教案是教学活动的重要组成部分,是教师用来指导学生学习的有计划、有步骤的教学设计。教案设计应充分调动学生的参与积极性,培养他们的主动学习能力。高质量的教案可以提高教学效果,培养学生的学习兴趣和学习主动性。
六年级数学全册教案设计篇一
教材第9页例5、练一练,练习二第5~9题。
使学生进一步认识体积的计算方法,能根据不同的条件求圆柱的体积,学会计算圆柱形容器的容积,井能应用于实际求出所容物体的重量。
计算圆柱形容器的容积。
根据不同的条件求圆柱的'体积。
(1)底面积3平方分米,高4分米;
(2)底面半径2厘米,高2厘米;
(3)底面直径2分米,高3分米。
追问:圆柱的体积是怎样计算的?(板书:v=sh)
提问:什么是容积?它与物体的体积有什么区别?我们是按什么方法计算容积的?
我们已经学习过圆柱的体积计算,知道了容积和容积的计算方法。这节课,就在计算圆柱体积的基础上,学习圆柱的容积计算。(板书课题)
出示例5,读题。提问:这道题求什么?你能计算它的容积吗?请大家仔细看一下题目,解答这道题还要注意些什么?(统一单位或改写体积单位,取近似数)指名学生板演,其余学生做在练习本上。集体订正,说明每一步求的什么,怎样求的。同时注意是怎样统一单位和取近似值的。
1.做练一练第1题。
指名两人板演,其余学生分两组,每组题做在练习本上。集体订正。
2.做练一练第2题。
让学生在练习本上完成。指名学生口答算式,老师板书。结合让学生说一说是怎样想的。
3.口答练习二第6题。
让学生默读题目。提问:第(1)题怎样想?求出了容积怎样求第(2)题?为什么?
4.做练习二第9题。
让学生做在练习本上:指名口答算式或方程,并让学生说既怎样想的。
课堂作业:练习二第7、8题。
家庭作业:练习二第5、6题。
六年级数学全册教案设计篇二
1.通过动手操作进一步认识长方体和正方体的特征,会根据所给的长方形的特征判断它们能否组成长方体或正方体。
2.培养学生动手操作能力和立体观念。
认识长方体的侧面展开图。
认识长方体的侧面展开图。
剪刀。
一、复习引入。
谈话:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?
指名说说,全班交流补充。
二、探究新知。
(1)除了同学们说的这些,长方体和正方体还有什么特征呢,这节课我们就继续来进行学习。
出示正方体纸盒:
你能够沿着这个正方体的棱把这个正方体纸盒剪开吗?
要求:剪的时候要沿着棱剪,并且各个面要互相联在一起。
学生尝试操作。
小组里交流。
(2)这个长方体纸盒你也能够沿着棱把它剪开吗?
学生独立操作。
看看长方体的展开图,你有什么发现?引导学生观察交流。
追问:你能从展开图中找到3组相对的面吗?
(3)完成练一练第1题。
标注完后引导学生具体说说思考的过程。
(4)完成练一练第2题。
先引导学生通过想象进行判断,在此基础上再动手操作进行验证。
三、巩固练习。
1.完成练习一第6题。
学生小组交流,独立操作验证。
2.完成练习一第7题。
学生独立完成,全班交流,指名说说自己的思考过程。
3.学有余力时可完成思考题。
让学生通过操作逐步掌握其中的规律。
四、全课总结。
通过这节课的学习你有哪些收获?你认为今天学习的内容什么是重点?
五、作业。
1.练习一第5、8、9题。
2.自己动手制作一个长方体纸盒。
教学反思。
六年级数学全册教案设计篇三
4、能综合运用所学过的数学知识和方法解释生活中的现象,解决简单的实际问题。
能正确计算常见平面图形的周长和面积,常见立体图形的表面积和体积。
能综合运用所学过的数学知识和方法解释生活中的现象,解决简单的实际问题。
平面图形和立体图形在生活中应用得非常广泛,有时我们要计算它们的面积,体积等,这就需要我们了解一些数据,运用到关于测量的知识,这节课我们就一起来复习图形与测量。(板书课题)。
1、长度、面积和体积的认识。
(2)大家先想一想,测量哪些地方,会用到什么单位?
问:什么是长度?什么是面积?什么是体积?
2、测量单位及进率。
(1)我们知道测量除了数据之外还需要什么呢?现在请同学们回忆一下长度、面积和体积各自的单位,并说出它们之间的进率。
(2)说一说。
3、前面我们已经分类复习了平面图形的周长与面积,立体图形的表面积与体积,你最感兴趣的是哪一部分,把它整理出来。
4、汇报交流。交流时要说出每类知识点要注意的问题。
你认为最容易出错的是哪部分内容?有什么好办法避免出错?
