七年级数学有理数的乘法教案(优秀20篇)

格式:DOC 上传日期:2023-12-07 05:58:22
七年级数学有理数的乘法教案(优秀20篇)
时间:2023-12-07 05:58:22     小编:ZS文王

教案包括教学目标、教学内容、教学步骤和教学评价等要素。教案要从学生的实际需求出发,关注学生的成长和发展。这些教案范例涵盖了不同学科和年级的教学内容,适用于各类教学环境。

七年级数学有理数的乘法教案篇一

三、情感态度与价值观。

体会数学与现实生活的联系,提高学生学习数学的兴趣、

教学重点、难点与关键。

1、重点:有理数加减法统一为加法运算,掌握有理数加减混合运算、

2、难点:省略括号和加号的加法算式的运算方法、

投影仪、

四、教学过程。

一、复习提问,引入新课。

1、叙述有理数的加法、减法法则、

2、计算、

(1)(—8)+(—6);(2)(—8)—(—6);(3)8—(—6);。

(4)(—8)—6;(5)5—14、

五、新授。

我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算、

六、巩固练习。

1、课本第24页练习、

(1)题是已写成省略加号的代数和,可运用加法交换律、结合律、

原式=1+3—4—0。5=0—0。5=—0。5。

(2)题运用加减混合运算律,同号结合、

原式=—2。4—4。6+3。5+3。5=—7+7=0。

(3)题先把加减混合运算统一为加法运算、

原式=(—7)+(—5)+(—4)+(+10)。

=—7—5—4+10(省略括号和加号)。

=—16+10。

=—6。

七、课堂小结。

八、作业布置。

1、课本第25页第26页习题1、3第5、6、13题、

九、板书设计:

第四课时。

1、把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便、

归纳:加减混合运算可以统一为加法运算、

用式子表示为a+b—c=a+b+(—c)、

2、随堂练习。

3、小结。

4、课后作业。

十、课后反思。

本课教学反思。

本节课主要采用过程教案法训练学生的听说读写。过程教案法的理论基础是交际理论,认为写作的过程实质上是一种群体间的交际活动,而不是写作者的个人行为。它包括写前阶段,写作阶段和写后修改编辑阶段。在此过程中,教师是教练,及时给予学生指导,更正其错误,帮助学生完成写作各阶段任务。课堂是写作车间,学生与教师,学生与学生彼此交流,提出反馈或修改意见,学生不断进行写作,修改和再写作。在应用过程教案法对学生进行写作训练时,学生从没有想法到有想法,从不会构思到会构思,从不会修改到会修改,这一过程有利于培养学生的写作能力和自主学习能力。学生由于能得到教师的及时帮助和指导,所以,即使是英语基础薄弱的同学,也能在这样的环境下,写出较好的作文来,从而提高了学生写作兴趣,增强了写作的自信心。

这个话题很容易引起学生的共鸣,比较贴近生活,能激发学生的兴趣,在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴。在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下基础。此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时则对语法知识进行讲解。

在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高。再者,培养学生的学习兴趣,增强教案效果,才能避免在以后的学习中产生两极分化。

在教案中任然存在的问题是,学生在“说”英语这个环节还有待提高,大部分学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一部分学生的学习成绩的提高还有待研究。

七年级数学有理数的乘法教案篇二

1、知识目标:了解有理数乘法法则的合理性,掌握有理数的乘法法则,熟练运用有理数的法则进行准确运算。

2、能力目标:通过对问题的变式探索,培养自己观察、分析、抽象、概括的能力。

3、情感目标:培养积极思考和勇于探索的精神,形成良好的学习习惯。

重点:有理数乘法运算法则的推导及熟练运用。

难点:有理数乘法运算中积的符号的确定。

1、在小学我们已经接触了乘法,那什么叫乘法呢?

求几个的运算,叫乘法。

一个数同0相乘,得0。

2、请你列举几道小学学过的乘法算式。

规定:向右为正,现在之后为正。

3分钟后蜗牛应在o点的()边()cm处。

可以列式为:(+2)(+3)=。

问题2:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟后蜗牛在什么位置?

规定:向右为正,现在之后为正。

3分钟后蜗牛应在o点的()边()cm处。

可以列式为:

问题3:如果蜗牛一直以每分钟2cm的速度向右爬行,那么3分钟前蜗牛在什么位置?

