应用数学毕业论文(专业16篇)

格式:DOC 上传日期:2023-12-07 07:02:25
应用数学毕业论文(专业16篇)
时间:2023-12-07 07:02:25     小编:梦幻泡

面对种种挑战和困难,我们需要对过去一段时间的表现做出客观的总结。在写总结时,我们要保持客观性,不夸大自己的成绩,也不过分苛责自己的缺点。总结的价值不仅仅在于总结本身,更在于思考和改进的过程。

应用数学毕业论文篇一

三、主要研究内容。

四、研究方案及进度安排,预期达到的目标。

(一)研究方案。

(二)进度安排及预期达到的目标。

第一阶段2007.12确定题目。

第二阶段2008.1――2008.2收集资料。

第三阶段2008.3完成开题报告。

第四阶段2008.4资料搜集及整理、归纳、分析,充分与导师进行沟通,完成论文初稿,并完成论文中期报告。

第五阶段2008.5继续进行资料搜集及整理、归纳、分析,在导师指导下进行修改,完成论文二稿。

第六阶段2008.6导师审评,修改并最终定稿,进行答辩。

五、主要参考文献:

应用数学毕业论文篇二

[108]武瑞芳。应用数学课程中建模思想教学研究[j].湖南城市学院学报(自然科学版),2016,25(05):37-38.[2017-09-13].

[109]卫春燕。基于数学建模的高等应用数学教学改革研究[j].黑龙江教育(理论与实践),2016,(11):67-68.[2017-09-13].

[111]周庆健,焦佳,张友,马玉梅,王书臣。提高民族院校数学专业人才培养供给质量的研究--以大连民族大学理学院数学与应用数学专业为例[a].辽宁省高等教育学会。辽宁省高等教育学会学术年会暨第七届中青年学者论坛三等奖论文集[c].辽宁省高等教育学会:,2016:7.

[115]龙晓凡,王艳洁,孙文秋实。以社会需求为导向的应用型数学类专业人才培养模式的探索--以北京林业大学数学与应用数学专业为例[j].中国林业教育,2015,33(01):23-26.[2017-09-13].

[118]王冰洁,尹晶,卢丹。地方高校数学与应用数学专业应用型人才培养现状分析与对策--以白城师范学院为例[j].白城师范学院学报,2015,29(02):70-73+78.[2017-09-13].

[120]王良成,袁南桥,马秀芬。以学科竞赛促进数学与应用数学专业课程改革的研究与实践[j].四川文理学院学报,2015,25(02):62-65.[2017-09-13].

[123]郑玉敏,杨喜庆,刘崇华,王迎春,王胜男。matlab在高职应用数学教学中的应用[j].产业与科技论坛,2015,14(03):151-152.[2017-09-13].

[124]陆薇伊。云南财经大学数学与应用数学专业毕业生就业率实现百分之百的经验剖析[j].现代物业(中旬刊),2015,14(04):83-84.[2017-09-13].

[126]郭娜,朱奕奕。浅谈高校应用数学教学改革与学生应用数学意识的培养[j].信息化建设,2015,(04):61-63.[2017-09-13].

[129]王文发,武忠远,许淳。地方高校数学与应用数学专业综合改革的探索与实践[j].科教文汇(中旬刊),2015,(04):41-42.[2017-09-13].

[130]张丽丽,马元魁。浅谈数学与应用数学专业大众化教育人才培养模式[j].教育教学论坛,2015,(32):50-51.[2017-09-13].

[131]王炯琦,杨文强,胡庆军。适应mooc形式和理念的“工程应用数学基础”课程教学改革初探[j].工业和信息化教育,2015,(06):27-33.[2017-09-13].

[132]莫达隆,欧乾忠。数学与应用数学专业应用技术型人才培养模式研究--以贺州学院为例[j].大学教育,2015,(07):93-95.[2017-09-13].

[133]蔡吉花,倪岚,张秋杰。以就业为导向的数学与应用数学专业教学改革研究[j].高师理科学刊,2015,35(06):77-79.[2017-09-13].

[134]侯再恩,蔺小林,王社宽,刘利华,郭改慧,贺艳琴。数学与应用数学人才培养模式的研究与实践[j].教育教学论坛,2015,(35):52-53.[2017-09-13].

[139]郭红建。基于研究生能力培养的应用数学专业课程教学实践[j].鞍山师范学院学报,2015,17(02):13-17.[2017-09-13].

[140]本刊通讯员。推动科研合作,共攀科学高峰--第八届国际工业与应用数学大会特别报道[j].数学建模及其应用,2015,4(03):1-5.[2017-09-13].

应用数学毕业论文篇三

1、价值性原则,对于拿学位的人来说,写论文不单单是完成任务,更主要的是论文的内容要具有价值性,所以在选题时,不单单要看难易程序,要从两方面考虑其价值,即理论价值或者应用价值,这里以应用价值为首选,否则写出来的东西将没有实际应用和交流的意义,那么纵使华丽丰富,也是华而不实,所谓应用价值就是针对现实中的问题,当下社会中出现的问题,做到理论联系实际去分析。

2、可行性原则,选题时要充分考虑主、客观条件,即要选择那些客观上需要,主观上又有能力完成的题目。所谓客观条件主要是写作的时间、地点、环境;主观条件包括个人的才能、学识和所掌握的材料等。只有量力而行,才能有所发挥。

…………余下全文。

应用数学毕业论文篇四

我们如何更好地结合学科特点在数学教学中进行德育教育?本文将从实施德育渗透的内容、要求、方法、原则及应注意的问题五个方面阐述如何在数学教学中渗透德育教育。利用数学史对学生进行爱国主义教育。结合数学实际对学生进行辩证唯物主义教育、对学生进行人生价值观的教育、利用数学美对学生审美教育、贯彻素质教育原则。深入钻研教材、挖掘德育因素、德育渗透要适时适度。

数学教学德育渗透。

数学源于实际,且随着生产力的发展而发展。华罗庚说:“宇宙之大,粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁无处不用数学。”结合数学教学内容使学生了解数学知识在现代化建设和科技发展中的巨大作用,必将激发他们学好数学,以报效祖国的情感使学生了解科技的突飞猛进对数学工具的更高要求,而有待后人不断探索创新的事实,必将增强学生的使命感,将现实和理想结合起来。发奋学习这样可为学生树立革命人生观打下坚实的基础。像陈景润,他攀登“哥德巴赫猜想”这一科学高峰的艰险历程中,为了理想,为了科学,以契而不舍,坚忍不拔的毅力,在不足十平方米的斗室中,埋头苦干,常常为了一个公式,一个数据而废寝忘食,终于在1972年把人们200多年未能解决的“哥德巴赫猜想”证明大大的向前推进了一步。这些名人的感人事迹无疑会让学生受到极大的感染,以此激励、教育学生像这些楷模学习,树立远大的理想[2]。

我国历史悠久,有光辉灿烂的文化史、数学史。商高定理(勾股定理)、祖恒原理、杨辉三角、《周髀算经》,《九章算术》……是传统数学的宝贵财富。历史名人举世瞩目,仅公元前三世纪的刘徽一人就赢得了多项世界之最:他最早提出分数除法法则,给最小公倍数以严格定义、应用小数、提出非平方数的近似值公式,给出负数定义和负数加法法则,把比例和“三数法则”结合起来,给出一次方程定义和完整解法,提出割圆术、把圆周率计算到3。1416,用无穷分割证明了方锥的体积公式,创造“重差术”(即测量可望不可及目标的一种方法)现在虽时过境迁,但割圆术仍不失为极限这一费解概念极好的几何解释。刘徽的辉煌成就不时的在教材、习题中闪光,结合于教学必将激发学生民族自尊心、自豪感和爱国热情。