六年级数学全册教案设计篇四
生:方向与位置。
师:同学们说得很好,现在请同学们回忆一下,描述方向与位置的词语都有哪些?如何确定位置?这节课我们就来复习根据不同的参照物确定物体的位置。(板书课题:确定位置)。
1.整理复习学过的方位词。
(1)学生小组交流学过的方位词。
(2)学生汇报交流。
学过的方位词有上、下、前、后、左、右、东、南、西、北、东南、西南、东北、西北。东北方向也叫北偏东,西北方向也叫北偏西,东南方向也叫南偏东,西南方向也叫南偏西。
(3)请大家观察所在学校和学校周围的物体,用方位词来指明物体的方向和位置。
2.梳理用数对表示物体位置的方法。
用数对来表示物体准确位置的步骤和方法:
(1)确定位置:选定参照点(原点),建立直角坐标。(竖排叫作列,横排叫作行。确定第几列一般从左往右数,确定第几行一般从前往后数)。
(2)数对的写法:第一个数表示第几列,第二个数表示第几行,两个数用逗号隔开,外面加上小括号。
3.梳理用方向加距离表示物体位置的方法。
用方向和距离来表示物体准确位置的步骤:
(1)选定参照点(原点),建立直角坐标。
(2)确定方向和角度。
(3)确定比例尺,算出实际距离。
4.课件出示教材99页情境图。
(1)学生探究确定百鸟园位置的方法。
(2)小组汇报。
六年级数学全册教案设计篇五
(有三个量;吃的个数与剩下的个数是变化的;一个增加,一个减少。)。
师:一个量变化,另一个量也随着发生变化,可以看出,这两个量是互相依赖的变量,也可以说是相关联的量。
师:好,下面我们一起看书p18。
1.看第一个例子,说说这个统计表的内容是什么?
(是小明体重变化的情况)。
年龄出生时6个月1周岁2周岁6周岁10周岁体重/千克3.57.010.514.021.031.5。
问:表中的哪些量在发生变化?
年龄在变,体重也在发生变化:年龄增加,体重也在增加。
问:我们能不能用一个图象来表示这两个量之间的变化关系呢?用一个什么图表示合适呢?(折线统计图)。
(时间、体温)。
指导学生读懂图意:
(1)一天中,骆驼体温最高是多少?(400c)最低是多少?(350c)。
(2)一天中,在什么时间范围内骆驼的体温在上升?(4时到16时)在什么时间范围内骆驼的体温在下降?(0时到4时,16时到24时)。
师:骆驼的体温是随时间而呈周期性的变化。
(3)第二天8时骆驼的体温与前一天8时的体温有什么关系?
师:次日8时指第2天8时,与第一天8时相比,增加了24小时,应是图中的32时。
3.看第三个例子。是蟋蟀叫的次数与气温之间的近似关系。
问:你认为它们之间的这种关系能不能用一个含有字母的式子来表示呢?
h=t7+3。
如:一天的气温随时间的变化而变化;汽车行使的路程随时间的变化而变化等。
问:你能举出生活中一个量随另一个量变化的例子吗?
(学生举例,只要合理,老师就要给予肯定。)。
同学们,在我们的生活中存在着大量互相依赖的变量,其中一个量变化,另一个量也会随着发生变化,我们就称这两个量是两个相关联的量。
读书破万卷下笔如有神,以上就是为大家整理的8篇《北师大版六年级下册数学全册的教案设计》,您可以复制其中的精彩段落、语句,也可以下载doc格式的文档以便编辑使用。
六年级数学全册教案设计篇六
教师提供小学数学六年级下册14页----17页。
等底等高的圆柱和圆锥教学用具各一个,小水盆,一些绿豆。
1、结合具体情景和实践活动,了解圆锥的体积或容积的含义,进一步体会物体体积和容积的含义。
2、经历“类比猜想---验证说明”的探索圆锥体积计算方法的过程,掌握圆锥体积的计算方法,能正确计算圆锥的体积,并解决一些简单的实际问题。
重点:圆锥的体积计算。
难点圆锥的体积公式推导。
关键:圆锥的体积是与它等底等高的圆柱体积的三分之一。
等底等高的圆柱和圆锥教学用具各一个,一个三角形和一个长方形。
看看你们能不能发现这两个图形之间隐藏的关系?你有什么发现?
长方形的长等于三角形的底,长方形的宽等于三角形的高。
三角形的面积等于长方形面积的一半或长方形面积是三角形面积的2倍。
点拨自学。
1、圆柱和圆锥有哪些相同的地方?
2、圆柱和圆锥有哪些不同的地方?
3、圆锥的体积和圆柱的体积有什么关系呢?
请小组开始讨论。注意,这里的圆柱和圆锥指的就是图上的圆柱和圆锥哟!按照预习中学生存在的问题,教师加以点拨。
它们的底面积相等,高也相等。
圆柱有无数条高,圆锥只有一条高。圆锥体积比圆柱小……。
动手做实验:把圆锥装满绿豆,倒入圆柱中,看倒几次能把圆柱装满。
组际解疑。
老师点拨。
1、一个圆锥形的零件,底面积是19平方厘米,高是12厘米,这个零件的体积是多少?(口算)。
2、沈老师在大梅沙玩,将沙堆成一个圆锥形,底。
面半径约3分米,高约2.7分米,求沙堆的体积。
(只列式不计算)。
3、在打谷场上,有一个近似于圆锥的小麦堆,测。
底面直径是4米,高是1.2米。每立方米小麦约。
重735千克,这堆小麦大约有多少千克?
