小学生五年级数学第六单元知识点教案(热门20篇)

格式:DOC 上传日期:2023-12-07 09:04:10
小学生五年级数学第六单元知识点教案(热门20篇)
时间:2023-12-07 09:04:10     小编:雨中梧

教案可以使教学有计划、有条理,有助于提高教学效果。教案应该充分考虑学生的兴趣和动机,创设良好的学习氛围,激发学生的学习兴趣和积极性。以下是一些编写教案的常见问题及解决方法,对教师提高教学质量有所启示。

小学生五年级数学第六单元知识点教案篇一

[教学内容]密铺(第93页)。

[教学目的]密铺活动有助于学生进一步体验所学图形的特征,感受数学在实际生活中的应用,发展空间观念。

[教学过程]。

1、师先让学生欣赏书上的图。

2、同桌合作研究密铺的含义。

两人小组,结合具体的图解释什么是密铺。

3、动手操作。

鼓励学生自己动手操作,制作若干个相同的长方形、正方形或正六边形,尝试分别用他们进行密铺。

4、探究与思考。

教师提出挑战性问题:请大家想一想,还有什么形状的图形可以密铺,以引起学生的思考。

5、布置作业。

仔细观察生活中密铺地砖的形状,你能设计出能进行密铺的地砖的形状吗?

第7课时。

[教学内容]铺地砖(第94页)。

[教学目的]通过本活动,学生将综合应用图形面积、乘除法、方程等知识解决实际问题,进一步了解数学在生活中的应用。

[教学过程]。

1、复习。

正方形面积的计算公式。

2、黑板出示复习题:用边长为30厘米的正方形地砖铺一段长18米,宽4米的人行道路面,至少需要多少块这样的地砖。

3、投影出示“铺地砖”的活动画面。

4、小组合作探究。

同桌或前后4人合作、研究问题的解决。

5、小组汇报。

教材中给了两种方法。师要注意看学生是否还有其他的方法。如:在问题(1)中,还可以这样考虑:沿着长为4米的墙摆放,需要10块地砖,纵向需要7块半,所以共需75块地砖。

6、课堂练习。

让学生做94页下面(2)、(3)题,形式。

学生可独立完成,也可合作研究。

学生可独立完成,也可合作研究。

第二十七课时单元测验。

第二十八课时试卷分析。

一、试卷分析:

试卷题目难度适中,内容比较全面。应用题较灵活但解答较好。

二、下阶段改进措施:

从本班学生的情况来看,全班学生优秀。

针对本班情况我制定以下措施:

1、平时在课堂上要注重让学生多参与分析应用题数量关系,让学生说解题思路,使得学生养成认真读题,认真分析数量关系的好习惯,从而提高应用题的解题能力。

2、加强对学习困难生的辅导,找到这些学生的成绩差的原因,对症下药,上课注意多照顾他们,多让他们发言,平时发动全班学生不要歧视他们,要帮助他们认真作业,他们的成绩肯定能有进步的。

3、加强对学生概念、运算定律字母表示法、平面图形的周长和面积公式的指导。

小学生五年级数学第六单元知识点教案篇二

1、数对的表示方法?先表示横的方向?后表示纵的方向?即根据直角坐标系?确定某一点的坐标?x,y?.

2、数对的写法?先横向观察?在第几位就在小括号里先写几?再点上逗号?然后再纵向观察?在第几位?就在小括号里面写上几。如小青的位置在第三组?第二个座位?用数对表示为?3?2?。

3、能根据数对说出相应的'实际位置。如某个同学在?5?6?这个位置。他的实际位置是?班级中?从左往右数?第五组第六个座位。

1、认识方向?东、南、西、北、东南、东北、西南、西北。

2、根据方向和距离确定物体位置的方法??1?以某一点为观测中心?标出方向?上北、下南、左西、右东?将观测点与物体所在的位置连线?用量角器测量角度?最后得出结论在哪个方向上2?用直尺测量两点之间的图上距离。

认识并初步了解比例尺?如1?5000单位?千米就表示图上1厘米等于实际距离5000千米。

小学生五年级数学第六单元知识点教案篇三

两个面相交的边叫棱。

(2)什么是顶点?

三条棱相交的点叫顶点。

(3)什么是长方体的长、宽、高?

相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。

(4)什么是正方体(立方体)?

长宽高都相等的长方体叫正方体(或立方体)。

(5)什么是长方体的表面积?

长方体六个面的总面积叫长方体的表面积。

(6)什么是物体体积?

物体所占空间的大小叫做物体的体积。

小学生五年级数学第六单元知识点教案篇四

1、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。如果有余数,要添0再除。

2、小数除以小数的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“小数除以整数的计算方法”进行计算。

3、如果被除数的位数不够,在被除数的末尾用0补足。

4、在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。求商的近似数时,近似数的末尾的0不能去掉。

5、除法中的变化规律:

(1)商不变:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。

(2)除数不变:被除数扩大,商随着扩大。

(3)被除数不变:除数缩小,商扩大。

6、循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

7、一个循环小数的小数部分,依次不断重复出现的数字,叫做循环节。

8、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无限的小数,叫做无限小数。

小学生五年级数学第六单元知识点教案篇五

1、口算乘法:

(1)能从具体情境中搜集有用的数学信息,能根据数学信息提出恰当的数学问题,感受数学在实际生活中的应用。

(2)探索并掌握整十、整百、整千数乘一位数的口算方法,体验算法多样化,并能熟练、正确的进行计算。

(3)能完成两位数或三位数乘一位数的估算,培养估算的意识和能力。

(4)能解决相关的实际问题,提高提出问题、分析问题、解决问题的能力。

2、笔算乘法:

(1)在具体情境中进一步理解乘法的意义,感知乘法与生活的密切联系,激发学习数学的兴趣。

(2)能结合具体情景,探索并理解两位数、三位数乘一位数的算理,掌握笔算算法(包括不进位的.、一次进位的、连续进位的、有一个因数的中间或末尾有0的)。

(3)能结合具体情境进行估算,并解释估算的过程,并能用估算结果验证计算结果的正确性。

(4)在正确掌握运算顺序的前提下,能正确完成包含两位数、三位数乘一位数的混合运算。

(5)能解决与本节内容相关的实际问题,提高解决问题的能力。

(6)在探索规律的习题中培养孩子的观察能力、思维能力和表达能力。

小学生五年级数学第六单元知识点教案篇六

1.在进行测量和计算时,往往不能正好得到整数的结果,这时就需要用小数来表示,这样就产生了小数。

2.分母是10、100、1000的分数可以仿照整数的写法写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几的数,叫做小数。

每相邻两个计数单位间的进率是10。

4.一位小数的计数单位是十分之一(写作0.1),两位小数的计数单位是百分之一(写作0.01),,三位小数的计数单位是千分之一(写作0.001)。

5.十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示。

6.小数的读法:

(1)先读整数部分,再读点,最后读小数部分。

(2)整数部分按照整数的读法来读,小数部分要依次读出每个数字。

(3)整数部分是0的小数,整数部分就读零,小数部分有几个0,就读几个零。

7.小数的性质:小数的.末尾添上0或去掉0,小数的大小不变。

8.利用小数的性质进行小数的化简和改写。

例如:0.70=0.7105.0900=105.09(这是小数的化简)。

又如:不改变数的大小,把下面各数写成三位小数。

0.2=0.2004.08=4.0803=3.000(这是改写小数)。

9.如何比较小数的大小?

10.小数点移动的规律:

(1)小数点向右。

移动一位,小数就扩大到原数的10倍;。

移动两位,小数就扩大到原数的100倍;。

移动三位,小数就扩大到原数的1000倍;。

(2)小数点向左。

移动一位,小数就缩小到原数的1/10;。

移动两位,小数就缩小到原数的1/100;。

移动三位,小数就缩小到原数的1/1000;。

11.把量和单位名称合起来的数叫名数。

12.单名数:只带一个单位名称的名数。例如:4千米、0.8吨、15.38元。

13.复名数:带有两个或两个以上的单位名称的名数。例如:

20元5角8分5吨600克。

14.名数改写的规律:先找进率;再看是把高级单位改写成低级单位,还是是把低级单位改写成高级单位;最后移动小数点。口诀如下:

(1)高到低,乘进率,小数点,向右移,移几位,看进率。

例如:1.32千克=(1320)克(58)厘米=0.58米。

1千克=1000克1米=100厘米。

高低低高。

1.321000=1320克0.58100=58厘米。

(2)低到高,用除法,小数点,向左移,移几位,看进率。

例如:

7450米=(7.45)千米(9.02)吨=9020千克。

1千米=1000米1吨=1000千克。

低高高低。

74501000=7.45千米9000=9.02吨。

15.求小数的近似数,可用四舍五入法。

16.在表示近似数时,小数末尾的0不能去掉。

17.求小数的近似数的方法:

求近似数时,保留整数,表示精确到个位,看十分位上的数;保留一位小数,表示精确到十分位,看百分位上的数;保留两位小数,表示精确到百分位,看百分位上的数;保留三位小数,表示精确到千分位,看万分位上的数。然后根据四舍五入法进行取舍。

例如:9.95310(保留整数)。

9.95310.0(保留一位小数)。

9.9539.95(保留两位小数)。

23.439523.440(保留三位小数)。

18.1.0比1精确。保留的位数越多,数就越精确。

19.如何把一个数改写成以万为单位的数?

方法一:把已知数的小数点向左移动四位,进行化简后,在数的末尾加写一个万字。

方法二:(1)先找万位;(2)在万位后面点.(3)根据实际情况进行化简;(4)在数的末尾加写一个万字;(5)如果有单位名称一定照抄过来。

20.如何把一个数改写成以亿为单位的数?

方法一:把已知数的小数点向左移动八位,进行化简后,在数的末尾加写一个亿字。

方法二:(1)先找亿位;(2)在亿位后面点.(3)根据实际情况进行化简;(4)在数的末尾加写一个亿字;(5)如果有单位名称一定照抄过来。

注:对于改写的方法,同学们灵活掌握。

21.下列各数中的6分别表示什么?