诚然,由于长期的封建统治、闭关锁国和帝国主义列强的侵略,近代我国数学曾一度萧条、落后,但新中国成立带来了科学的春天。著名数学家陈景润、华罗庚、苏步青、陈省身等,他们在各自领域都做出了突出贡献,在国际上享有极高的声誉。他们的辉煌业绩和爱国主义精神,是中华民族的骄傲。他们的足迹在数学教材中的再现,必将为后人敬仰,是生动的爱国主义教材。

恩格斯指出:“数学是辨证的辅助工具和表现形式,连初等数学也充满着矛盾。”数学是研究现实世界数量关系和空间形式的科学,客观世界遵循不以人的意志为转移的规律运动、变化、发展,故反映其数量关系和空间形式的数学处处充满着唯物论和辩证法。同时在漫长的数学知识发展的过程中,人们积累了一整套科学规律和处理问题的方法,这些数学思想方法是辩证唯物主义的立论基础和科学证明。如正负整数,正负分数对立统一于有理数,有理数无理数对立统一于实数,实数和虚数对立统一于复数;引入负数后、加减法对立统一于加法,引入分数后、乘除法对立统一于乘法,引入分数指数后、乘方和开方对立统一于乘方;而函数、轨迹、数形结合、化归换元又是运动、变化、联系转化思想的体现。

数学教师不仅是数学知识的传授者,也是辩证唯物主义的传播者。如圆的定义为平面内到定点距离等于定长的点的轨迹。即圆为平面内一点运动变化且遵循一定规律(和定点保持定长)运动时所留下的痕迹。教学时经上述分析、不仅给学生静圆以动感,而且使学生认识到运动变化是有章可循的。这样有助于学生运动、变化、联系等观点的形成。在数学教学中进行辩证唯物主义教育,可为学生树立科学的世界观和方法论奠定良好基础。

数学是逻辑性最强的科学,通过对定理、法则的严格推导,可培养学生实事求是、言必有据、正直讲理的思想品质;结合学生作业错误,从反面领会数学的严密性,从而逐步树立一丝不苟、严肃认真的科学作风;对一些综合题、复杂题的分层推演又可培养学生不怕困难、坚韧不拔的毅力;而一题多解、一题多变又可以培养学生创造性,激发学生不断探索、勇于创新的变革精神……,这些有利于培养学生良好的个性品质,发展学生特长,对学生进行人生价值观的教育十分有益。

数学并不是一门枯燥乏味的学科,它实际包含着许多美学因素。古代哲学家、数学家早就断言:“哪里有数,哪里就有美。”数学美的特征表现在和谐、对称、秩序、统一等方面[4]。数学源于自然,大自然的美妙不难在数学中找到其“缩影”,如对称美、和谐美;同时由于数学自身的特点,又使它放射出简洁美、精确美、统一美、奇异美、开放美的异彩。数学是一门既真又美的科学,不但拥有真理,而且具有至高的美[5]。数学教学要注意挖掘和发现数学本身的美,让学生认识到数学并不是枯燥的公式和繁杂的图形,而是一种科学美。数学中的许多定理、公式、论证过程,解题中最简方法等都体现了数学简洁美。数学中函数图象的对称、圆锥曲线的点对称和线对称,著名的杨辉三角形中的对称等充分体现了数学的对称美。数学中代数、几何的互相渗透,数与形结合的思维方式及数学中一些特殊解法等都体现了数学的奇异美。又如立体几何中辛森公式v=1/6h(s1+4s0+s2)把柱、锥、台和球的体积公式统一在一起,解析几何中圆锥曲线的统一定义和统一极坐标方程等反映了数学的和谐美。曾经有一位数学家说过:“数学教学的目的之一应当使学生获得对数学的审美能力[6]。”因此在教学中,要有意识的培养学生的数学美感,引导他们去发现美、鉴赏美,从而提高审美能力,陶冶美的情操。

在数学教学中渗透德育是寓德育于智育之中,要将德育目标与数学教学内容所具有的德育因素有机结合起来,组成合理的科学的教学结构,通过教师有目的有意识地教学活动,使德育内容在教学中潜移默化地影响学生,逐步内化为学生的思想品德。为此对教师提出下列相应要求。

强化德育意识:数学教师是教师队伍中一支强大的力量,承担着为现代化建设培养高素质人材的重任。实施素质教育就是促进德智体美劳全面发展,而思想品德在学生素质中占据着重要地位,所以应在“把德育放在首位”中发挥教师的主导作用。然而数学教育不存在法制教育的某种强制性,也不具有道德教育的某种约束性,要寓德育于智育之中,必须在“寓”字上下功夫、作文章,研究寓的艺术,寓得自然,合情合理,使学生,乐于接受,易于生效。

数学的德育因素很多,但它不像政治课那样外露,多蕴含于数学教材的深处,教师必须深入钻研教材,掌握其科学体系、把握其结构联系,从中挖掘出德育因素,并前后照应,理清脉络。如经过钻研,圆锥曲线一章德育内容确定如下:

2.2.1结合圆锥曲线轨迹定义教学,培养学生运动变化观点,反对形而上学。

2.2.2结合圆锥曲线统一定义教学,对学生进行对立统一,量变质变规律教育。

2.2.3通过圆锥曲线知识应用教学,培养学生理论联系实际的学风,教育学生认真学习,将来为现代化建设贡献力量。

2.2.4结合圆锥曲线标准方程对学生进行审美教育。

德育渗透伴随教学活动进行,而其中的主渠道是课堂教学。教师备课时,既要备教学目的要求,又要据知识的具体内容、学生心理生理特点确定德育目标,并明确什么时候、哪个环节渗透什么样的德育内容及渗透的程度;上课时既要注意知识性、科学性,又重视知识中的思想性,将两者自然有机地结合起来,使学生在接受知识、形成技能技巧的过程中受到教育。如在复习圆锥曲线内容时,由椭圆、双曲线第一定义,抛物线定义以及它们的标准方程、性质,明确它们是不同的是对立的;然而通过椭圆、双曲线第二定义总结椭圆、双曲线、抛物线统一定义(平面内到定点和定直线距离之比为e的点和轨迹)因它们都是平面和圆锥面的截线而统称为圆锥曲线,共处于一个统一体中,这些无疑给学生对立统一规律教育;分析离心率(e=0时为圆、o1时为双曲线)[7],又是对学生进行量变质变规律教育和辩证唯物主义教育的好教材。

丰富多彩的课外活动,既是智育的广阔天地,也德育渗透的用武之地。包括教师的言传身教,对学生也是一种潜移默化的感染和教育。如朴素大方整洁庄雅的衣着,科学干练、井然有序、抑扬顿挫而又富启发性的教学语言,层次分明、清洁工整、潇洒流畅的板书,和蔼庄重而又寓于变化的教态,精美别致、直观形象的教具……,都能使学生赏心悦目、情感共鸣而德智双收。因此在这些方面也对教师有相应的要求。

为收到教书育人的双重功效,德育渗透应遵循以下原则:

数学教学为形成学生科学的世界观和良好的道德品质提供了坚实的基础。学习数学需要正确的动机和科学的思维方法,遵循认识论的规律。因此,德育渗透要符合马克思主义的科学性原理,符合学生的认知规律,注意数学课的本质特征,把握德育渗透的适度、力度、结合度,才能收到良好的教育效果。

