重叠问题说课稿(热门13篇)

格式:DOC 上传日期:2023-12-06 18:04:06
重叠问题说课稿(热门13篇)
时间:2023-12-06 18:04:06     小编:琴心月

每个人都值得拥有一份总结,它是我们成长道路上的里程碑。怎样处理人际关系,让自己在工作和生活中更加融洽?在这里汇总了一些写作中常见的总结范文,希望对大家有所帮助。

重叠问题说课稿篇一

一、教学目标:

1.使学生感知集合图的产生,初步体会集合的思想方法,

2.能利用集合的思想方法来解决简单的实际问题,并能用数学语言进行描述。

3.让学生在探究、应用知识中体验数学的价值,感受解决问题策略的多样性,培养学生善于观察、勤于思考的学习习惯。

二、教学重点:

对集合图的理解,并学会用集合的思想方法来解决实际问题。

三、教学难点:

对集合图各部分的理解。

四、教学过程:

(一)、课前谈话:

师:我们三(2)班的同学特别聪明,老师想给大家来脑筋急转弯,你们敢不敢挑战?

(二)、设疑,探索新知。

1、设疑:

三(1)班同学参加课外兴趣小组,参加语文组的有8人,参加数学组的有9人,三(1)班参加语文组和数学组的学生一共有多少人?(17人,并板书算式)。

2、新授例1:

真的是这样吗?老师课前对三(1)班学生参加语文、数学课外兴趣小组情况进行调查,请看统计表。

出示例1、三(1)班参加语文、数学课外兴趣小组学生名单。

(1)看清楚了吗?哪三(1)班参加语文、数学课外兴趣小组的学生到底有几人?(14人)刚才不是17人,现在只有14人了?这是为什么?(因为统计图看出有三个人是重复的,要减去)。

(2)同学们,三(1)班参加语文、数学课外兴趣小组的情况用统计表来表示不是很明显,用图表示就更清楚了。

教师边说大圈图边说意义,我们可以用红圈表示参加语文小组的学生,蓝圈表示参加数学兴趣小组的学生。把3位重复的学生点成红色,再抛出问题,那杨明李芳刘红既参加语文小组又参加数学小组我们该怎么表示呢?(重叠起来)。

(3)弄清图中各部分表示什么?

现在你能说说这幅图中每部分表示什么吗?学生边说教师边指,并区分清参加语文小组学生和只参加语文小组学生,和把参加语文小组分成两部分。谁再来说一说图中表示的意思。同桌也指着练习纸上的图来说一说。

大家都能说了吧,指名说一说边说边写出相应的数量。

学生把算式列在练习纸,然后指名说算式,教师板书,其中第一个-3直接写成红色。

再指名说说各算式表示的意思。其中第一个算式请2~3位学生说一说,并说说下面两组算式共同点是参加一个小组的人数+只参加另一个小组的人数。

(5)同学们,这节课学的内容就是数学中的重叠问题。(指板书)这些人既参加语文小组又参加数学小组,就是重叠问题的重叠部分。

用这样的图来表示重叠问题,最早是由一位英国的.逻辑学家韦恩想出来的,后人就把这样的图称为韦恩图。

日常生活中有很多像今天一样的问题,我们可以通过画图来理解。

(三)、练习。

1、其实像这样的重叠问题在生活中还有很多,请看:

你从题中得到那些信息?你能解决这个问题吗?反馈不同的解决方法。

说说你是怎么想的?表扬圈出来的学生,这样先把重叠部分圈出来,看起来更加明显,算式也不会列错了。

其实这样的题用韦恩图来表示会更清楚。(课件演示)。

2、日常生活中有很多像今天一样的问题,我们可以也通过画图来理解。(练习纸)。

反馈后师问:这几道题的解决方法有什么相同的地方?

引导学生发现:总数=两部分之和-重叠部分。

(四)课堂总结。

通过这节课学习,你有什么收获?如果想说学生较多,就同桌说一说。

(五)拓展题:

同学们表现那么出色,我们再来挑战一题怎么样?

出示课件,说说有哪些信息?同桌讨论讨论,拿出自己的文具摆一摆。

请学生说说自己的猜测,并课件演示。

如果刚才的例题为:

重叠问题说课稿篇二

林晓珍老师讲三年级下册的《重叠问题》,我来粗浅的评论下,这种优质课评比能够让老师互相吸取经验,互相查找不足,从多方面提高教师的素质,从某种程度上来说对学生是一个很大的挑战,对教师更是一种挑战。

1、课前直接引入主题,很干脆利落,从生活当中找到我们接触到的重叠问题,

切合学生的生活实际,让学生从生活中学习数学,可以让理论与实践相结合,便于学生理解和掌握。

2、整节课,林老师努力培养学生的数学情感,让学生学习生活中的数学,做到。

让数学生活化,使学生从生活开始、在生活中学、到生活中用。例如从课堂的开始,老师出示学生熟悉的生活情境:出示三(1)班学生参加趣味篮球赛的情况统计表,求出:都有哪些同学参加了哪些活动?哪几个同学同时参加了哪项活动?这样贴近学生生活的情境,能调动学生学习的积极性和主动性,培养学生学习数学的兴趣,使学生兴趣盎然。