6.32(表示6个一)0.6(表示6个十分之一)0.86(表示6个百分之一)。

62.32(表示6个十)3.416(表示千分之一)。

22.三位小数一定小于四位小数。例如:1.0030.5678。

23.去掉小数点后面的0,小数的大小不变。()。

应该是去掉小数末尾的零,小数的大小不变。

24.小数就是比1小的数。()例如:10.11。

25.近似数是0.5的两位小数有5个。()。

近似数是0.5的两位小数有9个,分别是:0.45、0.46、0.47、0.48、0.49、0.51、0.52、0.53、0.54。(先看百分位上的数,再利用四舍五入法。)。

26.近似数4.0与精确数4.0末尾的0都可以去掉。()。

在表示近似数时,小数末尾的0不能去掉。

27.小数的位数越多,数就越大。()。

28.小数都比自然数小。()。

29.整数都大于小数。()。

30.0.4与0.6之间的小数只有一个。()因为0.4与0.6之间的小数有无数个。31.近似数是6.50的三位小数中,最大是(6.504),最小是(6.495)。

方法:求最大近似数时,一定比6.50大,千分位上的数必须舍,也就是千分位上只能是1、2、3、4,其中最大的数是4,所以近似数是6.50的三位小数中,最大是6.504。

求最小的近似数时,一定比6.50小一个计数单位(本题少一个0.01,也就是6.49),这时千分位上的数必须入,千分位上只能是5、6、7、8、9,其中最小的数是5,所以近似数是6.50的三位小数中,最小是6.495。

小学数学中9是最大的自然数吗。

1最大自然数。

9不是最大的自然数,没有最大的自然数。最小的自然数是0。

自然数指用以计量事物的件数或表示事物件数的数。即用数码0,1,2,3,4,……所表示的数。自然数由0开始,一个接一个,组成一个无穷集体。

2自然数分类。

可分为质数、合数、1和0。

1、质数:只有1和它本身这两个因数的自然数叫做质数。也称作素数。

2、合数:除了1和它本身还有其它的因数的自然数叫做合数。

3、1:只有1个因数。它既不是质数也不是合数。

4、当然0不能计算因数,和1一样,也不是质数也不是合数。

1、1时=(60)分。

2、钟面上游(12)个数,这些数把钟面分成了(12)个相等的大格,每个大格又分成了(5)个相等的小格,钟面上一共有(60)个小格。

3、钟面上有(2)根针,短粗一点的针叫(时)针,细长一点的针叫(分)针。分针走1小格是(1)分,走1大格是(5)分,时针走1大格是(1)时。分针从12走到6,走了(30)分;时针从12走到6,走了(6)小时;时针从12开始绕了一圈,又走回了12,走了(12)时。

4、(30)分也可以说成半小时,(15)分也可以说成一刻钟。如8时30分是8时半,9时15分是9时一刻。

5、(3或9)时整,钟面上时针和分针成直角。

小学生五年级数学第六单元知识点教案篇七

(一)认知基础: 用列表和画图的策略解决问题,对解决问题的策略的价值已经有了一些具体的体验和认识。

(二)主要内容:

1.认识列举法

2.学会列举

3.学会不同的列举

(三)学习目标:

4.体验数学与日常生活的密切联系,认识到许多实际问题可以借助数学方法来解决。

1.利用已有的经验,结合自己动手操作、同学交流,认识列举的策略,并在反思解题的共同特点和注意点时,感知本课的重点——有序思考。

2.借助表格理解基本的数量关系、发现数量的变化趋势。学习有序思考时,可分三个层次展开:第一层,整理信息;第二层,有序列举,注意做到不重复、不遗漏,认识到列举时要有条理、有序,体验有序的重要性,增强思维的条理性和严密性;第三层,反思提升。

1.能用“一一列举”的策略解决实际问题;

2.能根据策略的需要,运用“一一列举”的策略分析有关问题之间的数量关系,并有效的解决问题。

1.认识列举法,并懂得列举法的特点 课本例1提出两个问题,:一个是求“一共有多少种不同的围法?”一个是要求比较长方形的长、宽和面积,再说说有什么发现?在解决第一个问题时,要认识“一一列举法”,并懂得列举法的特点。

2.学会正确的列举法 课本例2也提出两个问题:一个是求“有多少种不同的订阅方法?”一个是说明“要得到全部答案,列举时要注意什么?”在解决这两个问题的过程中,要注意使用正确的列举方法、方式。

3.学会不同的列举法 课本例3的问题是“有多少种不同的安排?”在解决这个问题中,要懂得不同的方法进行列举,从而进一步认识并掌握不同的列举方法,这类问题特别要注意考虑“0”的情况。

4.在运用“一一列举”的策略解决问题的过程,能通过不遗漏、不重复的列举找到符合要求的所有答案。学会有条理的、全面的思考,并清晰地表达自己的想法。

小学生五年级数学第六单元知识点教案篇八

有几个简单的图形拼出来的图形,我们把它们叫做组合图形。

即将这个图形分割成几个基本的图形。分割图形越简洁,其解题的方法也将越简单,同时又要考虑分割的图形与所给条件的关系。

即通过补上一个简单的图形,使整个图形变成一个大的规则图形。

能正确估计不规则图形面积的大小。能用数格子的方法,计算不规则图形的面积。估计、计算不规则图形面积的内容主要是以方格图作为背景进行估计与计算的,所以借助方格图能帮助建立估计与计算不规则图形面积的方法。