教学中要将智育和德育融为一体,防止牵强附会,贴政治标签。要找好德育渗透的切入点,抓住道德的基本点,由此深入、辐射,才能收效要根据数学教学的特点将德育与教材内容有机结合,相互渗透,达到课堂教学融知识性、思想性于一体的最高境界。

科学世界观和良好的道德品质的形成要经历一个耳濡目染、潜移默化的渐变过程,要根据每学期的教学内容和德育目标制定德育计划,长期地熏陶、渗透,才能水到渠成,收到成效。

数学教学中的德育,必须根据学生的心理和生理特征,认知基础和思维发展水平,确定符合学生实际的目标,有目的、有计划、循序渐进地进行。学生能力的提高,思想品德的形成,总是因人而异,不可能是同一模式,因此,在保证共同施教达到统一要求的前提下,还要照顾不同学生的层次特点,注意个别教育与共同教育相结合。

数学教学中德育讲究艺术性,充分发挥情感效在师生交往中,建立一种平等、民主、亲切、和谐的师生关系。如果教师在课内外均以教育者自居,表情严肃,态度严厉,学生就会产生压抑感和约束感,甚至会造成心理障碍,日积月累就会对教师敬而远之,这时的教育自然是低效甚至无效。反之,尊重学生,真诚地关心和理解学生,对学生严格要求,耐心帮助,一视同仁,就会使学生在一种轻松、愉快的气氛中接受知识,领悟道理,在感情交融的情境中获得启迪,在不知不觉中受到熏陶和感染。这就要求教师充分重视学生的情感,要通过自己的情感有意识地激发学生积极性的情感体验,从而有效的渗透德育[8]。

革命人生观、科学世界观的建立,良好思想品德的形成不是一朝一夕所能完成的。“十年育树,百年树人”道出了育人工程的长远性、艰巨性[9]。一个人思想的转变是一个循序渐进的过程,是一个量变质变的过程,我们只有不懈努力,学生政治思想素质才能逐步提高。

数学的科学体系在不断发展,学生的心理品质不断变化,社会对学生的德育要求也将随着社会的发展不断变化,因此在数学教学中渗透德育的内容、途径等也必须与时俱进,跟上时代的步伐,因此要不断探索,不断创新。

即在教学中随着知识内容的展开而渗透德育内容。德育的内容与知识的传授是同步的,这种方法能把渗透的内容与数学知识有机的融合在一起,细流潺潺,水到渠成。

即在课堂小结时,通过巧妙的点拨融入的德育内容。这种方法能精确恰当地突出知识点和渗透主要内容画龙点睛,言微义中、起到一石激起千层浪的作用。

即通过具体习题的分析,晓知辩证法的道理,数学中充满了辨证法,正和负、奇和偶,正弦和余弦,乘方和开方等等,都是活生生的例子。数学也应采用辨证的方法,诸如引导学生认识一题多解与多题归一问题,引导学生理解相互对立有相互统一的概念间的关系,点拨学生全面的分析习题等,都是大有益处的,这就是哲理渗透通过这样的教学,学生就能养成全面分析问题,辨证思考问题的良好习惯,进而树立科学的世界观。

即引导学生独立思索,使之从中悟出道理,达到自我教育的目的。在教学中要经常让学生独立分析,独立思考,找出习题之间的相互联系和区别,以总体上把握习题的类别。另一方面要让学生认真分析习题的特点,显示已知条件进而思索探求结果的途径,最后找出其中的规律。这样学生就能够由此及彼地归纳问题,学会用典型掌握类别的方法推而广之,用到自己的生活中去。我们常说的以学生为主体,以教师为主导其意义就在于此。

发挥教师在数学教学中体现的人格魅力[10]。教师应面向新世纪,充分认识数学教学中渗透德育的深远意义,转变思想,更新观念,真正将每节课的德育目标落到实处,明确自己的职责是教书育人。“学高为师,身正为范”,教师的举止言行,学生都在细心观察,甚至效仿。教师通过讲授的科学性、思想性,严谨的治学态度、负责始终的教风、诙谐幽默的语言感染着学生,激励他们以坚韧不拨的顽强精神,向理想目标迈进。因此,数学教师要不断提高自身修养,除了精通自己所教的知识,还要有一定的数学史知识和数学思想方面的知识,能把握道德数学教学的脉络,理出思想教育的层次,探索一些具体的德育方法。这就要求教师以全面提高学生素质、培养新一代为已任,树立新的教学观、学生观、质量观,准确把握学生所思、所求、所感、所爱,有的放矢地教育,才能收到实效。

学生个体品德心理的形成,是内部条件和外部条件相互作用的结果,实践性活动是实现这种相互作用的具体过程。教学中要着眼课内,放眼课外,课内长期渗透,课外集中拓宽,才能促进学生把数学学习与崇高的理想结合起来,使学生兴趣化为更大的求知内驱力,进而深化德育效果。丰富多彩的课外数学活动,是课内教学的延伸,又是德育的生动的大课堂,以此扩大学生的知识视野,提高学生整体素养,促进学生个性自由发展。

[2]张二艳。浅谈成人高校数学教学中的德育渗透[j].河北成人教育,1999,6:21.

[4]张建淳。新课表数学教学中的德育渗透[j].科技文汇,2006,8:55.

[5]樊美林。数学教学中的德育渗透[j].教育导报,2007,(2):1-2.

[6]翟素琴。数学教学中的德育渗透[j].安徽教育,1997,(10):33.

应用数学毕业论文篇五

一、选题的依据、意义及相关研究概括:数学不等式的研究首先从欧洲国家兴起,自从著名数学家g.h.hardy,j.e.littlewood和g.plya的著作inequalities由cambridgeuniversitypress于1934年出版以来,数学不等式理论及其应用的研究正式粉墨登场,成为一门新兴的数学学科,从此不等式不再是一些零星散乱的、孤立的公式综合,它已发展成为一套系统的科学理论。

不等式是数学分析中在进行计算和证明时经常用到的且非常重要的工具,同时也是数学分析中主要研究的问题之一,可以说不等式的研究对数学分析发展起着巨大推动作用。在本论文中首先介绍了不等式的研究背景,然后主要研究如何求解数学分析中的不等式问题以及探讨总结不等式的不同证明方法,并对不等式的证明方法进行归类,巧妙解决不等式的求解问题并最后归纳了不等式的多种解题技巧,为以后不等式的学习做了较为详细的归纳总结,希望能对后来读者的学习起到一定的帮助作用也是本人学习的一些心得。

二、研究内容及拟采用的方法。

学习相关的知识、复习并掌握不等式的基本理论知识,了解不同的不等式求解方法。掌握相关的不等式求解方法,并优化这些算法。拟采用方法:

1.首先要从互联网上或书籍中收集相关的不等式例子,如:利用构造变上限积分函数、利用拉格朗日中值定理、利用微分中值定理证明、积分中值定理、利用泰勒公式、用函数的极值、用函数凹凸性、利用函数单调性、利用条件极值、利用两边夹法则等方法进行不等式的证明。

2.利用已收集整理得到的不等式证明方法,总结归纳数学分析中不等式的综合求解方法,并进一步展望数学不等式的证明求解方法。

三、工作的进度安排:

工作进度:

1.第5周-第6周:查阅相关文献资料,准备及完成开题报告;。

2.第7周-第9周:根据论文查找资料收集数据;开始外文文献翻译;。

3.第10周-第14周:整理做出论文提纲,得出一些相关的结论,撰写毕业论文;完成外文文献翻译。

4.第15周:完成毕业论文初稿,打印毕业论文。

5.第16周:做好ppt,准备答辩及答辩后修改,定稿。

四、已参考文献。

[1]徐利治,王兴华.数学分析的方法及例题选讲【m】.北京:高等教育出版社,1984:122.