3、首尾呼应,拓展延伸练习之后,学生对重叠的意义有了进一步的理解。林老。

师设计的练习,起到首尾呼应的作用,并且把包含与交叉重叠与不重叠等几种不同情况。通过题组,揭示了它们的区别与联系。设计巧妙,考虑周到。我就简单提一下这节课我的遗憾吧。

2、我觉得与学生的沟通与交流还不到位,上课前最好有一个互动这样能够增加老师与学生之间的亲近感,减少距离感,以便增加学生学习的积极性与活力,感觉上课有一点没有放开去讲。

重叠问题说课稿篇三

尊敬的各位老师:

你们好。我说课的内容是:人教版义务教育课程标准实验教科书三年级《数学》下册第108页的数学广角例1,也就是重叠问题。我先说说对教材的理解和认识。

1、数学广角是新课程增设的内容,也是新教材的一大特色,其实它是属于小学奥数的一个教学内容,但是现在要拿来面对班学生进行教学,无疑在内容上要进行简化,在教学上要进行细化,不然的话就不能达到教学目标。这节课的重叠问题是日常生活中应用比较广泛的数学知识。

集合的知识体系集合是比较系统、抽象的数学思想方法,是数学中最基本的思想。从学生一开始学习数学,其实就已经在运用集合思想方法了,所以对集合有一定的生活经验和知识基础。但还没有抽象成集合的思想。而以后学习的平面图形之间的关系都要用到集合的思想,如,把一堆图形分类,需要一定的标准,这种分类思想就是集合理论的基础,所以集合的重要性由此可见一斑。但这些都只是单独的一个集合圈。

本节课教材例1借助学生熟悉的题材,渗透了集合的有关思想,并利用直观图的方式求出两个小组的总人数。教学要使学生理解用直观图(集合圈)表示“重叠现象”的方法,了解到直观图各部分的意义,特别是重叠部分(交集)的意义,掌握根据直观图列式计算总数(两个集合的并集)的方法。对于三年级学生来说,学习这部分内容,思维力度较强,有一定的挑战性。

2、说教学目标。

结合本课的教材内容和三年级学生认知水平,我制定了如下目标:

知识与技能:使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言表述。

过程与方法:使学生感知集合图的产生过程,初步培养学生的建模意识和能力,渗透多种方法解决问题的意识。

情感、态度和价值观:培养学生初步养成善于观察、善于思考的学习习惯。

3、说重点与难点。

这节课的重点、难点都是:利用集合的思想方法解决简单的重叠问题,并能用数学语言进行描述。

一)教法。

新课标指出:教无定法,贵在得法。数学教学活动必须建立在学生的认知发展水平和已有的知识经验的基础上。对三年级学生来说,思维正处于由形象思维向抽象思维过渡的时期,能进行一定的抽象思维,但仍以形象思维为主,模仿性强,是非观念淡薄;想象能力也由模仿性和再现性向创造性的想象过渡;意志还很薄弱,自觉性、主动性、持久性都较差。针对这种情况,我注重学生对重叠问题的理解,联系实际生活,创设问题情境,我用:

提问诱导法。

直接观察法。

操作发现法。

来组织学生开展在探究中思考,在思考中获得,在获得中体验成功的快乐。

新课标要求学生是学习的主体,老师只是引导者,我们要让学生有目的地主动建构知识。因此我更注重对学生学法的指导。在本节课中,我指导学生的学习方法为:

动手操作法。

观察发现法。

自主探究法。

合作交流法。

让他们在猜一猜,说一说,贴一贴,画一画,算一算等一系列活动来理解重叠的含义,并能用学到的知识解决生活中的问题。

一)【第一个环节】脑筋急转弯,激趣导入。

我先出示一道脑筋急转弯题:两位妈妈和两位女儿一同去看电影,可是她们只买了3张票,便顺利地进了电影院,这是为什么?这里谁的身份最特殊?为什么?估计思维比较灵活的几个学生能够回答出来。而其他学生在这几位学生的解释下也能比较容易地理解身份特殊的妈妈既是妈妈,又是女儿的重叠身份。这样,通过脑筋急转弯为后面学生理解重叠打下基础,也能够吸引学生的注意力,让学生主动地参与到学习活动中来,还能让学生体会到生活中处处都有数学。

二)【第二个环节】探究新知。

(一)认知冲突,直观感悟。

1、观察表格、收集数据。

我用课件出示一张参加语文、数学课外小组情况表,让学生观察,再问学生从这张表格中,我们可以了解到哪些数学信息?我估计学生很快就能说出来报语文的有8人,报数学的有9人,我根据学生的回答板书:8人,9人。对学生进行肯定的评价以后,我指着板书又问那你们说报语文小组的和报数学小组的的一共有多少人呢?我估计一部分学生会说17人,8+9=17、而另外一部分学生会说不是17人,这时,我请这些学生说说自己的理由,为什么说不是17人。学生会说有些人是两个名字的,不能算两次。我首先对这名学生给予赞赏:你观察得真仔细!再引导学生进入下一点。