规定:向右为正,现在之后为正。

3分钟前蜗牛应在o点的()边()cm处。

可以表示为:

问题4:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟前蜗牛在什么位置?

规定:向右为正,现在之后为正。

3分钟前蜗牛应在o点的()边()cm处。

可以表示为:

2、观察这四个式子:

(+2)(+3)=+6(—2)(—3)=+6。

(—2)(+3)=—6(+2)(—3)=—6。

正数乘正数积为__数:负数乘负数积为__数:

负数乘正数积为__数:正数乘负数积为__数:

乘积的绝对值等于各乘数绝对值的_____。

思考:当一个因数为0时,积是多少?

两数相乘,同号得,异号得,并把绝对值。

任何数同0相乘,都得。

1、你能确定下列乘积的符号吗?

37积的符号为;(—3)7积的符号为;

3(—7)积的`符号为;(—3)(—7)积的符号为。

2先阅读,再填空:

(—5)x(—3)。同号两数相乘。

(—5)x(—3)=+()得正。

5x3=15把绝对值相乘。

所以(—5)x(—3)=15。

填空:(—7)x4____________________。

(—7)x4=—()___________。

7x4=28_____________。

所以(—7)x4=____________。

[例1]计算:

(1)(—5)(2)(—5)。

(3)(—6)(—0.45)(4)(—7)0=。

解:(1)(—5)(—6)=+(56)=+30=30。

请同学们仿照上述步骤计算(2)(3)(4)。

(2)(—5)6==。

(3)(—6)(—0.45)==。

(4)(—7)0=。

让我们来总结求解步骤:

两个数相乘,应先确定积的,再确定积的。

1、小组口算比赛,看谁更棒。

(1)3(—4)(2)2(—6)(3)(—6)2。

(4)6(—2)(5)(—6)0(6)0(—6)。

2、仔细计算。,注意积的符号和绝对值。

(1)(—4)0.25(2)(—0.5)(—2)(3)(—)。

(4)(—2)(—)(5)(—)(—)(6)(—)5。

1、下列说法错误的是()。

a、一个数同0相乘,仍得0。

b、一个数同1相乘,仍得原数。

c、如果两个数的乘积等于1,那么这两个数互为相反数。

d、一个数同—1相乘,得原数的相反数。

2、在—2,3,4,—5这四个数中,任意两个数相乘,所得的积最大的是()。

a、10b、12c、—20d、不是以上的答案。

3、计算下列各题:

(5)(—6)(—5)=;(6)(—5)(—6)=。

七年级数学有理数的乘法教案篇三

学习目标:。

1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算。

2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力.

3、培养语言表达能力.调动学习积极性,培养学习数学的兴趣.

学习重点:有理数乘法。

学习难点:法则推导。

教学方法:引导、探究、归纳与练习相结合。

教学过程。

一、学前准备。

计算:

(1)(一2)十(一2)。

(2)(一2)十(一2)十(一2)。

(3)(一2)十(一2)十(一2)十(一2)。

(4)(一2)十(一2)十(一2)十(一2)十(一2)。

猜想下列各式的值:

(一2)×2(一2)×3。

(一2)×4(一2)×5。

二、探究新知。

1、自学有理数乘法中不同的形式,完成教科书中29~30页的填空.

2、观察以上各式,结合对问题的研究,请同学们回答:

(3)负数乘以正数积为__________数,(4)负数乘以负数积为__________数。

提出问题:一个数和零相乘如何解释呢?

七年级数学有理数的乘法教案篇四

(二)能力训练目标:

1、经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。

2、能运用乘法运算律简化计算。

(三)情感与价值观要求:

1、在共同探索、共同发现、共同交流的过程中分享成功的喜悦。

2、在讨论的过程中,使学生感受集体的力量,培养团队意识。

乘法运算律的运用。

乘法运算律的运用。

探究交流相结合。

创设问题情境,引入新课。

[活动1]。

问题2:计算下列各题:

(1)(-7)×8;。

(2)8×(-7);

(5)[3×(-4)]×(-5);

(6)3×[(-4)×(-5)];

[师生]由学生自主探索,教师可参与到学生的讨论中。

像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。(略)。

[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?

[生]例如:5×[3十(-7)]和5×3十5×(-7);(略)。

[师](-5)×(3-7)和(-5)×3-5×7的结果相等吗?