(只列式不计算)。
4、如图,求这枝大笔的体积。
(单位:厘米)。
(只列式不计算)。
5、将一个底面半径是2分米,高是4分米的圆柱。
形木块,削成一个最大的圆锥,那么削去的体积。
是多少立方分米?(口算)。
通过今天的学习,我学会了,以后我会在方面更加努力的。
本节课通过交流、问答、猜想等形式,调动学生学习的积极性,激发学生强烈的探究欲望,学生迫切希望通过实验来证实自己的猜想,所以做起实验来就兴趣极高,在实验过程中通过学生的亲身体验知识的探究的过程,加深学生对所学知识的理解,学生学习的积极性被调动起来了,学生学得轻松、愉快。充分让学生体会到了等底等高的圆锥的体积是圆柱的三分之一。
六年级数学全册教案设计篇七
1.使学生认识反比例关系的意义,理解、掌握成反比例量的变化规律及其特征,能依据反比例的意义判断两种量成不成反比例关系。
2.进一步培养学生观察、分析、综合和概括等能力,让学生掌握判断两种相关联的量成不成反比例的方法,培养学生判断、推理的能力。
认识反比例关系的意义。
掌握成反比例量的变化规律及其特征。
1.正比例关系的意义是什么?怎样用字母表示这种关系?
判断两种相关联量成不成正比例的关键是什么?
2.下面哪两种量成正比例关系?为什么?
(1)时间一定,行驶的速度和路程。
(2)数量一定,单价和总价。
4.引入新课。
如果工作总量一定,工作效率和工作时间之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?这就是今天要学习的反比例关系。(板书课题)。
1.教学例1。
出示例1某运输公司要运一批300吨的货物。让学生计算并完成填表任务。
每天运的数量(吨)1020304050。
所需的天数3015107.5。
在本上填表,并观察思考能发现什么?指名口答,老师板书填表。让学生按学习正比例的方法观察表里内容,相互之间讨论,发现了什么。
指名学生口答讨论结果得出:
(1)每天运的吨数和需要的`天数是两种相关联的量,(板书:两种相关联的量)需要的天数随着每天运的吨数的变化而变化。
(2)每天运的吨数缩小,需要的天数反而扩大,每天运的吨数扩大,需要的天数反而缩小。
(3)可以看出它们的变化规律是:每天运的吨数和天数的积总是一定的。(板书:每天运的吨数和天数的积一定)因为每天运的吨数和天数的积都是300。提问:这里的300是什么数量?谁能说出这里的数量关系式?想一想,这个式子表示的是什么意思?(把上面的板书补充成:运的总吨数一定时,每天运的吨数和天数的积一定)。
2.教学例2。
出示例2。
3.概括反比例的意义。
(1)综合例1、例2的共同点。
提问:请你比较一下例1和例2,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义。
例1、例2里两种相关联的量,它们是什么关系的量呢?说明:像例1、例2里这样两种相关联的量,一种量变化,另一种量也随着变,变化时两种量中相对应的两个数的积一定。这样两种相关联的量就叫做成反比例的量,它们之间的关系叫做反比例关系。迫问:两种相关联的量成不成反比例的关键是什么?(乘积是不是一定)提问:如果用x和y表示两种相关联的量,用k表示它们的乘积,那么上面这种关系式可以怎样写呢?(板书:xy=k(一定))指出:这个式子表示两种相关联的量x和y,y随着x的变化而变化,它们的乘积k是一定的。这时就说x和y成反比例关系。所以,两种量成反比例关系,我们就用xy=k(一定)来表示。
4.具体认识。
(1)提问:例1里有哪两种相关联的量?这两种量成反比例关系吗?为什么,
例2里的两种量成反比例关系吗?为什么?
(2)提问:看两种相关联的量成不成反比例,关键要看什么?
(3)判断。
现在回过来看开始写的关系式:工作效率工作时间=工作总量,当工作总量一定时,工作效率和工作时间成什么关系?为什么?指出:根据上面所说的反比例的意义,要知道两个量成不成反比例关系,只要先看这两种量是不是相关联的量,再看两种量变化时乘积是不是一定。如果两种相关联的量变化时乘积一定,那它们就是成反比例的量,相互之间的关系就是反比例关系。
六年级数学全册教案设计篇八
p26内容。
1.通过活动,积累由特殊到一般寻找数学规律的数学经验。
2.进一步培养用分类计数的方法解决问题的能力,发展空间想象力。
找出小正方体涂色以及它所在的位置的规律。
一面、两面、三面涂色小正方体个数以及它所在位置的规律。
27个1立方厘米的正方体。
1课时。
一、引入新课。
看来三面涂色、两面涂色、一面涂色的位置是确定的。今天,我们就来一起探究跟表面涂色有关的正方体的计数问题。
板书:分类计数。
课件出示问题:
把一个表面都涂上颜色的正方体木块,切成64块大小相同的小正方体。
(1)三面涂色的小正方体有多少块?
(2)两面涂色的小正方体有多少块?
(3)一面涂色的小正方体有多少块?
二、探究正方体中表面涂色的小正方体。
(一)棱长为4的正方体。
提问:三面涂色的小正方体有多少个?处在什么位置上的小正方体才会是三面涂色的?(课件显示)闭上眼睛想一想三面涂色的小正方体在什么位置。
提问:两面涂色的小正方体有多少个?处在什么位置?(课件显示)。
这个数据可以通过怎样的计算获得?