我引导其他学生观察有几个学生是两个名字的以后,问学生两个名字是什么意思?学生会说说明他既报了语文组,又报了数学组。对回答的学生,我会及时表扬:你这句话说得真好。

数学最重要的是思考,没有思考的课堂是无效的。在这个环节中,我设置不断深入的问题,逐步引导学生观察、思考。让学生在解答出现分歧时,激发探究欲望,激发学生的学习兴趣,为主动探索创造条件。

(二)引出集合图,加深理解。

集合是系统抽象的数学思想方法,对正处于从形象思维向抽象思维过度的三年级学生来说,完全放手让学生自己去探究是不现实的。这需要老师帮学生搭好思考的舞台。因此,我本着从实践中来到实践中去的原则,先画好了两个不同颜色的集合圈,分别表示报语文小组和数学小组,让学生通过以下几个环节从生活实际中亲身感知集合的思想,并使他们亲身体验集合图的产生过程。

1、贴一贴,请一个小组的学生上台把我事先准备好的写好姓名的小纸贴到对应的圈里面。

2、议一议,画一画,小组之间商量一下遇到两种都报的同学,应该把名字放到哪里?再用自己喜欢的方法画一画。

在学生画的时候,我在课堂巡视,根据学生的情况进行指导。

3、小组汇报两样都报的同学应该在哪儿,得出结论。

通过前面的活动,我想学生这时会移动两个圈,把它们交叉在一起,把两样都报的同学放在交叉处。这时,我让全体学生一起表扬上台演示的小组,让学生体验生生互评的快乐。

培养学生思维的严密性严谨性是数学学科的基本特征之一。数学的教学,最重要的不是数学知识的教学,而是数学思维,数学思想方法的教学。所以,从小就给学生渗透一些数学思想是非常必要而且非常重要的。而其中重要的一环就是学生数学思维的严谨性的培养。因此,通过五个问题,引导学生整理思路,明晰集合图各部分的含义。同时,也让学生明白虽然只有一字之差,但是意思完全不一样。从而提高学生思维的严密性。

在学生回答问题时,我用不同颜色的粉笔圈出只报语文小组的,只报数学小组的,既报语文小组,又报数学小组的。这样,既美观又直观,可以更好地帮助学生充分理解集合图各部分的含义。

(三)思维碰撞,掌握算法。

1、根据黑板上的.板书,让学生算出总人数。

有了前面的基础,我估计学生可以很快列出算式8+9-3。这时,我请学生反馈自己的算式,并让他说一说是怎么想的?重点说一说为什么要减去3。说话其实是整理自己思路的一个过程,我让学生说一说自己是怎么想的,让学生进一步理解、明晰为什么要这么算。

2、归纳揭题。

我告诉学生,今天我们研究的就是数学广角中的一个重叠问题,同时板书数学广角重叠问题。我们可以通过画一画这样的重叠圈,帮助理解。它又有另一个名字,韦恩图,是100多年前英国名叫韦恩的逻辑家想到,后来人们就用他的名字来命名了。希望同学们努力学习,让你的名字流传千古。

新课标要求学生要学习生活中的数学,要学习有用的数学,因此,我设计了四个生活中的情境,提出数学问题,让学生在巩固练习的过程中体会数学来源于生活。

(3)书本110页第2题。

这四个练习,从易到难,逐步递进,我相信,学生通过这几个题的联系,可以很好地将本节课的知识内化为自己的数学思维能力。

我整节课的板书就是这样(用手指黑板)。这样设计的目的是把本节课比较抽象的内容有简洁的文字和图解表述出来,让学生能够更直观的了解本节课的重点和难点。

我的说课到此结束,谢谢大家。

重叠问题说课稿篇四

教材上安排首先通过统计表的方式列出参加语文小组和数学小组的学生名单,通过统计表可以看出:参加语文小组的有8人,参加数学小组的有9人。但实际上参加这两个课外小组的总人数却不是17人,引起学生的认知冲突。然后教材利用直观图把这两个课外小组的关系直观地表示出来。从图上可以很清楚地看出,有3名学生同时属于这两个小组,所以计算总人数时只能计算一次。第二环节探讨计算方法,根据参加语文、数学活动小组的人数,及两个活动小组都参加的人数这三个数据计算总人数。

在设计教案前,我一直在想一个问题:如何使让学生水到渠成地去解决重叠问题,使学生不是在模式上会做,而是在理解上会做。如果学生头脑中没有经历建模的过程,没有很好的直观依托,强塞给学生的东西也就形同如空中楼阁了。

课堂初出示了喜欢玩碰碰车和喜欢玩旋转木马两组同学的信息,要求学生说说喜欢玩碰碰车的和喜欢玩旋转木马的一共有多少人呢,学生发现有几个名字是重复的。于是,我设计了一个贴一贴的游戏,通过帮同学找找位置,引起思维冲突两种都喜欢的小朋友应该放在哪里呢?,再通过让学生用喜欢的方法画一画(可以用符号,数字,文字)小朋友喜欢的游戏情况,让学生经历集合图的产生过程并充分感知体验集合图的作用,把具体问题上升到抽象问题,再解决问题,整个过程就环环紧扣,教学效果也扎实有效地达到。