[2]刘玉琏等.数学分析讲义(下册)高等教育出版社,20xx:234。

[3]葛云飞.高等教学教程【m】.北京:北京交通大学出版社20xx。

[4]扈志明,韩云端.高等级分教程【m】.北京:清华大学出版社1988。

应用数学毕业论文篇六

[43]荣源,尹小丹。浅析数学与应用数学专业应用型人才的培养模式[j].内江科技,2017,38(07):120+48.[2017-09-13].

[53]罗丹,黎勇。应用技术型大学应用数学专业人才培养质量评价体系研究[j].当代教研论丛,2017,(02):8-9.[2017-09-13].

[65]潘庆年,陈益智,陈海容。地方本科院校数学与应用数学专业人才培养模式改革的探索与实践[j].数学教育学报,2016,25(05):92-95.[2017-09-13].

[66]陈利国。地方财经类院校数学与应用数学专业定位和课程设置改革与思考[j].集宁师范学院学报,2015,37(04):105-107.[2017-09-13].

[69]柳长青。转型发展背景下应用数学专业校企合作及实训基地建设研究[j].吉林广播电视大学学报,2016,(01):10-11.[2017-09-13].

[70]熊梅,张大林,严忠权。转型发展视觉下地方高校数学与应用数学专业人才培养模式探索[j].黔南民族师范学院学报,2015,35(06):52-55.[2017-09-13].

应用数学毕业论文篇七

数学专业中应用数学在各个方面都有很重要的实际应用,如教育工作者在数学建模的数学学习活动中应用详例讲解能更好地服务于学生主体。

应用数学是高等大专院校的一门课程,其对于学生掌握一定的数学基本理论、服务专业课与思维方式方法等有着极为基础的作用。以下,笔者将结合教学实践对应用数学的教学活动发表几点简单认识。

应用数学专业的最终教学目的在于培养学生逐渐具备运用数学知识解决现实问题的水平与能力,这就要求教师在教学过程中格外重视数学建模在学生学习活动中的重要作用。这既是帮助学生体会到所学应用数学与现实生活紧密联系的有效措施,同时,更是激发学生数学学习兴趣、帮助其进一步深化对于所学数学知识点认识与理解的重要途径。

例如,在学习微分方程模型的相关知识点之后,教师可以带领学生建立一个数学模型:

水污染问题是当今社会所面临的环境问题之一,某学生小组在实践调查研究的基础上得知某纸厂水库中原有的水量为500吨,假设含有5%污染物的废弃水以每分钟2吨的流动速度持续注入该纸厂的水库,那么,从时间t=0算起,多长时间之后该纸厂水库废弃水中的污染物含有量浓度将达到4%(设定为废弃水注入水库后,水库中的水将不再向外排出)?假设废弃水注入水库后,该造纸厂水库中的水又以每分钟2吨的速度反流出该水库,那么,从时间t=0算起,多长时间之后该纸厂水库废弃水中的污染物含有量浓度将达到4%?并依据计算出的最终结果向社会生活中的用水单位等提出有效控制污染水源的有效措施。

这样就将微分方程这一数学概念置于真实的现实情境之中,有利于学生主观探究能力与创造性学习思维发展,也有利于其更好地掌握应用数学思维的方式。

现代素质教育理念认为,学生是学习活动中的主体,教职员工则是学生各项学习活动中的扶持者与指导者,教育工作者必须在尊重所教学生实际认知规律的基础之上更快、更好地将学生的学习主体地位真正落实到各项教学活动中。

在我看来,要想达到素质教育理念的这一要求,让教学组织形式更好地服务于学生是重中之重。对于此,针对教师资源与学生实际人数众多这一突出矛盾问题,我认为高等院校教师在应用数学教学过程中可同其他教师共同组成帮扶学习小组,即每位教师帮扶一定数量的学生。如此,教师就能针对不同基础的学生采取不同的教学策略。如,针对学习基础较为薄弱的学生,帮扶教师可以将自身教学过程中积累的一些经验或者窍门介绍给所要帮助的学生,针对学习基础较为扎实的学生则可以有针对性地辅导他们参与一些科研项目的调查与研究,这一措施既有利于帮助学生巩固、夯实学习基础,提升其数学素质及修养能力;与此同时,教学相长,对于教师来讲,也是极大的优势。例如,通过对不同学生的辅导工作,教师能更深刻地体会到有层次教学的必要性及重要意义,进而更有针对性地采取数学教学活动。再如,学生数学水平的逐渐提高也将间接地推动教师积极地深入到数学科研的学习活动之中,这对于他们自身数学素养以及教学能力的提升都是一个很大的帮助。

总之,应用数学专业的教育工作者应当重视数学建模在数学学习活动中的重要作用,并确保教学组织形式更好地服务于学生主体,这样才能在确保良好教学效果的同时真正促进大专院校学生数学素养及数学实践运用能力的显著增强。

应用数学毕业论文篇八

1、选题的依据:

数学在现在科学发展中起着很重要的作用,矩阵是数学的一个分支,通过本专业开的《高等代数》这门课程的学习,对矩阵有了一定的了解。在课余时间对矩阵理论与矩阵分析等相关书籍的阅读,了解到矩阵对于分析问题解决问题有很大的帮助。矩阵理论也在很多领域里有所应用,可以说矩阵对于现代科学具有不可替代的作用。为此我们需要深入了解矩阵的一些性质及其关系。矩阵的等价、相似、合同是矩阵很重要的性质,这些性质对于解决问题有很大的帮助。

2、课题的意义:

通过对矩阵等价、相似、合同的探讨加深对矩阵的了解。也通过本次研究更深入的理解并运用矩阵理论的性质特别是矩阵的等价、相似、合同这三大性质来解决社会活动的所会遇到的问题。通过对矩阵等价、相似、合同这三大关系的探讨,能够了解它们的标准形的应用有助于提高学生利用矩阵等价、相似、合同这三大关系来分析问题和解决问题的能力。

二、研究动态及创新点。

1、研究动态:

目前已经有许多国内外的知名学者对矩阵进行研究,矩阵理论对于问题的解决有着很重要的作用。就我阅读一些参考文献:《矩阵分析与应用》张贤达著、《矩阵理论及其应用》将正新,施国梁著、《矩阵论》戴华著等了解到现在已经有很多学者对矩阵有了一定的研究。这些文献对矩阵的一些理论及其性质都做了较深入的阐述,对于矩阵的等价、相似、合同一些相关的理论证明和应用都有了相关说明。

2、创新点:

通过对矩阵论及矩阵分析的学习,熟练掌握矩阵的等价、相似、合同的相关性质和判别。并且对这三者的区别与联系做了相关阐述。同时通过对矩阵的这些理论研究,总结了矩阵在等价变换,合同变换,相似变换下的标准形及其在矩阵的分解,矩阵的秩和矩阵的特征值等方面的应用。同时还运用对矩阵的等价、相似、合同的性质对一些相关问题的简化及解决。

三、研究内容及实验方案。

研究内容:

1、矩阵的概念及其一般特性。

2、矩阵等价、相似、合同三大关系的性质、判别。

3、矩阵等价、相似、合同三大关系的区别与联系。

4、矩阵在等价变换,合同变换,相似变换下的标准形及其在矩阵的分解,矩阵的秩和矩阵的特征值等方面的应用。

5、通过运用相关理论研究解决一些简单问题的例子。

实验方案:

1、通过图书馆查找阅读相关文献并运用所学知识对其进行分析和总结。

2、通过网上查找相关信息并对其分析总结。

3、与老师和同学一同探讨矩阵的运用。

四、毕业论文工作进度。

1、论文开题和选题20xx.1.15—20xx.2.1。

2、阅读参考文献20xx.3.12—20xx.3.18。

4、撰写毕业论文初稿20xx.3.26—20xx.4.29。

5、毕业论文中期检查20xx.4.30—20xx.5.6。

6、完成毕业论文20xx.5.7—20xx.5.20。

7、准备毕业论文答辩20xx.5.21—20xx.5.27。

8、毕业论文答辩20xx年六月中旬。

五、主要参考文献。

[1]高等代数(第二版)[m].北京大学数学系几何与代数教研室代数小组.高等教育出版社.20xx.