(注意:(-5)×(3-7)中的3-7应看作3与(-7)的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。)。

讲授新课:

[活动2]用文字语言和字母把乘法交换律、结合律、分配律表达出来。

应得出:

1、一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。

2、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

3、一般地,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加。

[活动3][师生]教师引导学生讨论、交流,从中体会学习的快乐。

3、用简便方法计算:

[活动4]。

练习(教科书第42页)。

这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。

课后作业:课本习题1.4的第7题(3)、(6)。

用简便方法计算:

(1)6.868×(-5)+6.868×(一12)+6.868×(+17)。

(2)[(4×8)×25一8]×125。

七年级数学有理数的乘法教案篇五

二、难点:正确进行有理数的乘除运算。

预习导学。

一、创设情景,谈话导入。

我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律。

二、精讲点拨质疑问难。

根据预习内容,同学们回答以下问题:

(3)0与任何自然数相乘,得____。

(1)乘法交换律:ab=_________。

(2)乘法结合律:(ab)c=_______。

(3)乘法分配律:(a+b)c=________。

3、有理数的除法法则:

除以一个不等于0的数,等于乘这个数的__________。

比较有理数的乘法,除法法则,发现_________可能转化为__________。

七年级数学有理数的乘法教案篇六

1.1正数和负数(2)。

教学目标:

教学重点:

深化对正负数概念的理解。

教学难点:

正确理解和表示向指定方向变化的量。

教学准备:彩色粉笔。

教学过程:

一、复习引入:

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分界,是基准.

二、讲解新课。

度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。

思考:教科书第4页(学生先思考,教师再讲解)。

三、课堂练习课本p4练习1,2,3,4。

四、课时小结。

引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.

五、课外作业教科书p5:2、4。

板书设计:

七年级数学有理数的乘法教案篇七

2.内容解析。

有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的.

与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”.本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性.与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析.由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心.

基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则.

二、目标及其解析。

1.目标。

(1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法.

(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性.

2.目标解析。

达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果.

达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程.

三、教学问题诊断分析。

有理数的乘法与小学学习的乘法的区别在于负数参与了运算.本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性.上述过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难.为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求.

本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律.

四、教学过程设计。

教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数.

设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想.

问题2下面从我们熟悉的乘法运算开始.观察下面的乘法算式,你能发现什么规律吗?

3×3=9,

3×2=6,

3×1=3,

3×0=0.

追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?

如果学生仍然有困难,教师给予提示:

(1)四个算式有什么共同点?——左边都有一个乘数3.

(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3.

设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备.通过追问、提示,使学生知道“如何观察”“如何发现规律”.

教师:要使这个规律在引入负数后仍然成立,那么,3×(-1)=-3,这是因为后一乘数从0递减1就是-1,因此积应该从0递减3而得-3.

追问2:根据这个规律,下面的两个积应该是什么?

3×(-2)=,

3×(-3)=.

练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.

设计意图:让学生自主构造算式,加深对运算规律的理解.

先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的.绝对值等于各乘数绝对值的积.

设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础.

问题3观察下列算式,类比上述过程,你又能发现什么规律?

3×3=9,

2×3=6,

1×3=3,

0×3=0.

鼓励学生模仿正数乘负数的过程,自己独立得出规律.

设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力.

追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?

(-1)×3=,

(-2)×3=,

(-3)×3=.

练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.

先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积.

追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?

设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”.既使学生感受法则的合理性,又培养他们的归纳思想和概括能力.

问题4利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?

(-3)×3=,

(-3)×2=,

(-3)×1=,

(-3)×0=.

追问1:按照上述规律填空,并说说其中有什么规律?

(-3)×(-1)=,

(-3)×(-2)=,

(-3)×(-3)=.

设计意图:由学生自主探究得出负数乘负数的结论.因为有前面积累的丰富经验,学生能独立完成.

问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?

学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书.

学生独立思考、回答.如果有困难,可先让学生看课本第29页有理数乘法法则后面的一段文字.

设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤.

例1计算:

(1)。

;(2)。

;(3)。

学生独立完成后,全班交流.

教师说明:在(3)中,我们得到了。

=1.与以前学习过的倒数概念一样,我们说。

与-2互为倒数.一般地,在有理数中仍然有:乘积是1的两个数互为倒数.