在第二个环节探讨计算方法时,学生在算法时更多的是三部分相加求出总人数,而不是两部分相加再减去重叠部分。再反思地去研读教材,发现对于教材的理解还是不够到位的,抛弃了题目中的数学信息,更多地强调集合圈的作用和理解,才引起了这个问题。在今后把握教材时,应该理解好主次的关系,更准确、到位地把握。

任何一堂课在反思的时候,都有成功点也有不足和遗憾。不足和遗憾并不可怕,更多地反思如何更好地运用教学策略完成教学目标才是我们需要去做的。

重叠问题说课稿篇五

重叠问题是新教材三下中的教学内容,是原先奥数三年级的教学内容。对于三年级学生来说,学习这部分内容,思维力度较强,内容偏难,有一定的挑战性。黄素女老师处理教材独到,教学节奏控制合理,对学生的回答应对自如。学生从猜测到操作建模,到练习拓展,一直处于轻松主动,思维活跃的良好学习状态中,教学效果扎实有效。设计上主要有以下几个亮点:

一、激趣引入,巧伏重叠思想。

老师通过闹经急转弯,让学生想到生活中的重叠问题。通过这样一个小小的活动引入课题,有利于激发学生的学习兴趣。引入环节花时不多,却达到了既激发兴趣,又孕伏新知的效果。

二、合作交流,建立模型。

集合思想的重要表现形式是韦恩图。教师在教学中并未直接教学,而是采用主动探究的形式,让学生带着问题小组合作摆一摆学具。在操作活动中,学生人人动手,个个献计献策,思维的火花在不断地碰撞。学生通过实践操作,自主探究发现,同时在老师的引导下摆出了韦恩图,但教师并未就此罢休,而是利用多媒体课件继续引导学生观察、说说:各区域各代表什么?通过教师的精心设问,学生的合作交流,他们不仅建立起集合思想的数学模型,并清楚地理解了各部分表示的意思,使教学目标真正落到了实处。

三、首尾呼应,拓展延伸。

练习之后,学生对重叠的意义有了进一步的理解。王老师设计的练习,起到首尾呼应的作用,并且把包含与交叉重叠与不重叠等几种不同情况。通过题组,揭示了它们的区别与联系。设计巧妙,考虑周到。

重叠问题说课稿篇六

一、课前导入。

同学们,通过昨天和你们的交流,老师发现了一个小秘密,那就是咱们班的同学既聪明又勇敢,这节课老师就要来验证一下了,准备好了吗?不错!同学们都知道,老师不怕谁呀?(大灰狼)就怕谁呀?(小绵羊)。希望今天能看到你们积极活泼可爱一面,将有许许多多的小礼物等着你们哦,好上课,同学们好,请坐。

二、拓展方舟。

前几天呀,老师遇到了一个小问题,你们愿意帮帮我吗?非常感谢,请听题:两位妈妈和两个女儿一同去看电影,可是他们只买了三张票,为什么呢?好,你来说,生1.教师总结可能妈妈带着未出生的小宝宝一起看电影了,生2教师总结也可能是妈妈带着未成年的小朋友来看电影了。生3教师总结:听明白意思了吗?你重复一遍。教师总结:也可以说妈妈又几个身份,?对,2个、哪两个?妈妈女儿。也就是说她的身份重复了,她既是妈妈又是女儿。

三、游戏解决重点难点。

1.刚才同学们帮我解决了难题,老师非常的高兴,想和你们一起做个抢椅子的游戏,喜欢吗?先别着急,请看游戏小规则:1参加抢椅子的'同学围绕椅子转,抢到椅子为胜,直到分出冠军2游戏过程中注意安全3其他同学仔细观察。准备好了吗?好,你来,同学们2个人抢2个椅子能完成游戏吗?恩,人少,那我再多找几个,一不小心叫多了,怎么办?快帮老师想想办法,恩,我们呀可以让他们几个玩猜拳游戏,好,你们4个进行猜拳游戏,胜出者接着参加抢椅子游戏。很可惜,你们三个一起随同老师当小评委吧。

(为他们加油)争夺冠军的时刻到了,最后恭喜这位小朋友,你拿到了这次的冠军,送给你一个小礼物。

2.刚才呀铜须门玩的非常开心,这时老师要来刁难一下你们了,请闭上眼睛想一想,参加抢椅子游戏的有几人?参加猜拳游戏的有几人,一共有多少人参加了游戏?到底是7个还是6个呢?让我们一起来验证下:老师这里有两个呼啦圈,请参加抢椅子游戏的同学站在这边,参加猜拳游戏的同学站在那边,引起矛盾冲突,其中的一个小朋友该怎样站?分成两部分行吗?嗯,两个都有,这主意不错。

3让我们一起来看一下:这个圈子里是,这个圈子里是()重叠的这一部分是(),这一个小半圈里是()这一个小半圈里是()好,为你们鼓掌,你们根据现在的这种情况画个几何图形吗?下面以小组为单位画个几何图形。

4让学生在讲台上展示画的情况。

5教师根据画的情况出示图进行总结。

6一起回顾一下,你们能为这些图形起个名字吗?其实呀,早在很久很久之前,这个人就发明了这些图形就是韦恩图,是表示封闭图形及其关系的图形,便于我们解决问题,我们称之为重叠问题。