引导:将大正方体剥去“表皮”,剩下的是什么样子?
指出:六面都没有涂色的小正方体在大正方体的中间。
两种算法:64—8—24—24=8(个),2×2x2=8(个)。
操作教具,验证学生的发现:
(1)将处在顶层的4个顶点上的4个小正方体从教具中取下,让学生见证“三面涂色”。
(3)取出其中一面涂色的小正厅体,让学生明确计算方法,见证“一面涂色”。(4)呈现“六面都没有涂色”的小正方体(由8个小正方体组成的棱长为2的正方体)。
(5)将最底层的小正方体按类归位,验证计数的结果及计算方法。
要求:将正方体的棱长各种正方体的个数及计算方法填在活动记录表。
引导:计算所需的数据与原正方体的棱长有什么关系?
(二)棱长为3的正方体。
学生自主完成,将探究结果填在活动记录表。完成后指名汇报交流。
(三)棱长分别为5、6的正方体。
学生自主完成,将探究结果填在活动记录表,并在小组内交流。
投影呈现学生的活动记录结果,通过课件呈现实物加以验证。引导学生初步发现正方体表面涂色问题的一般规律。
(四)棱长为a的正方体。
(五)延伸思考。
教学反思。
六年级数学全册教案设计篇九
1、使学生加深认识统计的意义,进一步认识统计表,掌握整理数据编制统计表的方法,能根据统计表作简单的分析。
2、使学生进一步认识简单的统计图,明确条形统计图和折线统计图各自的特点和作用,能在看懂统计图内容的基础上作简单的分析。
教学准备:练一练第2题的两张统计图。
六年级数学全册教案设计篇十
教学目标:使学生认识圆柱的特征,认识圆柱侧面的展开图。
教学准备:教师与学生每人带一个圆柱,教师给学生每4人小组发一个纸制的圆柱。每位学生准备好制作圆柱的材料。
教学重点:使学生认识圆柱的特征。
教学难点:理解圆柱侧面展开是长方形,并理解长与宽与圆柱之间的关系。
教学过程:
我们已经认识了长方体和正方体。
谁能说一说我们学习了长方体和正方体的哪些知识?
教师:今天老师和大家一起学习一种新的立体图形:圆柱体,简称圆柱。
1、初步印象。
教师:同学们,请你们用眼睛看,用手摸,说一说圆柱与长方体的有什么不同?
(圆柱是由2个圆,1个曲面围成的。)。
2、小组研究:圆柱的这些面有什么特征呢?面与面之间又有什么联系呢?
3、交流和汇报。
(1)关于两个圆形得出:https:///上下2个圆是完全相等的圆,它们都是圆柱的底面。
(2)关于曲面得出:它是圆柱的侧面,如果沿着高展开,可以得到一个长方形或正方形,如果沿着斜线展开可以得到一个平行四边形。展开后的长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
(3)关于圆柱的高:两个底面之间的距离叫圆柱的高。高有无数条。高有时也可用长、厚、深代替。
4、举例说明进一步明确特征。
教师:既然大家对圆柱已有了进一步的了解,那么在生活中那些物体是圆柱呢?
(学生举例,再让学生自己判断。当有一个学生说粉笔是圆柱时,教师可让学生进行讨论。)。
5、运用知识进行判断。
下面哪些图形是圆柱?哪些不是?说明理由。
6、制作圆柱。
1、运用知识进行判断。
下面哪些图形是圆柱?哪些不是?说明理由。
六年级数学全册教案设计篇十一
从知识角度分析为什么难。
打折销售与学生的日常生活息息相关,学生并不感到陌生,但在促销活动中选择最佳消费方式,要运用所学的百分数知识解决问题有一定的难度。
从学生角度分析为什么难。
学生在解题的过程中,要懂得“满100元减50元”的促销方式,对于消费者来说不如打五折实惠;如果总价是整百元的,那两种促销的方式优惠的结果是一样的,但要得出这种结论,对于学生来说有一定难度,需要运用所学的百分数知识去分析、交流、比较才能解决。
在教学时,先让学生结合自己的生活经历去理解“满100元减50元”的含义,然后根据实际情况进行表述,再引导学生体会这种促销方式的计算方法,接下来要由学生独立完成两种购买方式所要支付的钱,并通过比较来解决题目中的问题。
一、复习旧知,引入新课。
1、提问“一件物品打九折出售”表示什么意思?
2、生活中,是不是所有的优惠都是以“几折”来表示的呢?
3、购物中优惠的形式有很多种,我们要做一个精明的小买家。今天,我们就来研究购物中的折扣问题。(板书:购物中的折扣问题)。
二、教学新知。
(一)出示例5:某品牌的裙子搞促销活动,在a商场打五折销售,在b商场按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的裙子。
1、根据这些信息,学生提问题。
教师板书:
(1)在a、b两个商场买,各应付多少钱?
(2)哪个商场省钱?
2、分析问题,理解题意。
(1)结合题目给出的数学信息,哪些是关键的?
(2)怎样理解“满100元减50元”?
(3)不足100元的部分呢?怎么办?
3、独立思考,尝试解决。
师:请同学们独立思考,看能否解决黑板上的这两个问题?