满格记为1,少于半格记为0,大于半格记为1。

运用列表的方法(逐一列表法、跳跃列表法、折中列表法)解决类似于“鸡兔同笼”的问题,也可用“方程”来解决。

能在观察活动中,发现点阵中隐含的规律,体会到图形与数的联系。在“点阵中的规律”的活动中,通过观察前后图形中点的变化规律,推理出后续图形中点的数量。

小学生五年级数学第六单元知识点教案篇九

1、使学生理解和认识公倍数和最小公倍数,能用列举的方法求两个自然数的公倍数和最小公倍数,能通过直观图理解两个数的倍数及公倍数之间的关系。

2、使学生借助直观认识公倍数,理解公倍数的特征;通过列举探索求公倍数和最小公倍数的方法,体会方法的合理和多样;感受数形结合的思想,能有条理地进行思考,发展分析、推理等能力。

3、使学生主动参加思考和探索活动,感受学习的收获,获得成功的体验,树立学好数学的信心;培养与同伴合作、交流的意识和良好品质。

求两个数的公倍数和最小公倍数。

理解求公倍数和最小公倍数的方法。

小黑板

一、揭示课题

揭题:我们已经学习了公因数和公因数,今天这节课学习公倍数和最小公倍数。(板书课题)

提问:看了这个课题,你有什么想法?你对公倍数有哪些想法?对最小公倍数呢?

引导:大家交流的想法,实际上是联系公因数和公因数进行联想,提出自己的想法。这样的学习方法可以帮助我们学好数学。那刚才大家的想法是不是正确呢?现在,我们一起来研究公倍数和最小公倍数。(板书课题)

二、学习新知

1、认识公倍数。

(1)出示例11,让学生说说知道了些什么,提出的什么问题。

交流:哪个正方形能正好铺满,哪个不能铺满?

说明:6既是3的倍数,又是2的倍数,是3和2公有的倍数。

(2)引导:想一想,这个长方形纸片还能正好铺满边长多少厘米的正方形?为什么?和同桌说说你的想法。

交流:还能正好铺满边长多少厘米的正方形?你是怎样想的?(明确可以正好铺满边长12厘米、18厘米??的正方形)

(3)引导:现在你发现,6、12、18、24??这些数和2、3都有什么关系?说说你的想法。指出:同学们的理解还真不错!大家发现6、12、18、24??这样的数,既是2的倍数,又是3的倍数,也就是2和3公有的倍数,我们称它们是2和3的公倍数。(板书:公倍数)

追问:8是2和3的公倍数吗?为什么不是?

2、求公倍数。

出示例12,明确要找6和9的公倍数和最小的公倍数。

结合学生交流,教师板书用不同方法找的过程和结论,使学生领会。

小结:大家用不同的方法找出了6和9的公倍数有18,36,54??其中’最小的是18。18是6和9的最小公倍数。

追问:有没有的公倍数?为什么?

说明:两个数的公倍数有无数个,没有的公倍数。两个数的公倍数里最小的一个,就是这两个数的最小公倍数。(板书:最小公倍数——公倍数中最小的一个)

3、用集合图表示公倍数。

引导:你也能用圆圈图表示6的倍数、9的倍数和公倍数的关系吗?自己画一画。学生交流,呈现集合相交的图,(图见教材,略)分别标注出“6的倍数”“9的倍数”“6和9的公倍数”,并强调三个部分都有无数个数,都要用省略号表示。

让学生看直观图说说,哪些数是6的倍数,哪些数是9的倍数,哪些数是6和9的公倍数,最小公倍数是几。

指出:从图上可以直接看出,6和9公有的倍数,是它们的公倍数,其中最小的一个,是它们的最小公倍数。

三、巩固深化

1、做“练一练”第1题。

2、做“练一练”第2题。

3、做练习七第9题。

4、做练习七第10题。

四、总结提升

小学生五年级数学第六单元知识点教案篇十

1、经过课前预习,你了解维也纳吗?请将课前准备好的维也纳资料卡给大家展示一下。学生漫谈对维也纳的初步认识。

2、大家听过圆舞曲吗?那我们就边听边欣赏维也纳的美丽风光吧!

3、听完后心情如何呀?那就带着这份心情读读课题!

2、自由读课文。要求:读准字音,读通句子,如果遇到困难可以提出来。

3、纠正几个字音,积累优美词汇:

尽量尽快撩动巢穴。

丰富而不重复深沉而持久清脆而透彻弯弯曲曲又畅如流水宁静又精致。

4、读完课文,如果让你用一句话来概括你心中的维也纳,你会怎么说呢?

5、质疑:针对这句话你们有什么疑问吗?(结合板书?)。

1、那就让我们带着疑问:你认为课文哪些地方最能体现出音乐是维也纳的灵魂呢?请找出这个句子或者词语,并把它划下来,如果能在旁边写上自己的感受就更好啦!

2、默读课文,学生动笔在文中找句子。

(幻灯)“有一种鸟的叫声宛如花腔女高音,婉转、嘹亮、悠长,变化无穷,它怎么能唱出如此丰富而不重复的音乐?”

a、这里写出了鸟儿的歌声怎么样?(富有变化)那就富有变化的读一读这个句子!你认为鸟儿为什么能唱出如此丰富而不重复的音乐呢?(长期生活在维也纳,连鸟儿都都有了音乐的灵性了,真是鸟鸣如音乐啊!)。

b、想听听吗?闭眼(播放鸟儿音乐)听到鸟叫声心情如何?指名读这个句子。

c、怪不得作者说:“音乐,是撩动人们心情的“神仙的手指”,是维也纳灵魂之所在。”

1、师小结:“维也纳的清晨是充满音乐的,维也纳的山,维也纳的.水,维也纳的建筑,维也纳的路,维也纳的花,甚至维也纳的空气,维也纳一切的一切都弥漫着音乐的气息,没有音乐就没有维也纳。”维也纳的人们每天都沉浸在悠扬的乐曲声中,真是幸福呀!