7总共有几个人参加了游戏,小组讨论一下有几种计算方法,学生说教师板书。

四、课堂练习。

五、刚才呀同学们都沉醉在这种重叠美中。

是呀,在我们的生活中有许许多多这样的重叠美,数学与我们的生活有着密切的联系,希望同学们能用智慧的眼光去观察生活,去解决生活中的实际问题。

六、结束课堂,好这节课就到这儿,下课。

重叠问题说课稿篇七

《数学广角——重叠问题》是人教版三年级新教材数学广角新增加的内容。教材的编排顺序是,首先通过统计表的方式列出参加语文小组和数学小组的学生名单,通过统计表可以看出:参加语文小组的有8人,参加数学小组的有9人。但实际上参加这两个课外小组的总人数却不是17人,引起学生的认知冲突。然后教材利用直观图把这两个课外小组的关系直观地表示出来。从图上可以很清楚地看出,有3名学生同时属于这两个小组,所以计算总人数时只能计算一次。第二环节探讨计算方法,根据参加语文、数学活动小组的人数,及两个活动小组都参加的人数这三个数据计算总人数。

“重叠问题”以前是属于数学兴趣课的内容,所以学生对它的掌握程度允许有差异性,即学生能掌握到什么程度就到什么程度,而现在是放在数学教材里,那么如何准确地把握教材,更好地完全教学要求,对我们来说是个挑战。

在设计教案前,我一直在想一个问题:如何使让学生水到渠成地去解决重叠问题,使学生不是在模式上会做,而是在理解上会做。如果学生头脑中没有经历建模的过程,没有很好的直观依托,强塞给学生的东西也就形同如空中楼阁了。

小学生思维发展的特点是:从具体形象思维为主要形式向抽象逻辑思维为主要形式过渡,小学低年级学生的思维虽然有了抽象的成分,但仍然是以具体形象思维为主。于是,“借助直观图”成了我这堂课突出重点和突破难点的重要策略。那么如何“借助直观图”呢?课堂初出示了“喜欢玩碰碰车”和“喜欢玩旋转木马”两组同学的信息,要求学生说说喜欢玩碰碰车的和喜欢玩旋转木马的一共有多少人呢,学生发现有几个名字是重复的。于是,我设计了一个“贴一贴”的游戏,通过帮同学找找位置,引起思维冲突“两种都喜欢的小朋友应该放在哪里呢?”,再通过让学生用喜欢的方法画一画(可以用符号,数字,文字)小朋友喜欢的游戏情况,让学生经历集合图的产生过程并充分感知体验集合图的作用,把具体问题上升到抽象问题,再解决问题,整个过程就环环紧扣,教学效果也扎实有效地达到。

在第二个环节探讨计算方法时,学生在算法时更多的是三部分相加求出总人数,而不是两部分相加再减去重叠部分。再反思地去研读教材,发现对于教材的理解还是不够到位的,抛弃了题目中的数学信息,更多地强调集合圈的作用和理解,才引起了这个问题。在今后把握教材时,应该理解好主次的关系,更准确、到位地把握。

任何一堂课在反思的时候,都有成功点也有不足和遗憾。不足和遗憾并不可怕,更多地反思如何更好地运用教学策略完成教学目标才是我们需要去做的。

重叠问题说课稿篇八

一、创设情境,导入新课。

引导学生思考得出:他们是一家祖孙三代,在课件中出现具体人物头像。(儿子爸爸爷爷)。

爸爸有两个身份,爸爸他是爷爷的儿子,又是儿子的爸爸。

二、认识重叠,揭示课题。

三、深度体验,理解新知。

1、师:同学们喜欢玩游戏吗?

2、师问:刚才参加了抢凳子游戏的有几个人?参加了猜拳游戏的有几人?

一共有几个人参加了游戏?(疑问:3+4不是等于7吗?怎么3+4=6呢?再数怎么只有6个人)(体验“重复”)。

3、师:为了更清楚的`理解算式,让我们借助圆圈来看一下好吗?一个圆圈表示一个游戏活动,标上“抢凳子”、“猜拳”。(维基白板演示)。

4、让参加了游戏的学生把姓名分别拖放到相应位置。

学生利用维基白板操作,只参加了一个游戏活动的学生的只能拖放到对应的游戏圈内。(得到“只”{板书})当既参加了抢凳子又参加了猜拳的学生不知自己的姓名怎么拖放时,请其他同学帮忙,共同创造出韦恩图。

5、引出韦恩图。(出示介绍)你们知道吗,这个图是一个名叫韦恩的数学家创造出来的。你们刚才也像数学家一样,把这个图创造出来了,真了不起!

方法2:2+1+3=6(人)【说明每个数代表的意思】。

方法3:3-1+4=6(人)。

方法4:4-1+3=6(人)……。

8小结:同学们发现了数学问题,并想办法用这个韦恩图帮助我们解决了问题。这也就是我们今天所研究的重叠问题。以后再碰到这样的问题,我们可以通过画图来帮助理解。现在就让我们来试试吧!