4、交流并汇报方法。
师:谁来说说自己的解决方法?
学生展示自己的算式,并解释。
5、启发思考,辨析原因。
(1)满100元减50元,少了50元,也是打五折啊,怎么优惠的结果却不一样呢?
(2)什么情況下两种优惠是一样的呢?
6、小结:在今天的折扣问题中,我们知道了优惠的形式有很多种,解决这些问题时要注意的是“满100元减50元”和打五折的区别:
(1)“满100减50”,就是够100才能减50,不够则不减。
(2)打五折实际售价都是原价的50%,不满100元的也能按50%计算。
(3)售价刚好是整百元的时候,两种优惠结果才是一样的。
三、练习巩固,提高能力。
1、做一做。
某品牌的旅游鞋搞促销活动,在a商场“每满100元减40元”的方式销售,在b商场打六折销售,妈妈准备给小丽买一双标价120元的这种品牌的旅游鞋。
(1)在a、b两个商场买,各应付多少钱?
(2)选择哪个商场更省钱?
同学们,在今天学习的折扣问题中,我们知道了不同形式的优惠有很多种,在解决这些问题时要注意的是“满100元减50元”和打五折的区别。
六年级数学全册教案设计篇十二
义务教育课程标准北师大版试验教材六年级上册第一单元第6、7页圆的认识二。
1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。
2、进一步理解轴对称图形的特征,体会圆的特征。
3、在折纸找圆心、验证圆是轴对称图形等活动中,发展空间观念。
1、圆的特征。
2、同一个圆里半径与直径的关系。
1、三角尺、直尺、圆规。
2、教学课件。
教 学过程
教学过程说明
1、折一折。
每人准备一个圆,请同学们想办法找出圆心。
2、小组活动:剪几个圆,折一折,你发现了什么?
小组交流。
3、汇报:沿着任意一条直径对折,都能完全重合。
4、小结:圆是轴对称图形,直径所在的直线是圆的对称轴。
圆有无数条对称轴。
在同一个圆里,直径的'长度是半径的2倍,可以表示为d=2rr=d/2。
1、说一说学过的图形中哪些是轴对称图形?分别有几条对称轴?
正方形:4条
长方形:2条
等腰三角形:1条
等边三角形:3条
圆:无数条
2、要求学生剪出书本第7页做一做的三幅图,沿中心点a转动,同学们发现了什么?
1、练一练第一题。
学生在书上填写,集体交流。
2、练一练第二题。
学生在书上填写,集体交流。
3、练一练第三题。
学生画出对称轴,集体交流。
4、练一练第四题。
学生实际测量,集体交流。
5、练一练第五题。
学生在书上填写,集体交流。
使学生通过折纸活动进一步理解同一个圆的半径都相等的特征,以及圆的轴对称性和同一个圆里半径和直径的关系。
引导学生整理已学过的轴对称图形。
让学生在活动中体会图形的旋转对称性,以及圆是一个任意旋转对称图形。
通过练习,进一步巩固所学知识。
学生在掌握圆的特征的基础上,进一步认识圆,知道圆是一个轴对称图形,而且有无数条对称轴。
存在问题:对于画对称轴,学生掌握得层次不齐。需要进一步练习巩固!
六年级数学全册教案设计篇十三
1.填一填。
(1)甲、乙两数的比是5∶3,乙数占两数和的()%。
(2)用300颗种子做发芽试验,结果发芽的有294颗。这些种子的发芽率为()%。
(3)一种电脑原价6800元,现降价1700元,降价()%,现价是原价的()%。
2.只列算式,不计算。
六(1)班有男生20人,女生15人。
3.判一判。
(1)34吨的80%和800千克的75%一样重。()。
(2)用110粒种子做发芽实验,全部发芽,这些种子的发芽率是110%。()。
(3)数学考试的优秀率,是指不及格的人数占参加考试人数的百分之几。()。
4.东风小学六(1)班有50人,暑假期间同学们参加课外活动的情况如下表:
课外活动游泳舞蹈电子琴艺术活动。
人数(人)9121514。
算一算,参加游泳的占百分之几?参加艺术活动的占百分之几?
5.植树活动中,六(1)班同学一共植树60棵,其中有57棵成活,求这次植树活动中树的成活率。
六年级数学全册教案设计篇十四
生:40位同学。
师:40位同学又分5个学习小组,哪位同学能用数的整除的知识说说40与5的.关系?
生:40能被5整除。
生:5是40的约数。
生:40和5的最小公位数是40,最大公约数是5。
生:整除能被2、3、5整除的特征,倍数、公倍数、最小公倍数、约数、公约数、最大公约数、质数、合数、质因数、分解质因数、变质数、奇数、偶数。
六年级数学全册教案设计篇十五
教学内容:
教学目标:
1.知识与技能:使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2.过程与方法:使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3.情感、态度与价值观:使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
使学生掌握用“替换”的策略解决一些简单问题的方法。
教学难点:
使学生能感受到“替换”策略对于解决特定问题的价值。
教学过程:
一、复习导入。
1.说说图中两个量的关系可以怎样表示?
追问:还可以怎么说?
指出:两个量的关系,换一个角度,还可以有另外一种表示方法。
2.从图中你可以知道些什么?