[2]矩阵论[m].方保镕,周继东,李医民.清华大学出版社.20xx.

[3]线性代数[m].刘先忠,杨明.高等教育出版社.20xx.

[4]矩阵分析与应用[m].张贤达.清华大学出版社.20xx.

[5]矩阵论[m].张凯院,徐仲.西北工业大学出版社.20xx.

[6]advancedlinearalgebra[m].stevenroman.世界图书出版社.20xx.

[7]矩阵分解的应用[j].王岩,王爱青.青岛建筑工程学院学报.20xx(2).

[8]关于矩阵的分解形式[j].屈立新.邵学院学报(自然科学版).20xx(3).

[9]正交矩阵的正交分解[j].曲茹,王淑华.高师理科学刊.20xx(2).

应用数学毕业论文篇九

未来学家曾尖锐地指出:二十一世纪人类将面临三大问题:首先是人口膨胀,第二是就业困难,第三是环境污染。这三大问题的焦点和后面两大问题产生的根源在于人口问题。人口系统是一个复杂的动态系统,人口变化对未来经济,社会发展有着直接的影响。人口年龄结构是人口研究的重要指标之一,人口年龄结构的发展趋势的预报对人口政策的制定有着非常重要的作用。

而现在随着国家对大学的扩招,大学生越来越多,而大学生的就业现状并不看好,刚刚毕业的大学生或者在踏入社会时间不太长的毕业生经济水平不高,有了孩子负担会更重,而作为受过高等教育的大学生本身就具有较强的接受新事物的能力,自然而然的就成了丁克一族的后备军,这类的大学生越来越多,现的大学生大多是80后人,更具有发展成为丁克一族的可能,因此,丁克现象在最近二十年之内必将发展非常迅速,直接影响着人口老龄化的加快。面对这样的形势,为抑制丁克人口增长过快的趋势,减小人口老龄化速度的加快,又要使人口的年龄结构有一个合理的分布,就必须建立丁克人口预测和控制的数学模型,为正确的人口政策提供科学的依据。

2、国内外发展情况(文献综述)。

今天,世界的人口危机不是因为家庭中有比过去更多的孩子,实际上家庭规模并未扩大,而丁克家庭就在这样的时代背景下涌现。丁克的名称来自英文doubleincomenokids四个单词首字母d、i、n、k的组合——dink的谐音,doubleincomenokids有时也写成doubleincomeandnokid(kids)。仅从单词字面意义解释,意思是:双收入,没有孩子。

据美国人口调查局公布的年度分析报告表明:1993年美国丁克家庭已超过家庭总数的51%,致使总和生育率下降,人口出现负增长;而意大利、希腊和西班牙由于受丁克现象影响较为严重,已加入全球出生率最低的国家之列。自上个世纪80年代起,丁克现象悄悄在中国出现。丁克家庭的增长直接影响人口的老龄化速度加快,导致生产力水平下降,制约着社会经济发展。

中国是世界上人口最多的国家。底中国大陆上居住着125909万人(不包括港澳台)。

约占世界总人口的22%。自1990年起,丁克家庭开始在我国很多大城市涌现,近几年我国的丁克家庭的比例有着上涨的趋势。走上“丁克”之路的夫妻各有各的理由,总体来说可以归结为两大类:一类是自然无耐型,一类是主动接受型。

丁克家庭作为一种新兴的特殊家庭类型不仅已在我国扎根定位,成为我国核心家庭、主干家庭、联合家庭、单亲家庭等众多家庭类型中新的一员,而且呈继续发展之势。现在社会,“养儿防老”早已过时,防老养老终老,只能靠我们自身的能力与组织管理了。现在,又有了一个新的设想—构想“丁克”社区,这个设想对一般人而言又是一次观念更新的起源。

人口众多是我国基本的国情,中国在世纪之交的进行了全国第五次人口普查,国家许多重大社会、政治,经济问题的研究都要依据人口的数量。为此,进行人口预测是有效地控制人口发展与资源关系不可缺少的手段之一,同时也是人口决策的重要依据.作为新兴群体的预测也是人口预测中必不可少的环节。

人类可以作为一个单物种的群体,早在1978年由英国的人口统计学家malthus根据一百多年人口统计资料提出了著名的人口指数增长模型(malthus模型),荷兰生物数学家verhulst也于19世纪中叶提出阻滞增长模型,能够大体上描述丁克人口的增长趋势。各国对于人口的研究是本论文对丁克人口研究的基础。国内关于人口预测方法大致分为两类:一是邓聚龙的灰色gm(1,1)预测模型,但是该模型只能对中国的总人数作中短期的预测,可以很明显的体现出人口总数上的趋势变化。二是宋健理论的中长期人口发展方程的人口预测模型,其分为人口发展方程的离散形式与人口发展方程的连续形式。但模型中需要确定大量参数,需要比较多较准确的数据,而这些数据的'获取又有一定难度,且数据也多少有些误差,故导致在人口预测上存在较大困难,且预测方法较难实施在国内外关于人口预测方法的研究中,用到人口发展方程的连续形式来求人口总数还是存在着很大的缺陷,至今还未解决这一难题。这些都是预测丁克人口的有效方法。

3、研究的主要方法、手段:

本文主要内容是对丁克现象进行具体分析,通过已知中国总人口数局并利用马尔萨斯(malthus)模型(指数增长模型)预测未来丁克人口,与通过已知丁克人口数据并利用gm(1,1)灰色预测模型预测的未来丁克人口进行比较分析。用已有数据对预测结果进行检验,比较分析误差,以达到预测的准确性。

4、可行性分析:

通过系统的学习和查阅大量的有关方面的书籍,我已经对影响丁克现象的原因有所了解和掌握;并且在导师张鸿艳教授的帮助和精心指导下,对于丁克现象的人口模型以及人口预测模型的建立、求解方法和求解过程等基本理论有了了解。这些都为论文做了充分的准备,本论文的题目可行。

5、论文提纲:

摘要(abstract)。

第1章绪论。

1.1研究背景。

1.2国内外研究现状。

1.3本文的主要内容。

第2章预备知识。

2.1马尔萨斯(malthus)模型(指数增长模型)。

2.2灰色gm(1,1)模型。

2.3阻滞增长模型(logistic模型)。

第3章模型建立于求解。

3.1指数模型预测丁克人口数。

3.1.1建立总人口阻滞增长模型。

3.1.2建立丁克人口增长指数模型。

3.1.3模型求解。

3.2灰色gm(1,1)模型预测短期丁克人口数。

3.2.1建立传统gm(1,1)模型。

3.2.2建立优化gm(1,1)模型。

3.2.3模型求解。

第4章结果分析。

4.1数据对比分析。

4.2误差分析。

4.3本章小结。

参考文献。

附录。

6、时间进程。

20xx年1月至3月:查阅相关资料了解丁克人口预测模型;。

20xx年3月18日至5月10日:完成论文的理论部分;。

20xx年5月11日至5月15日:用matlab和相应的工具箱编写程序,完成初稿。

20xx年5月16日至6月3日:校稿,整理论文。

7、参考文献:

1中国统计年鉴/tjsj/ndsj/.