1、推荐阅读《维也纳生活圆舞曲》。

2、老师和同学们合作开展《走进维也纳》综合实践活动,进一步认识维也纳。

小学生五年级数学第六单元知识点教案篇十一

1、如果a×b=c(a,b,c都是非0自然数),则a和b都是c的因数,c是a和b的倍数,例:3×4=12,3和4都是12的因数,12是3和4的倍数;如果a×a=c(两个a是相同的乘数),则a是c的因数,c是a的倍数,例:3×3=9,3是9的因数,9是3的倍数。

2、找因数的方法:找因数就是找所有能乘得这个数的乘数,从1开始一对一对地找,看哪两个自然数的积是这个数,直到两个乘数逐渐接近,没有其它乘数能得到这个积为止。(一个数最小的因数是1,最大的因数是它本身。)。

3、找倍数的方法:用这个数分别乘1,2,3,4……,所得的积就是倍数。(一个数最小的倍数是它本身,没有最大的倍数。)。

三、2,3,5的倍数特征。

1、2的倍数特征:个位上是0,2,4,6,8的数是2的倍数(能被2整除的数,是2的倍数)。

2、奇数和偶数:能被2整除的数是偶数,不能被2整除的数是奇数。(0是最小的偶数,1是最小的奇数)。

3、5的倍数特征:个位上是0或5的数是5的倍数。

4、2和5公倍数的特征:个位上是0的数是2和5共同的倍数。

5、3的倍数特征:各个数位上的数字之和是3的倍数,这个数就是3的倍数。

7、性质:一个数的倍数的倍数,依然是这个数的倍数。例如:3和9,9的倍数都是3的倍数;4和8,8的倍数都是4的倍数。

四、质数和合数。

1、质数:一个数只有1和它本身两个因数,这个数叫作质数。(质数只有两个因数)。

2、合数:一个数除了1和它本身以外还有其它因数,这个数叫作合数。(合数至少3个因数)。

五、100以内的奇数,偶数,质数,合数。

1、奇数:1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99共50个奇数。

2、偶数:0,2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,86,84,88,90,92,94,96,98,100共51个偶数。

六:数的奇偶性。

1、加减法中:同为偶,异为奇。

2、其他运算:自己举例验证。

3、若干个奇数相加,如果奇数的个数是偶数,则结果为偶数;如果奇数的个数是奇数,则结果为奇数。

4、运动过程中的奇偶性:物体在两点之间运动,奇数次后,与开始状态相反,偶数次后,与开始状态相同。

小学生五年级数学第六单元知识点教案篇十二

1.横排叫做行,竖排叫做列。确定第几列一般是从左往右数,确定第几行一般是从前往后数。

2.用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。

3.用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。

4.写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开,写作:(列,行)。

5.数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。

6.一组数对只能表示一个位置。

7.表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

【巧记位置】。

表示位置有绝招。

一组数据把它标。

竖线为列横为行。

列先行后不可调。

一列一行一括号。

逗号分隔标明了。

在方格纸上,物体向左或向右平移,行数不变,列数等于减去或加上平移的格数;。

物体向上或向下平移,列数不变,行数等于加上或减去平移的格数。

【切记】。

1、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

2、作用:一组数对确定一个点的位置,经度和纬度就是这个原理。

例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

3、在平面直角坐标系中x轴上的坐标表示列,y轴上的坐标表示行。

如:数对(3,2)表示第三列,第二行。

4、数对(x,5)的行号不变,表示一条横线,(5,y)的列号不变,表示一条竖线,(有一个数不确定,不能确定一个点)。

图形左右平移行数不变,图形上下平移列数不变。

1、方程的意义。

含有未知数的等式,叫做方程。

2、方程和等式的关系。

3、方程的解和解方程的区别。

使方程左右两边相等的未知数的值,叫做方程的解。

求方程的解的过程叫做解方程。

4、列方程解应用题的一般步骤。

(1)弄清题意,找出未知数,并用表示。

(2)找出应用题中数量之间的相等关系,列方程。

(3)解方程。

(4)检验,写出答案。

5、数量关系式。

加数=和-另一个加数减数=被减数–差被减数=差+减数。

因数=积另一个因数除数=被除数商被除数=商除数。

数学学习方法技巧。

第一,掌握公式概念。有的学生认为只要把公式定理记牢就可以了,这样的想法往往就会导致数学没有学好,因为对概念的理解只停在文字的表面,对公式就是死记硬背,没有深入了解到,所以要多去细心观察。

第二,总结题型。数学的学习需要做大量的习题,因此,要学会总结各种不同类型的题目,把它们分类开来,看看哪些是自己能够解决的,哪些题是不会做的,这些题型的解题方法是什么,这样才能将题目越做越少。