(多媒体出示:天平的左边放上一个菠萝,右边放上四个香蕉,天平平衡。)
指出:从这题中,我们可以看出,能把一个物体换成与之相等的另外一个物体。
3.口答准备题:
(2)小明把720毫升果汁倒入3个相同的大杯,正好都倒满,每个大杯的容量是多少毫升?指出:这两题我们都是用果汁总量去除以杯子总数,就能得出所要求的问题。
二、新授
(一)教学例1
1.读题
2.分析探索
提问:也同样是720毫升的果汁要倒入到杯子里,这题与刚才的两题相比较,有何不同之处?小结:刚才两题是把果汁倒入到一种杯子里,而这题是把果汁倒入到两种不同的杯子里。提问:那么还能像刚才一样用果汁总量去除以杯子总数,用720÷(6+1),可以这样计算吗?追问:那该怎么办?同桌先相互说说自己的想法。
3.交流
谈话:我们一起来交流一下,该怎么办?
追问:还可以怎么办?
小结:两位同学都是把两种不同的杯子换成相同的一种杯子,这样就可以解决问题啦!同学们可真了不起啊,刚才大家的做法中已经蕴涵了一种新的数学思想方法――替换。(板书:替换)
4.列式计算
a:把大杯换成小杯
提问:把一个大杯换成三个小杯(板书),这样做的依据是什么?
追问:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?(板书)能求出每个小杯的容量吗?每个大杯呢?(板书)
小结:在用这种方法解的时候,我们是把它们都看成了小杯,所以先求出来的也是每个小杯的容量,然后求出每个大杯的容量。
b:把小杯换成大杯
谈话:那反过来,把小杯换成大杯呢?(板书)
提问:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?你又是怎么知道的?
指出:把三个小杯换成一个大杯,再把三个小杯换成一个大杯。
提问:这样做的依据又是什么?
指出:如果把720毫升果汁全部倒入大杯,就需要3个大杯。(板书)
提问:能求出每个大杯的容量吗?每个小杯呢?(板书)
5.检验
谈话:求出的结果是否正确,我们还要对它进行检验。想一想可以怎么检验?
指出:哦!把6个小杯的容量和1个大杯的容量加起来,看它等不等于720毫升。(板书)除此之外,我们还要检验大杯的容量是不是小杯容量的3倍。(板书)总之,检验时要看求出来的结果是否符合题目中的两个已知条件。
6.小结
指出:解这题的关键就是把两种杯子看成一种杯子。
(二)练习十七第1题
谈话:把这道题目,做在自己的草稿本上。(指名板演)
提问:把你的做法讲给同学们听。
追问:计算的结果是否正确,还要对它进行检验。就请你口答一下检验的过程吧!
(三)教学“练一练”
1.出示题目
谈话:自己先在下面读一遍题目。
2.分析比较
提问:这题与刚才的例1相比较有何不同之处?
指出:哦!例1中小杯和大杯的关系是用分数来表示的,而这题已知的是一个量比另一个量多多少的差数关系。
提问:那么这题中的大盒还能把它换成若干个小盒吗?那该怎么换?谈话:现在你能做了吗?把它做在草稿本上。
3.学生试做
4.评讲
谈话:说说你是怎么做的?
指出:在大盒中取出8个球,就可以换成小盒;另外一个大盒也是这样。
提问:现在这7个小盒中,一共装了多少个球?还是100个吗?几个?指出:算式是100-8×2,所以84÷7算出来的是每个小盒装球的个数。
指出:算式是100+8×5,所以140÷7算出来的是每个大盒装球的个数。
谈话:把大盒换成小盒算出结果的请举手!把小盒换成大盒算出结果的也请举手!看来同学们还是喜欢把大盒换成小盒来计算。
5.检验
谈话:同桌相互检验一下刚才计算的结果是否正确。
6.小结
提问:解这题时你觉得哪一步是关键?