追问:在(2)中,8和-8互为相反数.由此,你能说说如何得到一个数的相反数吗?

设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘-1之间的关系(反过来有-8=8×(―1)).

设计意图:利用有理数乘法解决实际问题,体现数学的应用价值.

小结、布置作业。

请同学们带着下列问题回顾本节课的内容:

(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?

(3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则.

(4)你能举例说明符号法则“负负得正”的合理性吗?

设计意图:引导学生从知识内容和学习过程两个方面进行小结.

作业:教科书第30页,练习1,2,3;第37页,习题1.4第1题.

五、目标检测设计。

1.判断下列运算结果的符号:

(1)5×(-3);。

(2)(-3)×3;。

(3)(-2)×(-7);。

(4)(+0.5)×(+0.7).

2计算:

(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。

(4)。

;(5)0×(-6);(6)8×。

设计意图:检测学生对有理数乘法法则的理解情况.

七年级数学有理数的乘法教案篇八

3.进一步感悟“转化”的思想。

把有理数的加减法混合运算统一为加法运算。

省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变。

根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算。

1、完成下列计算:

(1)3+7-12;(2)(-8)-(-10)+(-6)-(+4)。

归纳:根据有理数的减法法则,有理数的`加减混合运算可以统一为运算;

省略负数前面的加号和()后的形式是______________________;

展示交流。

1、把下列运算统一成加法运算:

2、将下列有理数加法运算中,加号省略:

(1)12+(-8)=________________;

3、将下列运算先统一成加法,再省略加号:

=___[]______________________。

4、仿照本p37例6,完成下列计算:

盘点收获。

个案补充。

1.计算:

本p39习题2。5第6题(1)、(3)、(5),第7题。

七年级数学有理数的乘法教案篇九

学习过程:

一、自主学习不动笔墨不读书!请拿出你的笔和你的激情,探究新知:

1.小学学过的加法运算律有哪些?举例说明运用运算律有何好处?

2.加法的交换律:

两个数相加,交换_______的位置,和不变.用式子表示:a+b=_______.

3.加法的结合律:

七年级数学有理数的乘法教案篇十

学习目标:。

1、理解加减法统一成加法运算的意义.

2、会将有理数的加减混合运算转化为有理数的加法运算.

3、培养学习数学的兴趣,增强学习数学的信心.

教学方法:讲练相结合。

教学过程。

1、一架飞机作特技表演,起飞后的高度变化如下表:

高度的变化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。

记作+4.5千米—3.2千米+1.1千米—1.4千米。

请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了千米.

2、你是怎么算出来的,方法是。

1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!

2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导.

如:(-20)+(+3)-(-5)-(+7)有加法也有减法。

=(-20)+(+3)+(+5)+(-7)先把减法转化为加法。

=-20+3+5-7再把加号记在脑子里,省略不写。

可以读作:“负20、正3、正5、负7的”或者“负20加3加5减7”.

4、师生完整写出解题过程。

1、解决引例中的问题,再比较前面的方法,你的感觉是。

2、例题:计算-4.4-(-4)-(+2)+(-2)+12.4。

3、练习:计算1)(—7)—(+5)+(—4)—(—10)。

1、小结:说说这节课的收获。

2、p241、2。

3、计算。

1)27—18+(—7)—322)。

五、作业。

1、p2552、p26第8题、14题。

七年级数学有理数的乘法教案篇十一

理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。

二、过程与方法。

经历对有理数进行分类的探索过程,初步感受分类讨论的思想。

三、情感态度与价值观。

通过对有理数的学习,体会到数学与现实世界的紧密联系。

教学重难点及突破。

在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。

教学准备。

用电脑制作动画体现有理数的分类过程。

教学过程。

四、课堂引入。

2.举例说明现实中具有相反意义的量。

3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意义?

4.举两个例子说明+5与-5的区别。

七年级数学有理数的乘法教案篇十二

学习目标:

1.会用正.负数表示具有相反意义的量.

2.通过正.负数学习,培养学生应用数学知识的意识.

3.通过探究,渗透对立统一的辨证思想。

学习重点:

用正.负数表示具有相反意义的量。

学习难点:

实际问题中的数量关系。

教学方法:

讲练相结合。

教学过程。

一.学前准备。

通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

问题1:“零”为什么即不是正数也不是负数呢?

引导学生思考讨论,借助举例说明.