四、联系生活,反馈练习。

1、学习例题1。

请同学们仔细观察这张统计表,你能获得一些什么数学信息?

汇报反馈,并要求学生说说思考过程。

2、两天一共进了多少种货?(图文结合)。

学生计算后,再引导学生有序的数一数。

3、身边的问题。

同学们真是厉害,有了韦恩图这个朋友的帮忙,真是方便多了。其实啊,像这类数学问题在我们生活中常常出现,瞧!

4、解题小达人。

(2)只参加数学竞赛的有几人?

学校乡村少年宫开办了丰富多彩的小组活动。三年级(1)班一个小组,参加声乐小组的有4人,参加舞蹈小组的有3人。猜猜看,这个小组参加声乐、舞蹈小组的总人数可能是多少?为什么?(利用韦恩图)。

师:今天这节课我们学习的是——重叠问题,(高中还有个名字叫集合)。

1、通过今天这节课的学习你有什么收获?

2、今天这节课,你觉得谁的表现较好,好在哪里?还有什么疑问?

七、机动练习,延伸拓展(有时间就组织小组合作完成)。

如果有3张表格,至少要几根钉子才能钉住?4张表格呢……?

重叠问题说课稿篇九

《重叠问题》的设计新颖,我从学生的认知经验出发,来恰当的确定教学目标。为了便于教学目标有效的落实,本节课从问题的引入到问题的拓展都紧紧围绕游戏来展开。问题的设计层层递进,一环扣一环,学生在解决问题的过程中既感受到用集合图来解决问题的价值,又能让学生掌握使用集合图解决重叠问题的方法。由于本节课弱化了让学生探究、经历“韦恩图”产生的过程的环节,就给学生留足了时间,来让学生交流、反思,体验“韦恩图”的价值和拓展对“韦恩图”的认知,尤其是最后的巩固、拓展题的呈现,结合了学生的实际,顺其自然,把学生思维的触角引向深入。本节课充分的落实了简单的设计,深刻的.引领的教学理念。具体说有一下特点:

本节课的设计意在充分发挥集合图的作用,但同时加强学生对文字信息的理解。通过让学生贴一贴,说一说,想一想等方式让学生在头脑中建立韦恩图的表象,从而真正达到图、文,算式的有效结合,既沟通了学生已有的知识经验间的联系,又让学生体会到、算式之间的联系,为建立数学模型搭建了很好的平台。

本节课我把让学生经历“韦恩图”产生的过程,调整为:唤醒学生已有的生活经验,沟通已有知识经验间联系,来让学生感知“韦恩图”价值、作用以及运用“韦恩图”来解决实际问题能力,这是基于该教师深入理解教材、了解学生基础上的。首先,学生在一到三年级都没有接触过让学生经历用画图的方法来解决问题的教学内容。如线段图、表格等,学生较多接触的都是一些实物图片,在学习新知时自然也不会想到用两个抽象的集合圈来表示两个数据之间的关系的,而更多的是用文字或创造一些文字加图的形式来表示,其次,学生在一二年级积累的经验往往都是计算和数数,更何况问题情景中是让学生“算”人数的,学生自然要用到以前的计算方法了,同时学生在这之前也初步接触过一些统计表,而统计表所用到的数据也都是各自独立的互不包含的,直接用加减法就能解决的。而今天要用加减法解决两个量中出现互相包含关系的题时,自然有一定的难度了。

总之,我溯本求源,找准了学生的认知起点和困惑点,寻找出符合学生学习的有效的教学途径。在导入环节寻找出新知生长的结点,既唤醒学生已有的知识经验,又让学生感知新知的生长点就在此而生。在探究环节,让已有的知识经验成为学习新知的助力器。课前需要知学、然后再知教。怎样去知学?又怎样去知教?是需要课前花足时间去思考的事情。知道了要学什么,怎样去学,方知该怎样去教!

重叠问题说课稿篇十

1.通过活动实例,初步渗透集合的思想方法,引导学生学会用韦恩图表示两个集合及它们的交集。

2.培养学生探索能力和会用集合思想解决实际问题的能力。

3.培养学生善于观察、善于思考,养成良好的学习习惯

理解集合图的各部分意义及解决简单问题的计算方法。

一、问题情境,导入新课

2、学生在汇报过程中发现问题(有人重复报名)

3、教师追问:重复是什么意思?哪几人重复了?到底有几人参加比赛(12人)

4、过渡:刚才我们在观察报名单,研究参加比赛总人数时,有同学说15人,有同学说14人,还有同学说12人,看来,问题的关键就在于这份报名单上没有将重复报名的3名同学清楚地表示出来。你们能不能想个更加直观的办法,让我们一目了然就能知道哪些是参加跑步比赛的同学,哪些是参加跳绳比赛的同学,哪些是两项比赛都参加的同学。(出现具体要求)

二、自主探索,对比设计方案

1、小组交流,教师巡视

2、各小组汇报设计方案

第一组:标注记号法

第二组:分类记录

第三组:利用两个交叉的圈表示

4、对比交流,选择最佳方案

(1)出示第二种和第三种方法,看看哪种方法更清楚,更直观,也更简便。

(2)学生发表自己的看法,达成共识(利用两个交叉的圈表示)