指出:哦!还是把两种不同的盒子换成一种相同的盒子,然后再解题。
三、全课总结
谈话:今天这节课老师和同学们一起学习了解决问题的策略中用替换的方法解决问题。(板书完整课题)
提问:那你觉得在什么情况下我们可以用替换的方法来解题,能给大家来举一个例子说说吗?指出:哦!当把一个量同时分配给了两种物体时,而且这两种物体是有一定关系的时候,我们就能用替换的方法来解题。
追问:那解题时该怎么替换呢?(那在用替换的方法来解题时,关键是什么?怎么来替换?)指出:把两种物体看成同一种物体,(板书)求出一种物体的数量后,也就能求出另一种物体的.数量。
四、巩固练习
3.练习十七2(机动)
――替换
把两种物体看成同一种物体
1.把大杯替换成小杯共需要9个小杯
720÷(6+3)=80(毫升)验算:240+6×80=720(毫升)
80×3=240(毫升)240÷80=3(倍)
2.把小杯替换成大杯共需要3个大杯
720÷(1+2)=240(毫升)
240÷3=80(毫升)
课后反思:
由于课前对教材进行了深入的研究和学习,所以教学时做到了心中有数,因而今天这节数学课的教学效果是不错的,超出了我的预期目标。学生们对于用替换这种策略来解决生活中一些常见的实际问题都很感兴趣,课堂上学生们思维活跃,发言积极,包括很多平时学习数学困难较大的学生也掌握了这一策略。
一、培养学生运用所学知识解决实际问题的能力。首先,解决实际问题的教学能培养学生根据需要探索和提取有用信息的能力。其次,它促使学生将过去已掌握的静态的知识和方法转化成可操作的动态程序。这个过程本身就是一个将知识转化成能力的过程。再次,它能使学生将已有的数学知识迁移到他们不熟悉的情景中去,这既是一种迁移能力的培养,同时又是一种主动运用原有的知识解决问题能力的培养。
二、培养学生的数学意识。首先,它能使学生认识到所学数学知识的重要作用。其次,它能培养学生用数学的眼光去观察身边的事物,用数学的思维方法去分析日常生活中的现象。再次,它能使学生感受到用数学知识解决问题后的成功体验,增强学好数学的自信心。
不仅使学生获得初步的创新能力,同时还可以让学生从小养成创新的意识和创新的思维习惯,为今后实现更高层次的创新奠定良好的基础。
六年级数学全册教案设计篇十六
教学重点:
能准确描述平移,旋转,轴对称的过程。
教学难点:
能利用所学知识设计漂亮的图案。
教学方法:
自主探究合作交流教具学具花瓣图片。
教学过程:
一、创设情境,引人入胜。
欣赏奥运会会徽,提问与之相关的常识;上网浏览部分历届奥运会会徽,思考这些图案的设计各有什么特点并交流感受。
二、合作探究、自主探索。
1.引导学生分析花瓣图案是如何由简单图形a经过图形变换得到的,
2.操作演示。
(1)演示四花瓣的作图过程,教师讲授四花瓣图案形成的基本知识;。
(2)学生自主学习具体的操作步骤;注意将语言叙述完整,括号中是几个关键词。
小结:图案的设计可能是一种方法的连续使用,也可能是几种方法的组合使用。
3、合作探究书本37页(2),在交流讨论的基础上,通过演示让学生搞清做图的方法和关键。
三、尝试创作。
2.请用基本的几何图形(如直线、射线、线段、角、三角形、四边形、多边形、圆、圆弧等),为班级“学习专栏”设计一幅题为“保护环境人人有责”的报头图案3作品互评展示学生所画的图案,就创意和构图进行自评和他评。
六年级数学全册教案设计篇十七
教师:今天老师和大家一起学习一种新的立体图形:圆柱体,简称圆柱。
1、初步印象。
教师:同学们,请你们用眼睛看,用手摸,说一说圆柱与长方体的有什么不同?
(圆柱是由2个圆,1个曲面围成的。)。
2、小组研究:圆柱的这些面有什么特征呢?面与面之间又有什么联系呢?
3、交流和汇报。
(1)关于两个圆形得出:上下2个圆是完全相等的圆,它们都是圆柱的底面。(2)关于曲面得出:它是圆柱的侧面,如果沿着高展开,可以得到一个长方形或正方形,如果沿着斜线展开可以得到一个平行四边形。展开后的长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
(3)关于圆柱的高:两个底面之间的距离叫圆柱的高。高有无数条。高有时也可用长、厚、深代替。
4、举例说明进一步明确特征。
教师:既然大家对圆柱已有了进一步的了解,那么在生活中那些物体是圆柱呢?
(学生举例,再让学生自己判断。当有一个学生说粉笔是圆柱时,教师可让学生进行讨论。)。
5、运用知识进行判断。
下面哪些图形是圆柱?哪些不是?说明理由。
6、制作圆柱。
六年级数学全册教案设计篇十八
1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。
2.会正确地读、写正、负数,知道0既不是正数,也不是负数。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。
负数的意义和负数的读法与写法。
理解0既不是正数,也不是负数。
多媒体课件。
教师讲授、合作交流。
一、复习导入。
提出问题:举例说明我们学过了哪些数?
教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。
提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?
二、创设情境、学习新知。
1.教学例1。
(1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”
为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?
这里有零下6℃、零上6℃,都记作6℃行吗?
你有什么简洁的方法来表示他们的不同呢?
教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。
(2)巩固练习。
同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。
学生独立完成第87页下图的练习。
教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。
2.自主学习例2。(进一步认识正数和负数)。
教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。
引导学生交流:珠穆朗玛峰比海平面高8844.43米。
引导学生交流:吐鲁番盆地比海平面低155米。
学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)。
教师追问:你是怎么想到用这种方法来记录的呢?
最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。
教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。
(2)巩固练习:教科书第88页试一试。
3.小组讨论,归纳正数和负数。
提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。
小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)。
通常正号可以省略不写。负号可以省略不写吗?为什么?
最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)。
三、运用新知,课堂作业。
1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。
2.课堂活动第2题。同桌先讨论,然后反馈。
四、小结。
同学们,今天我们认识了负数。你有什么收获?
五、课堂作业。
练习二十二第1、4题。
家庭作业:练习二十二第2、3题。
板书设计:
负数的初步认识。
正数:20、22、14、+8844.43…。
0:既不是正数也不是负数。
负数:-2、-30、-10、-15、-155…。
六年级数学全册教案设计篇十九
教学目标:
1.使学生理解成数和折扣的含义,以及成数与分数、百分数之间的关系;会解答有关成数的应用题。
2.提高学生分析、解答应用题的能力,发展学生思维的灵活性。
重点难点:
理解成数和折扣的含义;理解成数与分数、百分数的含义。
教学过程:
一、复习准备。
1.把下列各数化成百分数。
2.李庄去年种小麦50公顷,今年种小麦60公顷。今年比去年多种小麦百分之几?