参考例子:温度表示中的零上,零下和零度.

二.探究理解解决问题。

问题2:(教科书第4页例题)。

先引导学生分析,再让学生独立完成。

(2)20xx年下列国家的商品进出口总额比上一年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%.

写出这些国家20xx年商品进出口总额的增长率.

解:(1)这个月小明体重增长2kg,小华体重增长―1kg,小强体重增长0kg.

(2)六个国家20xx年商品进出口总额的增长率:

美国―6.4%,德国1.3%,

法国―2.4%,英国―3.5%,

意大利0.2%,中国7.5%.

三.巩固练习。

从0表示一个也没有,是正数和负数的分界的角度引导学生理解.

在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.

在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.

通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

四.阅读思考1页。

(教科书第8页)用正负数表示加工允许误差.

问题:1.直径为30.032mm和直径为29.97的零件是否合格?

2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.

五.小结。

1.本节课你有那些收获?

2.还有没解决的问题吗?

六.应用与拓展。

1.必做题:

教科书5页习题4.5.:6.7.8题。

2.选做题。

1).甲冷库的温度是―12°c,乙冷库的温度比甲冷酷低5°c,则乙冷库的温度是.

七年级数学有理数的乘法教案篇十三

本节教学的重点是掌握解一元一次不等式的步骤.难点是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向.掌握一元一次不等式的解法是进一步学习一元一次方程组的解法以及一元二次不等式的解法的重要基础.

1、一元一次不等式和一元一次方程概念的异同点

相同点:二者都是只含有一个未知数,未知数的次数都是1,左、右两边都是整式.

不同点:一元一次不等式表示不等关系,一元一次方程表示相等关系.

(3)同方程类似,我们把或叫做一元一次不等式的标准形式.

2、一元一次不等式和一元一次方程解法的异同点

相同点:步骤相同,二者都是经过变形,把左边变成,右边变为一个常数.

注意:(1)解方程的移项法则对解不等式同样适用.

三、教法建议

七年级数学有理数的乘法教案篇十四

2?培养学生准确地运算能力,并适当地渗透特殊与一般的辨证关系的思想。

重点和难点:正确地求出代数式的值。

一、从学生原有的认识结构提出问题。

1?用代数式表示:(投影)。

(1)a与b的和的平方;(2)a,b两数的平方和;。

(3)a与b的和的50%?

2?用语言叙述代数式2n+10的意义?

3?对于第2题中的代数式2n+10,可否编成一道实际问题呢?(在学生回答的基础上,教师打投影)。

若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?

二、师生共同研究代数式的值的意义。

2?结合上述例题,提出如下几个问题:

(1)求代数式2x+10的值,必须给出什么条件?

(2)代数式的值是由什么值的确定而确定的?

(3)求代数式的值可以分为几步呢?在“代入”这一步,应注意什么呢?

下面教师结合例题来引导学生归纳,概括出上述问题的答案?(教师板书例题时,应注意格式规范化)。

例1当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值?

解:当x=7,y=4,z=0时,

x(2x-y+3z)=7×(2×7-4+3×0)。

=7×(14-4)。

=70?

注意:如果代数式中省略乘号,代入后需添上乘号。

七年级数学有理数的乘法教案篇十五

用数学语言概括运算性质、

(三)解决办法

增强对三种运算性质的理解,并运用对比的方法强化训练以达到准确地区分、

一课时、

投影仪或电脑、自制胶片、

3、通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握、

4、多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质、

(一)明确目标

本节课重点学习积的乘方的运算性质及其较灵活地运用、

(二)整体感知

(三)教学过程

1、创设情境,复习导入

前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:

填空:

七年级数学有理数的乘法教案篇十六

3+4表示3和+4的代数和。

等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

4、先把正数与负数分别相加,可以使运算简便。

5、在交换加数的位置时,要连同前面的符号一起交换。如。

12-5+7应变成12+7-5,而不能变成12-7+5。

教学设计示例一。

一、素质目标。

(一)知识教学点。

1.了解:代数和的概念.。

2.理解:有理数加减法可以互相转化.。

(二)能力训练点。

培养学生的口头表达能力及计算的准确能力.。

(三)德育渗透点。

(四)美育渗透点。

七年级数学有理数的乘法教案篇十七

本节是在学习有理数加.减.乘.除.乘方的基础上。引入了有理数的混合运算,学生通过讨论、理解有理数混合运算顺序,掌握有理数混合运算.它是有理数运算的推广和延续。

本节课的重点是能熟练的按照有理数的运算顺序进行混合运算。难点是在正确运算的基础上,适当的运用运算律简化运算。首先,我先复习了运算律,既是对上节的复习,又对这节学习作铺垫。又通过详细分析了例题,小组讨论。学生自主学习,使他们更明确了运算顺序,进行有理数运算,培养了学生自主探究的习惯。第三,在例题的讲解中穿插了让学生自己动手锻炼的过程.及时的反馈学习情况.最后,通过“算24点”游戏,创设良好的氛围,让学生动脑动手动口,不仅可以提高学生学习兴趣,训练学生的'思维,还可以培养学生的数学运算能力和数学表达能力.

课后的专家的对教学过程和课堂的学生的学习效果进行了肯定,同时也提出了建议,希望根据学生的实际情况,将例题的难度降低,让学生能更好的适应.

本次活动,无论是课上,还是课后的研讨,老师们都表现出高度的热情,整个研讨过程都呈现出浓厚的氛围。通过本次活动,锻炼和提高了我们的教学能力,相信通过坚持不懈地实践,我们教师的专业成长步伐会更快!

七年级数学有理数的乘法教案篇十八

1.通过与温度计的类比,了解数轴的概念,会画数轴。

2.知道如何在数轴上表示有理数,能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应。

过程方法。

1.从直观认识到理性认识,从而建立数轴概念。

2.通过数轴概念的学习,初步体会对应的思想、数形结合的思想方法。

3.会利用数轴解决有关问题。

情感态度。

通过对数轴的学习,体会到数形结合的思想方法,进而初步认识事物之间的联系性。

【教学重点】。

1.数轴的概念。

2.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。

【教学难点】。

从直观认识到理性认识,从而建立数轴的概念。

【情景引入】。

1.小明感冒了,医生用体温计测量了他的体温,并说:“37.8度。”

提疑:医生为什么通过体温计就可以读出任意一个人的体温?

(体温计上的刻度)。

2.我们再一起去看看12月时祖国各地的自然风光和温度情况(电脑分别显示黑龙江、焦作、海南三个城市美丽的自然风光,温度分别为-10°c,0°c,20°c)。

提疑:那么要测量这种气温所需要的温度计的刻度应该如何安排?需要用到哪些数?

(正数、零、负数)。

3.请尝试画出你想像中的温度计,并和其他同学交流,注意交流时要发表自己的见解。然后提问:请找出一支温度计从外观上具有哪些不可缺少的特征?(组织学生讨论交流)学生可能会从不同的角度回答,教师给予必要的引导,总结出与数轴相对应的特点,如形状是直的、0刻度、单位刻度。(电脑动态演示,将温度计水平放置,抽象得出数轴图形表示有理数-10,0,20的过程)从而引出课题------数轴。

七年级数学有理数的乘法教案篇十九

(1)正确理解乘方、幂、指数、底数等概念.

(2)会进行有理数乘方的运算.

2.过程与方法。

通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化思想.

3.情感态度与价值观。

培养探索精神,体验小组交流、合作学习的重要性.

重、难点与关键。

1.重点:正确理解乘方的意义,掌握乘方运算法则.

2.难点:正确理解乘方、底数、指数的概念,并合理运算.

3.关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义.

教学过程。

一、复习提问。

1.几个不等于零的有理数相乘,积的符号是怎样确定的?

答:几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.值观:体验小组交流,合作学习的重要性。

七年级数学有理数的乘法教案篇二十

从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

情感态度与价值观

在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

创设情境,切入标题

请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

请各小组分别派一名代表,看哪组能转出红色。

结果,8小组有6组转出了红色。

为什么会出现这样的结果呢?

因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

大家同意这种看法吗?下面我们亲自动手感受一下。

学生按照题目要求进行实验。

请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。

根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

在小组内实验结果不明显,实验次数越多越能说明问题。

通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

同学们说出很多种方法,不一一列举。

“平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

如果将这个实验继续做下去,卡片上所有数的平均数会增大。

同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

以下过程同教学设计,略去。

指导学生完成教材第206页习题。

学生可从各个方面加以小结。 布置作业

仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

【本文地址:http://www.xuefen.com.cn/zuowen/17778276.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档