(3)过渡:看来,我们在交流中发现,利用这样一幅图表示报名情况,不仅简便,而且还能从中获取这么多的信息,下面我们就一起将方法重新呈现在黑板上。

三、了解韦恩图的各部分意义

1、教师在黑板上演示。

2、思考汇报:

3、进一步巩固理解图中各部分表示的意思。(课件分别出示)

4、教师讲解韦恩图的来历。

四、多种方法列式解决

1、教师引导学生利用韦恩图,想出多种解决方法。

2、学生独立完成,指几名同学将方法写在黑板上。

3、学生汇报各种思路方法。

(1)“4+3+5”教师评价:把不重复的三部分相加求出总人数。

(2)“7-3+8”

(3)“8-3+7”

引导学生发现:这两种方法在思路上有什么相同之处。

(4)“7+8-3”:教师提问:为什么要减3?请结合图示说明。

4、教师小结:同学们,你们真了不起。就这么一个问题,借助直观图示从不同的角度思考,想出了这么多方法来解决。而且通过同学之间的对话交流,弄明白了每一种方法的意思,看到你们收获的一个个学习成果,老师真为你们高兴。那么我们今天解决的这类有重复的问题在数学被称为重叠问题(板书:重叠问题)。

五、拓展应用

1、出示三年一班报名情况(跑步5人,跳绳7人)

2、提问:参加这两项比赛可能有几人?

3、请学生利用点子图分别演示几种情况。

4、猜一猜:最多几人?最少几人?

5、课件出示集合图的几种不同情况。

6、想一想:如何在含有交集的集合图上表示三年一班的全体同学?

7、想一想:三年一班没参加比赛的同学在图中哪一部分表示?

六、总结延伸

重叠问题说课稿篇十一

《重叠问题》是小学三年级下册数学广角第一课时的内容,这个内容是日常生活中应用比较广泛的数学知识,本节课涉及到一种最基本的数学思想方法:集合思想。集合是比较系统、抽象的数学思想方法,是数学中最基本的思想。从学生一开始学习数学,其实就已经在运用集合思想方法了,所以对集合有一定的生活经验和知识基础。本节课教材例1借助学生熟悉的题材,渗透了集合的有关思想,使学生理解用直观图(集合圈)表示“重叠现象”的方法,了解到直观图各部分的意义,特别是重叠部分(交集)的意义,从而掌握利用集合的思想方法来解决简单的实际问题的方法。课程实施后我有如下几点体会:

“知之者不如好知者,好知者不如乐知者”,从某种意义上来讲,教师教学中成败的关键很大程度上取决于能否激发学生对数学学习产生的浓厚兴趣。当学生解决参加两个课外小组一共有多少人时,由于直观思维,跳入了教师有意设置的“陷阱”,都回答出有17人,而教师适时指出不是17人,答案有了争议,学生的认知出现了冲突,学生都想正确的答案是多少。而老师此时创设了另一个问题情境,通过报名表让学生发现冲突的矛盾点,再让学生设计图案解决这个问题。从而使学生的思维得到了发展,提倡学生思维的开放性和创造性,鼓励学生根据自己的已有知识经验和独特体验,用自己的方法来发现创造。学生在一次次的肯定中,学习动机得到激励,进而产生更强的学习动机。

本节课上,我尝试让学生从生活实际中亲身感知集合的思想,并使他们亲身体验集合图的产生过程,(从收集学生的名单——反馈整理好的名单——圈一圈,站一站——圈语文和数学兴趣组的名单——课件一步步演示集合的形成),让学生在过程中体验集合的思想,在过程中感悟重叠,让学生经历问题解决的`数学化过程,从而获得数学学习经验。接着,创设了让学生自己设计图。学生设计的图各式各样。可见,创造源于实践,提供实践操作平台,激发学生学习数学的兴趣和热情的同时也培养学生的创新思维。当学生汇报自己独特的表示方法时,进而引导学生借助一种图(集合图)来理解解决这一问题,让学生经历集合图的产生过程并充分感知体验集合图的作用。通过让学生在情境体验中“学”、在解决问题中“悟”。调动了学生学习的主动性,激发了学生的竞争意识和表现意识,使学生发现问题、探索问题、解决问题的能力得到提高,思维也更加活跃。

特别是在解读集合图时,让学生充分理解“参加……的,只参加……的,既参加……又参加……的”的含义。反思今天的教学过程,我觉得我还是比较注重培养学生思维的严谨严密性,本节课上有2次重点解读了韦恩图,第一次是韦恩图的形成初期,第二次是形成了规范的韦恩图后。在解读韦恩图的过程中,我很注重学生表述各个部分的意思。红色圈是表示“参加语文兴趣小组”和蓝色圈使表示“参加数学兴趣小组”,而去掉了都参加的部分后是“只参加语文兴趣小组的人数”,“只参加数学兴趣养和提高。