师述:农业收成,有时用成数来表示。今天我们就来学习有关成数的应用题。
板书:百分数应用题。
二、学习新课。
2、成数的含义。
师述:什么是成数呢?在五年级我们学过“几成”就是十分之几,如“一成”就是十分之一,它相当于10%。
(1)口答。
“三成”是十分之(),改写成百分数是()。
“三成五”是十分之(),改写成百分数是()。
(2)七成二成五五成相当于百分之多少?
3、售价加两成是什么意思?求售价应先算出什么?
还可以怎样算?学生交流解题思路。
4.出示例2。
(1)学生读题,理解题中的数学信息。
(2)减产一成五是什么意思?
(3)学生独立解答,指名学生说解题思路。
师述:在列式计算时,我们可以直接把“成数”化成百分数,用百分数进行列式计算。
板书设计:
37.4×(1-15%)。
=37.4×0.85=31.79(吨)。
答:今年产棉花31.79万千克。
六年级数学全册教案设计篇二十
教学目标:
1、使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。
2、在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。
3、增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。
教学重点:税额的计算。
教学难点:税率的理解。
教学准备:多媒体课件。
教学过程:
一、创设情境。
1、教师课件展示课本中的4件主题图。
2、提问:
(1)这些设施的费用是从哪儿来的?(政府投资的,国家出钱建设的。)。
(2)国家的钱又是从哪里来的?国家的起源主要来自于税收。)。
今天我们就来学习纳税的有关知识。
二、新知探究。
(一)纳税的意义和项目。
1、学生自学98页有关纳税的内容。
讨论(课件出示):
(1)什么是纳税?
(2)为什么要纳税?
(3)你认为国家的哪些事是国家用税款做的。
(4)你对纳税人有什么看法?
(5)税收有几类?
(6)什么叫应纳税额?
(7)什么叫税率?
2、汇报:
(1)纳税是根据国际税法的有关规定,按照一定的比例把集体或个人收入的一部分缴纳给国际家。
(2)税收是国家收入的主要来源之一。
(3)公路的建设、医院、学校、国防科技等都是国家用税款做的。
(4)依法纳税是每个公民应尽的义务。
(5)税收主要分为消费税、增值税、营业税和个人所得税几类。
(6)缴纳的税款叫做应纳税额。
(7)应纳税额与各种收入的比率叫做税率。
3、试说以下税率表示什么。
a、商店按营业额的5%缴纳个人所得税。这里的5%表示什么?
b、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?
(二)税款计算。
1、出示例5(课本99页)。
一家大型饭店十月份的营业额是30万元。如果按营业额的5%。
缴纳营业税,这家饭店十月份应缴纳营业税多少万元?
2、理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)。
3、要求“应缴纳营业税款多少”就是求什么?
4、让学生独立完成?教师巡视,小组内讲评。
30×5%=1.5(万元)。
答:十月份应缴纳营业税约为1.5万元。
三、当堂测评。
练习二十二第4题。(要点:5%对应的单位“1”是营业额,7%对应的单位“1”是营业税。)。
学生独立完成,教师巡视。
四、课堂总结。
1、这节课有什么收获?
2、“培养纳税意识、从我做起”我没应该做些什么?
设计意图:
1、从生活情境中来,到生活中去。这节课的开始我先展示了四副图,让学生初步感知税收的来源。在总结课堂时又把学生引入生活,做的学以致用。
2、先学后教,当堂测评。让学生体会知识的形成过程,了解并解决问题。测评使教师掌握教学实况。
教学后记:
六年级数学全册教案设计篇二十一
教学目标:
1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。
2、让学生切实体会到数学在体育等领域的广泛应用。
教学重点:如何确定每一条跑道的起跑点。
教学难点:确定每一条跑道的起跑点。
教具准备:多媒体课件。
教学过程:
一、提出研究问题。(出示运动场运动员图片)。
1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)。
2、各条跑道的起跑线应该向差多少米?
二、收集数据。
1、看课本75页了解400m跑道的结果以及各部分的数据。
2、出示图片、投影片让学生明确数据是通过测量获取的。
直跑道的长度是85.96m,第一条半圆形跑道的直径为72.6m,每一条跑道宽1.25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)。
三、分析数据。
学生对于获取的数据进行整理,通过讨论明确一下信息:
1、两个半圆形跑道合在一起就是一个圆。
2、各条跑道直道长度相同。
3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。
四、得出结论。
1、看书p76页最后一图:
2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1.25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2.5m)。
3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2.5π)。
五、课外延伸。
200m跑道如何确定起跑线?
设计意图。
此节知识虽不是很重要,但我独列出来进行教学,主要原因有;。
1、此节知识的综合性很强。
2、密切联系生活,能提高学生的应用能力。
3、培养学生收集数据的良好习惯,重视科学性。
【本文地址:http://www.xuefen.com.cn/zuowen/17833088.html】