2王永全,刘琴。专业统计与信息系统。北京:北京大学出版社,

3姜启源,邢文训,谢金星,杨顶挥。大学数学实验。北京:清华大学出版社,

4谭永基,蔡志杰。数学模型(博学•数学系列)。上海:复旦大学出版社,

7边肇祺等.模型识别[m].北京:清华大学出版社,

9markhaert。数学建模方法与分析。机械工业出版社,2005。

10刘卫国。matlab程序设计与应用。高等教育出版社,

11刘思峰。灰色系统理论及其应用(第2版)。北京:科学出版社,

12宋健,田雪原。人口控制与人口预测。北京:人民出版社。1982。

13徐国祥。统计预测和决策。上海:上海财经大学出版社,2005。

14邹自立。人口预测方法及可靠性探讨。华东地质学院学报。

15李勇胜。人口预测中的模型选择与参数认定。财经科学出版社,2004。

应用数学毕业论文篇十

[3]叶澜.教师角色与教师发展新探[m]北京:教育科学出版社,2001。

[4]陈永明.教师教育研究[m]广东:广东高等教育出版社,2003。

[5]余文森,刘冬岩.有效教学的基本策略[m],福建教育出版社.2013。

[6]陶行知:中国教育改造[j],北京,东方出版社,1996。

应用数学毕业论文篇十一

[1]王翠香,褚宝增.数学与应用数学专业课程体系与创新能力培养体系的改革与实践[j].教育教学论坛,2016,(51):116-118.[2017-09-13].

[3]左佳斌,卢维学.转型背景下师范类数学与应用数学专业的课程改革与探索[j].吉林工程技术师范学院学报,2016,32(12):66-67.[2017-09-13].

[5]邹倩.独立学院数学与应用数学专业应用型人才培养模式探究[j].淮北师范大学学报(自然科学版),2016,37(04):80-82.[2017-09-13].

[7]黎勇.转型发展背景下数学与应用数学专业教育教学体系改革的探索与初步实践[j].高教论坛,2017,(01):23-27.[2017-09-13].

[18]冯国勇.基于“工学结合”模式下高职院校经济应用数学与会计专业教学融合研究[j].吉林广播电视大学学报,2017,(02):95-96+127.[2017-09-13].

[19]张文娟,王艳红,安晓敏.应用数学毕业设计与就业、科研一体化的研究[j].大学教育,2017,(03):69-70.[2017-09-13].

[22]戴厚平.数学与应用数学专业主干课程群建设的研究与实践[j].湘南学院学报,2017,38(02):88-90+125.[2017-09-13].

[23]连高社,高玉洁,王建军.地方应用型本科院校数学与应用数学专业课程体系的改革与实践--以太原工业学院为例[j].大学数学,2017,33(02):54-59.[2017-09-13].

[24]罗朝晖,黎勇.高校师范专业创新创业能力培养研究--以数学与应用数学专业为例[j].大学教育,2017,(05):149-151.[2017-09-13].

[26]刘利斌,隆广庆,包小兵.数学与应用数学专业数值计算课程教学探讨[j].铜仁学院学报,2017,19(06):125-128.[2017-09-13].

[29]连高社,高玉洁,王建军.基于应用型人才培养的数学与应用数学专业实践教学体系的构建[j].长治学院学报,2017,34(02):80-83.[2017-09-13].

[30]李晨鸽.经济应用数学教学改革探索[j].教育观察(下半月),2017,6(06):87-88+98.(2017-06-26)[2017-09-13].

[43]荣源,尹小丹.浅析数学与应用数学专业应用型人才的培养模式[j].内江科技,2017,38(07):120+48.[2017-09-13].

[53]罗丹,黎勇.应用技术型大学应用数学专业人才培养质量评价体系研究[j].当代教研论丛,2017,(02):8-9.[2017-09-13].

[65]潘庆年,陈益智,陈海容.地方本科院校数学与应用数学专业人才培养模式改革的探索与实践[j].数学教育学报,2016,25(05):92-95.[2017-09-13].

[66]陈利国.地方财经类院校数学与应用数学专业定位和课程设置改革与思考[j].集宁师范学院学报,2015,37(04):105-107.[2017-09-13].

[69]柳长青.转型发展背景下应用数学专业校企合作及实训基地建设研究[j].吉林广播电视大学学报,2016,(01):10-11.[2017-09-13].

[70]熊梅,张大林,严忠权.转型发展视觉下地方高校数学与应用数学专业人才培养模式探索[j].黔南民族师范学院学报,2015,35(06):52-55.[2017-09-13].

[71]殷明,朱晓临,郭清伟.数学与应用数学特色专业建设的研究与实践--以合肥工业大学为例[j].大学数学,2015,31(06):38-44.[2017-09-13].

[72]史沁红,杨永跃,任秀龙.卫生检验与检疫技术专业对应用数学的需求调查研究[j].卫生职业教育,2015,33(23):63-64.[2017-09-13].

[77]杨光崇,陈勇明,覃仕霞.一般工科院校应用数学人才培养的探索与实践[j].高教学刊,2016,(03):58-59.[2017-09-13].

[84]王慧敏.应用数学课程教学改革探究[j].湖南城市学院学报(自然科学版),2016,25(01):245-246.[2017-09-13].

[86]薛德军,范忠雄,徐永琳,夏世贵,普华加.基于民族院校数学实验教学与建设的思考--以数学与应用数学(藏汉双语)专业为例[j].甘肃高师学报,2016,21(03):59-63.[2017-09-13].

[87]饶兰兰.应用数学与统计学专业计量经济学课程教与学若干问题的探讨[j].教书育人(高教论坛),2016,(15):110-112.[2017-09-13].

[90]李建祥,杨玲.地方新建本科高校应用数学教研室建设思路探析[j].保山学院学报,2016,35(02):42-45.[2017-09-13].

[91]罗美菊,王亚燚,徐晓宁,勾月,李亚杰.应用型人才培养模式的探究与实践--以辽宁省高校应用数学专业为例[j].高教学刊,2016,(12):206-207.[2017-09-13].

[95]姚落根.财经类院校数学与应用数学专业实践教学探索[j].沙洲职业工学院学报,2016,19(02):31-35.[2017-09-13].

[97]康静,蒋家琼.中美高等理科教育课程设置比较研究--以北京大学、哈佛大学应用数学专业为例[j].高等理科教育,2016,(03):67-74.[2017-09-13].

[105]金玉子.以就业需求为导向的应用数学培养模式研究[j].中小企业管理与科技(上旬刊),2016,(10):104-105.[2017-09-13].

[108]武瑞芳.应用数学课程中建模思想教学研究[j].湖南城市学院学报(自然科学版),2016,25(05):37-38.[2017-09-13].

[109]卫春燕.基于数学建模的高等应用数学教学改革研究[j].黑龙江教育(理论与实践),2016,(11):67-68.[2017-09-13].

