能帮我们解决这么多实际问题,我们一定要学好它。

解方程数学教案设计篇十三

一、教学目标:

1、结合具体情境,类比等式变形的过程抽象出等式的性质,了解等式性质是解方程的依据。

2、会用等式性质解形如x+5=12的简单方程。

3、培养观察、分析概括的能力。

二、课时安排:

1课时。

三、教学重点:

能用等式的性质解简单的方程。

四、教学难点:

了解等式的性质。

五、教学过程。

(一)导入新课。

(板书:大象的体重=石头的重量)。

师:曹冲之所以聪明,就在于他“运用了数量之间的等量关系来解决问题”的策略。今天我们也要用他这个策略解决以下问题。

检查预习。

(二)讲授新课。

探究一:学习等式性质。

1、师操作:在天平两侧各放一个5克砝码。

提问:你能用一个等式表示天两边关系吗?

提问:如果在天平一边加上一个砝码,天平会怎样?要是天平不平衡,怎么办?

提问:你还能用一个等式表示吗?

教师呈现其他天平直观图,鼓励学生观察并写出等式。

全班交流,

教师总结概括出等式性质。

等式两边都加上同一个数,等式仍然成立。

师操作在刚才的基础上一个一个减砝码。

提问:你能用等式来表示吗?

提问:如果在天平一边去掉一个砝码,天平会怎样?要是天平不平衡,怎么办?

提问:你还能用一个等式表示吗?

教师呈现其他天平直观图,鼓励学生观察并写出等式。

全班交流,

教师总结概括出等式性质。

等式两边都减去同一个数,等式仍然成立。

3、教师小结:我们刚才用天平演示的等式两边同时加上或者减去同一个数,等式仍然成立,这是等式的性质。这也是我们今天解方程的依据。

(三)重点精讲。

探究二:学习解方程。

师板书x+2=10问:用天平如何表示?

问:如何用刚才的知识解方程?(两边都减去2)。

1、师根据学生回答板书并画出天平图。

2、师在解题示范时要注重“解”和“等于号”的书写要求。

3、交代检验方法。

4、学生试着解方程。

y-7=1223+x=45。

组内交流收获和疑惑。

小组汇报。

教师总结板书:根据等式的性质解方程。

(五)随堂检测。

1、请你画图或举例说说下面这句话的意思:等式两边都加上(或减去)同一个数,等式仍然成立。

2、看图列方程,并解方程。

3、解方程。

(1)x–19=2。

(2)x-12.3=3.8。

4、看图列方程,并解方程。

5、看图列方程,并解方程。

6、看图列方程,并解方程。

板书设计。

x+5=7x-5=7。

解:x+5-5=7-5解:x-5+5=7+5。

x=2x=12。

等式的两边同时加上或者减去同一个数,等式仍然成立。

解方程数学教案设计篇十四

1.使学生进一步理解乘数是两位数的连续进位乘法的算理,掌握两位数的进位乘法的计算方法。

2.培养学生的分析推理能力。

理解乘数是两位数的连续进位乘法的`算理。

掌握两位数的进位乘法的计算方法。

一、自主探索,领悟知识。

1.创设情景,提出问题。

一个牌子写着“门票每人48元”,有7名同学进入博物馆参观展览。

(1)学生根据以上情景提出数学问题。

2.改变情景,引出新课。

改变条件:一共进72人。学生根据新情景提出问题。

(1)教师根据学生提出的问题有选择性地解答并板书:48×72。

(2)小组研究计算方法。

(3)小组汇报。

(4)教师根据情况,重点指出以下两个方面:

计算方法与前面的相同,相同的数位要对齐。不同的是48×72需要连续进位,要特别注意。

(5)练习:683745。

×34×82×46。

2.学习例4。

出示例题。

(1)让学生读题理解题意,再口头列出算式。

(2)让学生独立试做。

(3)请一名学生展示计算过程,并说一说算理。

(4)其他学生补充完整,必要时教师给予指导。

(5)练习215309。

×32×25。

二、巩固反馈,深化知识。

1.第11页的做一做。

2.判断。

(1)57(2)306(3)193(4)403。

×35×35×36×35。

25515301158215。

17112043791612。

196513570494816335。

板书:用两位数乘(连续进位)。

48×72=3456114×59=6726(分)。

48114。

×72×59。

961026。

336570。

34566726。

答:要用6726分。

解方程数学教案设计篇十五

教学目标:

1.在具体情境中认识列与行,理解数对的含义,能用数对表示具体情境中的位置。

2.使学生经历由具体的实物图到方格图的抽象过程,提高学生的抽象思维能力,渗透坐标思想,发展空间观念。

3.使学生体验数学与生活的密切联系,拓宽知识视野,体会数学的价值,进一步增强用数学的眼光观察生活的意识,提高学习数学的兴趣。

重点难点:

理解数对的含义,能用数对表示位置。

课前准备:

课件。

教学过程:

一、谈话导入。

生:从右向左数第4排的第2个。

师:谁还想说?

生:从左向右数第2排的第3个。

师:还有不同的说法吗?

生:从后往前数,第4排的第3个。

师:怎么同一个人的位置有这么多种说法呢?

生1:人们是从不同的角度和不同的方位观察的。

生2:人们的视觉不同,也就是观察的角度不同,说的方法就不一样了。

生:有点乱。

师:我们能不能寻找一种既简单又准确的方法来描述位置呢,这节课我们就一起来探讨如何确定位置。(板书:确定位置)。

【本文地址:http://www.xuefen.com.cn/zuowen/17864197.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档