第三,错题本。一般有良好学习习惯的学生都会有一本错题本,就是把平时中做错的题目收集起来,整理归纳在一起,所以在做题时,不要只追求速度,也要保证做题的准确率。

第四,难题本。跟错题本一样,只是收集的内容不同,难题本就是收集一些比较难做、奇妙的题目,看看这些题目的解题思路,可以帮助自己拓展思维,总结一些解题规律、方法。

小学生五年级数学第六单元知识点教案篇十三

1、掌握生字新词词。正确、流利、有感情地朗读课文。

2、能说出这条路被称为“丝绸之路”的原因,激发学生热爱祖国的思想感情。

理解丝绸之路的重要意义。

一课时。

本篇课文是略读课文,设计思路是:

1、学生汇报查阅的丝绸之路的相关资料。

2、检查字词读音书写、课文朗读的情况,总结课文的.主要内容。

3、交流丝绸之路的意义;体会文章首尾呼应的写作方法。

4、积累文中的四字词语。

5、拓展丝绸之路上的故事资料。

6、最后联系课文做学习乐园上相关练习。

“丝绸之路”这段历史离学生的生活太遥远,没有感性材料,学生很难理解。如何帮助孩子走近历史,更好地去了解“丝绸之路”的重要作用,是我是本堂课要解决的重点。

为了突破这一难点,课前,我收集了大量的图片资料、影视资料。也鼓励孩子们自己查资料,读课后资料袋。使他们初步了解了“丝绸之路”的路线,知道了张骞的丰功伟绩。

在此基础上,引导学生交流读书收获,从把握主要内容入手,说说“丝绸之路给你怎样的印象,你是从文中哪些地方感受到的?”接着要求“你能把你的感受读出来吗?有感情地读给大家听”,然后引导学生交流讨论,深入体会课文内容,如,作者在遐想古丝绸之路上与安息国互赠礼品一幕时,字里行间都体现了这条路是中西方的友好往来之路:安息国大军列队奏乐迎候来使,互赠礼品,彼此彬彬有礼,惊喜连连;这是一条经济、文化交流之路:中国的绫罗绸缎,西方的鸵鸟蛋、魔术表演,都代表着双方不同的经济文化发展。

小学生五年级数学第六单元知识点教案篇十四

尽快地掌握知识,迅速提高学习能力,由为您提供的,希望给您带来启发!

雷暴劈开爆炸毙伤揭开拴着钥匙颠簸浙江谈迁

详实抄写锁门挣脱绝望精彩搜集瑞典斯德哥尔摩

盛会机械铁锤砸开残废艰苦威力运输恒心迷恋

小贩权力勉励(发现发明)(推论推测)(翔实确凿)

(贫寒清贫)(奔波奔走)(诞生出生)(逝世去世)

练(练习)震(地震)钓(钓鱼)恕(宽恕)郊(郊外)

炼(锻炼)振(振作)钩(鱼钩)怒(愤怒)效(效果)

慌(慌张)诫(告诫)秦(秦家)载(装载)魔(病魔)

谎(说谎)戒(戒心)泰(泰山)栽(栽树)摩(摩擦)

荒(荒凉)械(机械)奏(合奏)裁(裁缝)磨(磨刀)

费(浪费)坚(坚强)徽(安徽)拔(拔河)浙(浙江)

废(废品)艰(艰苦)微(微风)拨(拨打)逝(逝世)

小学生五年级数学第六单元知识点教案篇十五

在年少学习的日子里,大家对知识点应该都不陌生吧?知识点在教育实践中,是指对某一个知识的泛称。掌握知识点有助于大家更好的学习。下面是小编收集整理的六年级数学第六单元知识点归纳,欢迎大家分享。

1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。

2、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。

3、掌握所学几何形体的`特征;能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用;巩固所学的简单的画图、测量等技能;巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识;能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。

4、掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据做出简单的判断与预测,会求一些简单事件的可能性,能够解决一些计算平均数的实际问题。

5、进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。

1、数与代数:

比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程旳基础知识;

能比较熟练地进行整数、小数、分数旳四那么运算;

能进行整数、小数加、减、乘、除旳估算;

会使用学过旳简便算法,合理、灵活地进行计算;

会解学过旳方程;

养成检查和验算旳适应。

巩固常用计量单位旳表象,掌握所学单位间旳进率,能够进行简单旳改写。

2、空间与图形:

掌握所学几何形体旳特征;

能够比较熟练地计算一些几何形体旳周长、面积和体积,并能应用;

巩固所学旳简单旳画图、测量等技能;

巩固轴对称图形旳认识,会画一个图形旳对称轴,巩固图形旳平移、旋转旳认识;

能用数对或依照方向和距离确定物体旳位置,掌握有关比例尺旳知识,并能应用。

3、统计与可能性:

掌握所学旳统计初步知识;

能够看和绘制简单旳统计图表;

能够依照数据做出简单旳推断与预测;

会求一些简单事件旳可能性;

能够解决一些计算平均数旳实际问题。

1、两个连续整数中必有一个奇数和一个偶数。

2、奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+...+偶数=偶数。

3、奇数—奇数=偶数;偶数—奇数=奇数;奇数—偶数=奇数。

4、若a、b为整数,则a+b与a—b有相同的奇偶性,即a+b与a—b同为奇数或同为偶数。

5、n个奇数的乘积是奇数,n个偶数的乘积是偶数;算式中有一个是偶数,则乘积是偶数。

6、奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8。

7、奇数的平方除以2、4、8余1。

8、任意两个奇数的平方差是2、4、8的倍数。

1、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。

2、两条平行线之间的距离处处相等。

3、两组对边分别平行的四边形叫做平行四边形;平行四边形有无数条高,平行四边形不是轴对称图形。

4、一个平行四边形在拉动过程中,面积变化,高变化,周长不变。平行四边形具有易变性。

5、只有一组对边平行的四边形叫梯形。

当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。等腰梯形是轴对称图形。

四个角都是直角的四边形叫长方形。

四个角都是直角,并且四条边都相等的四边形叫正方形。

5、画高:

从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高。垂足所在的边叫做平行四边形的底。

当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。

特别注意:画高时,请注意;虚线、垂直标记、和名称。

小学生五年级数学第六单元知识点教案篇十六

(1)同分母分数加、减法(分母不变,分子相加减)。

(2)异分母分数加、减法(通分后再加减)。

(3)分数加减混合运算:同整数。

(4)结果要是最简分数。

2、带分数加减法:。

带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。

附:具体解释。

(一)同分母分数加、减法。

1、同分母分数加、减法:

同分母分数相加、减,分母不变,只把分子相加减。

2、计算的结果,能约分的要约成最简分数。

(二)异分母分数加、减法。

1、分母不同,也就是分数单位不同,不能直接相加、减。

2、异分母分数的加减法:

异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。

(三)分数加减混合运算。

1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。

在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

2、整数加法的交换律、结合律对分数加法同样适用。

数学面积单位间的进率。

2、面积单位:平方厘米、平方分米、平方米--进率是100;。

4、质量单位:克(g)、千克(kg,也叫公斤)、吨(t)。1000克=1千克,1000千克=1吨。

小学生五年级数学第六单元知识点教案篇十七

1.横排叫做行,竖排叫做列。确定第几列一般是从左往右数,确定第几行一般是从前往后数。

2.用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。

3.用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。

4.写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开,写作:(列,行)。

5.数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。

6.一组数对只能表示一个位置。

7.表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

【巧记位置】。

表示位置有绝招。

一组数据把它标。

竖线为列横为行。

列先行后不可调。

一列一行一括号。

逗号分隔标明了。

在方格纸上,物体向左或向右平移,行数不变,列数等于减去或加上平移的格数;。

物体向上或向下平移,列数不变,行数等于加上或减去平移的格数。

【切记】。

1、数对:由两个数组成,中间用逗号隔开,用括号括起来。括号里面的数由左至右分别为列数和行数,即“先列后行”。

2、作用:一组数对确定一个点的位置,经度和纬度就是这个原理。

例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

3、在平面直角坐标系中x轴上的坐标表示列,y轴上的坐标表示行。

如:数对(3,2)表示第三列,第二行。

4、数对(x,5)的行号不变,表示一条横线,(5,y)的列号不变,表示一条竖线,(有一个数不确定,不能确定一个点)。

图形左右平移行数不变,图形上下平移列数不变。

小学五年级数学学习指导:有限小数、无限小数。

小数【有限小数、无限小数】。

二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。每相邻两个计数单位间的进率都是10。

三、每个计数单位所占的位置,叫做数位。数位是按照一定的顺序排列的。

四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。

六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。

七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。

八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。

小学生五年级数学第六单元知识点教案篇十八

1.横排叫做行,竖排叫做列。确定第几列一般是从左往右数,确定第几行一般是从前往后数。

2.用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。

3.用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。

4.写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开,写作:(列,行)。

5.数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。

6.一组数对只能表示一个位置。

7.表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

小学生五年级数学第六单元知识点教案篇十九

1、知识与技能:通过教学使学生理解中位数在统计学的意义,学会求中位数的方法。了解中位数与平均数的联系与区别,会根据数据的具体情况合理选择统计量。

2、过程与方法:经历中位数的认识计算过程,体验合作探讨,理解认识的学习方法,培养学生全面多角度分析问题的意识和初步的统计观念。

3、情感态度价值观:在学习活动中,感受数学知识在现实生活中广泛应用,激发学习兴趣,增强学生在生活中的数学意识,培养学生热爱体育运动的良好情感。

理解中位数的意义,掌握中位数的计算方法。

掌握求偶数个数据的中位数的方法。

1、创设情境、质疑引导、引导与讲解相结合。

2、小组合作探究,自主实践体验。

多媒体课件。

一、复习准备。

1、师生谈话导入。

2、课件出示。

王丽同学1分钟跳绳比赛成绩如下表。

次数:第一次第二次第三次第四次。

成绩:124108136132。

她这四次测试的平均成绩是多少?

理解题意,让学生独立解答、汇报。

二、创设情境,生成问题。

下面让咱们去看看五(1)班7名同学正在进行的掷沙包比赛,他们的`成绩如何呢?(出示教材第105页例4情景图)。

三、探索交流,解决问题。

1、出示五(1)班7名同学掷沙包成绩统计表。

姓名:李明陈东刘云。

成绩/m:36.834.725.8。

姓名:马刚王朋张炎赵丽。

成绩/m:24.724.624.123.2。

引导学生观察,小组内交流。

师:这组数据中,只有两个数比平均数大,有五个数都比平均数小,用平均数表示他们掷沙包的一般水平合适吗?(不合适)想想办法:从这组数据中挑出一个数代表他们掷沙包的水平,自己找一找,和同桌说一说。

学生这是可能有些困难,教师适时引导学生认识中位数。

设计意图(创设问题情景,激发学生学习兴趣,通过估计,计算比较,发现用平均数表示一般水平不合适,从而引入新的内容——中位数,符合学生认知规律,进一步激发学生的求知欲望)。

2、介绍中位数。

平均数与一组数据中的每个数据都有直接关系,任意一个数据大小的变化都会对平均数值都会产生影响,为弥补平均数在描述某数据组的不足,下面就让我们一起来认识一位新朋友——中位数。顾名思义,中位数就是把一组数据按大小顺序排列后,位置居最中间的数据它的优点是不受偏大偏小数据的影响。

师:那么,五(1)班7名同学掷沙包成绩的这组数据中的中位数是多少呢?