[111]周庆健,焦佳,张友,马玉梅,王书臣.提高民族院校数学专业人才培养供给质量的研究--以大连民族大学理学院数学与应用数学专业为例[a].辽宁省高等教育学会.辽宁省高等教育学会2016年学术年会暨第七届中青年学者论坛三等奖论文集[c].辽宁省高等教育学会:,2016:7.

[115]龙晓凡,王艳洁,孙文秋实.以社会需求为导向的应用型数学类专业人才培养模式的探索--以北京林业大学数学与应用数学专业为例[j].中国林业教育,2015,33(01):23-26.[2017-09-13].

[118]王冰洁,尹晶,卢丹.地方高校数学与应用数学专业应用型人才培养现状分析与对策--以白城师范学院为例[j].白城师范学院学报,2015,29(02):70-73+78.[2017-09-13].

[120]王良成,袁南桥,马秀芬.以学科竞赛促进数学与应用数学专业课程改革的`研究与实践[j].四川文理学院学报,2015,25(02):62-65.[2017-09-13].

[121]王晓峰,程宏,郭运瑞.数学与应用数学专业应用型人才培养模式研究--以河南科技学院为例[j].高师理科学刊,2015,35(03):54-57.(2015-02-09)[2017-09-13].

[123]郑玉敏,杨喜庆,刘崇华,王迎春,在高职应用数学教学中的应用[j].产业与科技论坛,2015,14(03):151-152.[2017-09-13].

[124]陆薇伊.云南财经大学数学与应用数学专业毕业生就业率实现百分之百的经验剖析[j].现代物业(中旬刊),2015,14(04):83-84.[2017-09-13].

[125]胡毓达.应用数学的发展和未来[j].高等数学研究,2015,18(01):31-37.(2014-12-30)[2017-09-13].

[126]郭娜,朱奕奕.浅谈高校应用数学教学改革与学生应用数学意识的培养[j].信息化建设,2015,(04):61-63.[2017-09-13].

[129]王文发,武忠远,许淳.地方高校数学与应用数学专业综合改革的探索与实践[j].科教文汇(中旬刊),2015,(04):41-42.[2017-09-13].

[130]张丽丽,马元魁.浅谈数学与应用数学专业大众化教育人才培养模式[j].教育教学论坛,2015,(32):50-51.[2017-09-13].

[131]王炯琦,胡庆军.适应mooc形式和理念的“工程应用数学基础”课程教学改革初探[j].工业和信息化教育,2015,(06):27-33.[2017-09-13].

[132]莫达隆,欧乾忠.数学与应用数学专业应用技术型人才培养模式研究--以贺州学院为例[j].大学教育,2015,(07):93-95.[2017-09-13].

[133]蔡吉花,倪岚,张秋杰.以就业为导向的数学与应用数学专业教学改革研究[j].高师理科学刊,2015,35(06):77-79.[2017-09-13].

[134]侯再恩,蔺小林,王社宽,刘利华,郭改慧,贺艳琴.数学与应用数学人才培养模式的研究与实践[j].教育教学论坛,2015,(35):52-53.[2017-09-13].

[137]石丽君,胡芳.高职应用数学社团建设初探[j].科技创新导报,2015,12(17):152-153.(2015-07-16)[2017-09-13].

[139]郭红建.基于研究生能力培养的应用数学专业课程教学实践[j].鞍山师范学院学报,2015,17(02):13-17.[2017-09-13].

[140]本刊通讯员.推动科研合作,共攀科学高峰--第八届国际工业与应用数学大会特别报道[j].数学建模及其应用,2015,4(03):1-5.[2017-09-13].

应用数学毕业论文篇十二

[2]阮忠英.初中几何教学策略浅谈[j].理科爱好者,2009(2)。

[3]胡蓉.利用信息技术优化几何教学[j].信息技术与应用,2008(4).

[4]吕月霞.杜威的“从做中学”之我见[j].教育新论,2009.5。

[6]袁振国.当代教育学[m].教育科学出版社,2004,p184。

[7]技术与初中几何教学整合研究[d].重庆:西南大学博士学位论文,2008.

[8]周军.教学策略[m].北京:教育科学出版社,2007,p11。

应用数学毕业论文篇十三

创新是人类发展的永恒主题,而教育是培养创新人才的摇篮。要把最好的教育给我们的孩子,那么,这“最好的教育”就是要培养创新人才,这就要求我们教师应重视学生创新学习的培养。

一、创新学习的特征。

(一)学生的主体性得到充分张扬。

小学数学创新学习教学模式,应体现学生是学习的主人,人人都有创新潜能的教学理念。在具体的教学中,教师应为学生创设主动参与数学学习的条件和机会,向学生提供现实的、有意义的和富有挑战性的学习内容,激发他们主动探索的兴趣和欲望。通过动手实践、自主探索、合作、交流等多样化的学习方式,让学生积极主动地参与知识的发生、发展过程,促进他们在数学上得到主动发展。

(二)问题是引导学生创新学习的主线。

小学数学创新学习教学模式,把问题作为学生学习过程的主线。教师通过创设民主和谐的教学氛围和问题情境去培养学生的问题意识,让学生积极思考、大胆质疑,不断发现问题,努力探索解决问题的办法,形成解决问题的教学模型。

(三)创新学习的课堂是开放性的课堂。

具体体现在:一是教学内容的选择不受教材的局限,根据教学的实际需要,从各种教育资源中选取与学生的生活紧密联系的学习材料,让学生充分感受数学与现实生活的密切联系,体现课内与课外的结合。二是教学方法和手段的.选用有利于调动学生的学习积极性,体现学生的自主探索与合作交流,发挥学生的创新潜能。三是给学生留有足够的自主探索时间和空间,让学生获得充分从事数学活动的机会。四是尊重学生思维的独立性和多样性,鼓励学生用自己喜欢的、切合自身实际的认知方式去探索、去发现,既不强求每个学生都必须掌握所有的思考方法,也不要求所有的学生都统一掌握一种思考方法,体现解决问题策略的多样化。

二、小学数学创新学习教学的操作程序。

(一)创设情境,提出问题。

在这一教学环节中,一方面教师应创设问题情境,从学生熟悉的现实生活中引出学习主题,并引导学生围绕课题提出想探究的问题,使学生产生迫切需要探索的内在需要。另一方面,教师可以根据教学内容的特点和教学的实际需要,引导学生对与新知识有密切联系的旧知识进行回忆,从而激活学生原有认知结构,使新知识在原有认知结构中能找出生长点。

(二)自主探索。

自主探索一般包括学生自学质疑与小组合作探索两种基本的学习方式。

在自学质疑中,以数学教材提供的学习内容为基本线索,学生带着问题通过独立阅读教材去探索知识的发生发展过程,用适合自己的认知方式去理解教材、获取知识。同时,学生在阅读教材过程中,还应通过积极思考、质疑批判,主动提出新的问题。