学生在一种民主、和谐、轻松的学习氛围中通过合作交流以及独立思考后,发现集合里面的重复问题,再在现实生活中解决集合的重复问题。通过解决问题,让学生体会到了“集合”这一基础数学思想在生活中实现运用,以及这一知识对解决我们生活的实际问题的重要性。让学生在不知不觉中把数学知识“带”进生活实际,体验到在生活中处处有“数学”,学生的思想也获得了新的发展。

重叠问题说课稿篇十二

重叠问题,在生活中无处不在。无论是工作中的时间管理重叠,还是学习中的任务安排重叠,这些问题常常让人感到头疼不已。然而,通过对重叠问题的深入思考和实践,我逐渐体会到一些应对方法和心得。在下面的文章中,我将分享我的心得,希望能给大家一些启发和帮助。

首先,对重叠问题应有清晰的认识。重叠问题是指多个任务在同一个时间段内需要同时完成,或者一个任务的时间跨度与其他任务冲突。认识到重叠问题的存在,是解决问题的第一步。只有明确了问题的本质,才能采取相应的措施应对。

其次,理性规划时间是解决重叠问题的关键。合理地安排时间,是解决重叠问题最有效的方法之一。首先,要根据重要性和紧急性来设定任务的优先级。将高优先级的任务安排在前面,确保其在最佳时间完成。其次,要利用时间碎片,灵活安排安排任务。在公共交通工具上、排队等待的时间,可以利用手机进行必要的工作,将碎片时间变得更加珍贵。

再次,学会合理分配任务是解决重叠问题的关键。合理分配任务,既可以减轻个人负担,又可以提高工作效率。首先,要学会主动寻求帮助。无论是同事还是家人,都可以成为我们的帮手。通过分担任务,不仅减轻了自己的负担,也提高了团队的整体效率。其次,要合理分配时间和资源。有时候,一个任务可能比预期需要的时间长,而另一个任务可能完成得更快。在这种情况下,我们可以适当借用一些资源,提高任务完成的效率。

此外,对于临时不可避免的重叠问题,要学会妥协和适应。有时候,我们虽然做好了计划和安排,却难以避免一些突发情况。在这种情况下,我们要学会妥协和适应。首先,要接受现实。有时候,我们不能一直坚持自己的计划,而要根据实际情况调整计划。其次,要学会调整心态。面对临时的重叠问题,我们不要过分焦虑和紧张,而要冷静地思考解决办法。

最后,不断总结经验和改进方法是解决重叠问题的关键。在解决重叠问题的过程中,我们要不断总结经验,归纳问题的共性和规律。只有通过总结经验,我们才能更好地改进自己的方法和策略。此外,我们还要关注外部的变化和发展,随时调整自己的方法。新的工具和技术的出现,可能会给我们解决重叠问题带来新的思路和方法。

总之,重叠问题是我们生活中无法避免的一个难题。然而,通过对重叠问题的清晰认识,理性规划时间,合理分配任务,妥协和适应,以及不断总结经验的方法,我们可以更好地应对和解决这些问题。相信只要我们持之以恒,就一定能够在解决重叠问题的道路上越走越远。

重叠问题说课稿篇十三

《数学广角--重叠问题》教材上安排首先通过统计表的方式列出参加语文小组和数学小组的学生名单,通过统计表可以看出:参加语文小组的有8人,参加数学小组的有9人。但实际上参加这两个课外小组的总人数却不是17人,引起学生的认知冲突。然后教材利用直观图把这两个课外小组的'关系直观地表示出来。从图上可以很清楚地看出,有3名学生同时属于这两个小组,所以计算总人数时只能计算一次。第二环节探讨计算方法,根据参加语文、数学活动小组的人数,及两个活动小组都参加的人数这三个数据计算总人数。

在设计教案前,我一直在想一个问题:如何使让学生水到渠成地去解决重叠问题,使学生不是在模式上会做,而是在理解上会做。如果学生头脑中没有经历建模的过程,没有很好的直观依托,强塞给学生的东西也就形同如空中楼阁了。

课堂初出示了“喜欢玩碰碰车”和“喜欢玩旋转木马”两组同学的信息,要求学生说说喜欢玩碰碰车的和喜欢玩旋转木马的一共有多少人呢,学生发现有几个名字是重复的。于是,我设计了一个“贴一贴”的游戏,通过帮同学找找位置,引起思维冲突“两种都喜欢的小朋友应该放在哪里呢?”,再通过让学生用喜欢的方法画一画(可以用符号,数字,文字)小朋友喜欢的游戏情况,让学生经历集合图的产生过程并充分感知体验集合图的作用,把具体问题上升到抽象问题,再解决问题,整个过程就环环紧扣,教学效果也扎实有效地达到。

在第二个环节探讨计算方法时,学生在算法时更多的是三部分相加求出总人数,而不是两部分相加再减去重叠部分。再反思地去研读教材,发现对于教材的理解还是不够到位的,抛弃了题目中的数学信息,更多地强调集合圈的作用和理解,才引起了这个问题。在今后把握教材时,应该理解好主次的关系,更准确、到位地把握。

任何一堂课在反思的时候,都有成功点也有不足和遗憾。不足和遗憾并不可怕,更多地反思如何更好地运用教学策略完成教学目标才是我们需要去做的。

【本文地址:http://www.xuefen.com.cn/zuowen/17728253.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档