生动手尝试,按大小排列找出中位数24.7。

师小结求中位数的方法。

a、按大小顺序排列b、最中间的数据。

设计意图(让学生认识理解,体验求中位数的过程,掌握求中位数的方法,并理解中位数在统计学中的意义。)。

3、小结:平均数和中位数都是反映一组数据集中趋势的统计量,但当一组数据中某些数据严重偏大或偏小时,最好选用中位数来表示这组数据的一般水平。

4、教学例5。

出示例5:五(2)班7名男同学的跳远成绩表。

姓名:李志强王文贤刘卫华。

成绩/m:3.062.742.89。

姓名:陈文赵军张鹏于国庆。

成绩/m:2.903.522.832.78。

师问:用什么数来表示这一组数的一般水平呢?

(1)让学生分别求出这一组数据的平均数和中位数。

(2)同桌之间议一议,说一说。

2.96比这一组数据中大多数数据都高,用它来表示这组数据的一般水平不合适,应选中位数。

(3)如果再增加一个同学杨东的成绩2.94m,这组数据中的中位数是多少?

小组内讨论,全班交流。

得出结论:一组数据中有偶数个数的时候,中位数是最中间两个数的平均数。

5、知识小结。

设计意图(学生在小这合作中自主探究发现知识规律,并动实践求平均数,中位数,培养学生自主学习的能力,同时使学生进一步理解中位数的意义。)。

三、巩固应用,内化提高。

1、基本练习。

2、教材第107页练习二十三第1题。

生读题,小组讨论,共同解答,汇报交流。

3、教材第107页练习二十三第2题。

学生讨论自由解答。

四、回顾整理,反思提升。

通过这节课的学习你学会了什么?你有哪些收获?

中位数。

例4例5。

中位数24.72.89(2.89+2.90)/2=2.895。

按大小顺序排列。

数据个数奇数:最中间的数据数据个数偶数:最中间两数的平均数。

教材中通过结合生活实际来比较平均数,从而产生中位数的教学的必要性。本人循着教材的思路和自身的理解设计了“平均数有时不能正确反映中等水平,有时能——发现概括平均数时候不能正确反映中等水平——该用什么数表示,学习中位数——中位数与平均数的关系,——在练习中分散难点,进一步理解为什么有时候平均数不能正确反映中等水平,而中位数则可以,深入理解中位数的稳定性。

小学生五年级数学第六单元知识点教案篇二十

1.横排叫做行,竖排叫做列。确定第几列一般是从左往右数,确定第几行一般是从前往后数。

2.用有顺序的两个数表示出一个确定的位置就是数对,确定一个物体的位置需要两个数据。

3.用数对表示位置时,先表示第几列,再表示第几行,不要把列和行弄颠倒。

4.写数对时,用括号把列数和行数括起来,并在列数和行数之间写个逗号把它们隔开,写作:(列,行)。

5.数对的读法:(2,3)可以直接读(2,3),也可以读作数对(2,3)。

6.一组数对只能表示一个位置。

7.表示同一列物体位置的数对,它们的第一个数相同;表示同一行物体位置的数对,它们的第二个数相同。

(一)、分数乘法的意义。

1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

例如:12(5)×6,表示:6个12(5)相加是多少,还表示12(5)的6倍是多少。

2、一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

例如:6×12(5),表示:6的12(5)是多少。

7(2)×12(5),表示:7(2)的12(5)是多少。

(二)、分数乘法的计算法则:

1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

1.竖排叫做( ),横排叫做( )。列数( )数,行数( )数。

2.用数对表示物体的位置时,应先写( )数,再写( )数。

3.亮亮在第2列,第3行的位置,可以用数对表示为( )。

4.点a(3,6)向右平移3格用数对表示是( ),向左平移2格用数对表示是( )。

5.点b(3,4)向上平移2格后用数对表示是( ),向下平移2格后用数对表示是( )。

1、质数与密码学:所谓的公钥就是将想要传递的信息在编码时加入质数,编码之后传送给收信人,任何人收到此信息后,若没有此收信人所拥有的密钥,则解密的过程中(实为寻找素数的过程),将会因为找质数的过程(分解质因数)过久,使即使取得信息也会无意义。

2、质数与变速箱:在汽车变速箱齿轮的设计上,相邻的两个大小齿轮齿数设计成质数,以增加两齿轮内两个相同的齿相遇啮合次数的最小公倍数,可增强耐用度减少故障。

1、圆的轴对称性

圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2、圆的中心对称性

圆是以圆心为对称中心的中心对称图形。

【本文地址:http://www.xuefen.com.cn/zuowen/17828479.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档