小组合作探索可以从三个方面来开展。(1)展开小组讨论。讨论的主要内容有:一是对自学中未弄明白的问题进行讨论,促进思维相互得到启发和对知识的全面理解;二是通过讨论,归纳概括出规律、法则或结论,让学生参与知识的形成过程;三是组织学生对学习的重点、难点和关键问题进行讨论,深化对数学问题的思考;四是提出开放性问题进行讨论,让学生寻求解决问题的各种办法,培养发散思维能力。此外,还应通过变化讨论的节奏、采用多样化的讨论方式、对学生的讨论进行激励性的评价等办法,不断给学生的合作学习注入活力。(2)组织学生开展合作操作活动。在小组操作中,应让学生明确操作的目的,根据实际情况选用操作的方法,并把操作与观察、思考和语言训练结合起来,在操作过程中获取信息、探索规律,促进对数学知识的理解和思维的发展。(3)让学生把小组合作探索的情况概括起来在全班进行交流,提出各组的观点和结论,展示小组探索的成果,让学生在更大范围内开展合作学习。例如,在计量单位的整理复习中,学生先分小组对计量单位的知识进行归类整理,再以小组为单位上讲台展示各组整理的结果,并作出必要说明,最后由其他同学根据该组的展示情况发表意见或提出质疑,进行组际间的辩论。

(三)点拨归纳。

对学生的自主探索活动进行点拨归纳,一是可以通过教师引导性的提问,让学生把当前问题与原有知识经验联系起来,疏通学生的思路,促进问题的转化。二是应抓住重点、关键问题进行强化,使这些知识在学生认知结构中牢固、清晰地储存起来,为今后有效地学习其它知识提供稳定的支撑点。三是对学生探索发现的方法、策略进行总结、归纳,促进学生创新学习能力的发展。

(四)拓展练习。

在创新学习课堂练习活动中,教师应向学生提供具有探索性、开放性和发展性的练习内容。学生在运用知识的过程中,进一步深化对知识的理解,培养解决问题的能力,体验学习成功的欢乐。在练习时,教师既要鼓励学生选择适合自己的思维方式,从不同的角度去思考问题,体现解决问题的多样化。同时,也要引导学生善于交流,敞开自己的思想,学习别人好的解题策略,优化思维过程。

(五)归纳反思。

三、创新学习教学实施策略。

(一)强化合作学习。

运用小组合作学习策略,具体应抓好以下两个方面。第一,合理组建合作学习小组。第二,让学生主动参与到合作学习中去。三是要创设合作学习的氛围,激发学生积极主动地参与合作学习的热情。

(二)创设宽松的教学环境。

具体应抓好以下三个方面。第一,建立新型的师生关系。要以真诚的师爱为基础,教师应尊重学生的人格,把学生视为平等的人、自主的人、有发展潜力的人。第二,让每个学生都能体验成功的快乐。应让学生树立自己能学好数学的信心,激发学习热情。同时,还应针对学生的认知水平,给每个学生创设获得成功的机会,让他们具有成功的体验,在成功的愉悦中增强学习动力。第三,建立情感多向交流机制。一方面应及时把教师对学生的关怀和教师分享学生成功的欢乐传递给学生,用教师的情感去激发学生的学习热情;另一方面应变一言堂为群言堂,让学生具有向教师或同学交流自己的思想、发表不同见解、表达学习体验的机会。

(三)采用探究性的数学学习方式。

第一,抓好问题情境的创设。教师可以通过从生活中引入学习内容、设置悬念、制造认知冲突、让学生质疑或运用现代信息技术手段等方式创设问题情境,让学生在情境熏陶下产生主动探究的内在需要。第二,加强对学生探究学习的指导。教师针对学生在探究过程中出现的问题进行点拨、启发、引导,可以减少探究学习的盲目性和无效性。

(四)强化思维训练。

在数学教学中,既要培养学生的逻辑思维能力,又要促进学生形象思维、直觉思维能力的发展,让学生形成多维型的思维方式。发散思维是创新思维的主要表现形式,在教学中应让学生从多起点、多角度、多方向展开思维过程,有意识地培养学生的发散思维。主要办法有:根据问题提出解决问题的各种条件;根据条件提出可能产生的各种结果;通过对复杂数量关系的分析寻找解决问题的多种思路和方法。

综上所述,数学教学是以培养数学素质为目的,而数学素质中又以创新能力和应用能力最为重要。我们要在课堂教学中处处以培养学生的创新和应用能力为基本出发点,特别是在新的课程标准下,注重教学方式,从多方面培养学生学习数学的兴趣,提高学生在数学方面的创新能力与应用能力。

应用数学毕业论文篇十四

[1]王吉庆.信息素养论[m].上海:上海教育出版社.1998.

[2]张静波等主编.信息素养能力与教育[m].北京:科学出版社,2007.

[3]中华人民共和国教育部.义务教育品德与社会课程标准(2011)[m].北京:北京师范大学出版社,2012.

[4]中华人民共和国教育部.义务教育音乐课程标准(2011)[m].北京:北京师范大学出版社,2012.

[5]中华人民共和国教育部.义务教育英语课程标准(2011)[m].北京:北京师范大学出版社,2012.

[6]中华人民共和国教育部.义务教育体育与健康课程标准(2011)[m].北京:北京师范大学出版社,2012.

[8](英)苏·考利.教会学生思考[m].北京:教育科学出版社,2010.

[9]尹少淳,段鹏.新版课程标准解析与教学指导[m].北京:北京师范大学出版社,2012:15.

[10]陈铁梅.美术教育的真谛[m]?江苏:江苏教育出版社,2011:3-4。

[11]刘淼.作文心理学[m].高等教育出版社,2001.

[12]中华人民共和国教育部制定.义务教育数学课程标准(2011)[m].北京:北京师范大学出版社,2012.

[13]中华人民共和国教育部.义务教育英语课程标准(2011)[m].北京:北京师范大学出版社,2012.

[14]义务教育数学课程标准研制组.数学教师教学用书(五年级上册)[m].北京:北京师范大学出版社,2007:3.

[15]义务教育数学课程标准研制组.数学教师教学用书(五年级上册)[m].北京:北京师范大学出版社,2007:3.

应用数学毕业论文篇十五

[1]范璐璐.解析数学思想、数学活动与小学数学教学[j].中国教育学刊,2014,(06).

[2]姜嫦君,刘静霞.小学数学教学中数学思想方法的渗透[j].延边教育学院学报,2010,(02).

[3]邹益群.试论数学思想、数学活动与小学数学教学[j].才智,2015,(15).

应用数学毕业论文篇十六

[1]王汉澜.教育评价学[m].开封:河南大学出版社,1995.

[2]吴钢.现代教育评价基础[m].上海:学林出版社,2004.

[3]黎世法.异步教育学[m].北京:当代中国出版社,1994.

[4]虞应连.采用复合评分法注重个体内差异评价[j].中小学管理,2001(1).

[5](美)carolanntomlinson,刘颂译.多元能力课堂中的差异教学[m].北京:中国轻工业出版社,2003.

[6]茹建文.关于构建小学数学发展性评价体系的思考[j].现代教育科学,2005(2).

[7]曾继耘.差异发展教学研究[m].北京:首都师范大学出版社,2006.

[8]顾泠沅等.寻找中间地带--国际数学教育改革的大趋势[m].上海:上海教育出版社,2003.

[9]马艳云.评价应注意学生的心理需求[j].人民教育,2005(17).

[10]陈小菊.给自己一个支点超越自己-“个体内差异评价策略”探微[j].福建教育,2005(7).

[11](美)dianeheacox,杨希洁译.差异教学-帮助每个学生获得成功[m].北京:中国轻工业出版社,2004.

[12]陈泳超.差异评价“实施因材施教”[j].福建教育,2001(7、8).

[13]安艳.差异性学生评价研究--以济南市三所初中为例[d],济南.山东师范大学,2007.

[14]王俭.教育评价发展历史的哲学考察[j].教师教育研究,2008(3).

【本文地址:http://www.xuefen.com.cn/zuowen/17796493.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档