七年级数学教案有理数的加法(汇总17篇)

格式:DOC 上传日期:2023-12-06 17:50:13
七年级数学教案有理数的加法(汇总17篇)
时间:2023-12-06 17:50:13     小编:影墨

编写教案需要考虑学生的实际情况和学习需求。教案的编写应该与学校的教学计划和教材内容相衔接,注重教学效果的评估和反馈。以下是小编为大家收集的教案范文,仅供参考,希望能给大家提供一些启示和帮助。大家一起来看看吧,相信这些教案范文会对我们的教学工作有所帮助。

七年级数学教案有理数的加法篇一

2.培养学生观察、分析、归纳及运算能力。

三、教学重点。

四、教学难点。

五、教学用具。

三角尺、小黑板、小卡片。

六、课时安排。

1课时。

七、教学过程。

(一)、从学生原有认知结构提出问题。

1.计算:

(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

2.化简下列各式符号:

(1)-(-6);(2)-(+8);(3)+(-7);。

(4)+(+4);(5)-(-9);(6)-(+3).

3.填空:

(1)______+6=20;(2)20+______=17;。

(3)______+(-2)=-20;(4)(-20)+______=-6.

在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算。如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算。

(二)、师生共同研究有理数减法法则。

问题1(1)(+10)-(+3)=______;。

(2)(+10)+(-3)=______.

教师引导学生发现:两式的结果相同,(更多内容请访问首页:)即(+10)-(+3)=(+10)+(-3).

(2)(+10)+(+3)=______.

(2)的结果是多少?

于是,(+10)-(-3)=(+10)+(+3).

至此,教师引导学生归纳出有理数减法法则:

减去一个数,等于加上这个数的。相反数。

教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数。减数变号(减法============加法)。

(三)、运用举例变式练习。

例1计算:

(1)(-3)-(-5);(2)0-7.

例2计算:

(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).

通过计算上面一组有理数减法算式,引导学生发现:

在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数。

阅读课本63页例3。

(四)、小结。

1.教师指导学生阅读教材后强调指出:

由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。

2.不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。

(五)、课堂练习。

1.计算:

(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;。

2.计算:

3.计算:

(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;。

(4)(-5.9)-(-6.1);。

(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).

利用有理数减法解下列问题。

八、布置课后作业:

课本习题2.6知识技能的2、3、4和问题解决1。

九、板书设计。

2.5有理数的减法。

(一)知识回顾(三)例题解析(五)课堂小结。

例1、例2、例3。

(二)观察发现(四)课堂练习练习设计。

十、课后反思。

七年级数学教案有理数的加法篇二

教材分析:

在教材分析中我将谈一下几点:

(一)、教材的地位与作用:

【有理数的加法法则】是初中华师版七年级上册第二章第六节的内容,在这之前,学生已经在小学掌握了算术运算,而前边的学习又初步掌握了有理数的基本概念,有理数的加法运算是建立在小学运算的基础之上的,又与小学加法运算有很大的区别,如小学的加法运算不需要确定符号运算单一,而有理数的加法不但要计算绝对值的大小而且还要确定结果的符号,由算术到代数式学生从小学到初中的一个新的转折点。而有理数的加法又是有理数运算的主要内容是初等数学运算的基础,同时又是学习物理、化学等相关学科的基础。因此,这部分内容在学习数学及其他方面占有相当重要的地位及作用。

(二)、教学内容:

有理数的加法的教学共分2课时,这是有理数的加法第一课时。本节课主要讲授有理数加法的意义,归纳有理数加法的法则,能区别有理数的和与小学运算的和的不同,并要求学生在掌握法则的基础上熟练地进行有理数的加法运算。

(三)、教学目标:

倡导有理数的加法要以学生为主,让学生参与”观察、猜想、验证、归纳、运用“的全过程。以培养创新意识与培养能力为宗旨。从教材的特点和初一学生的认知水平,以教学思维为出发点。我设计如下的教学目标:

1、知识目标:使学生有理数加法的意义,掌握有理数加法的法则,并要求学生在掌握法则的基础上熟练地进行有理数的加法运算。

2、能力目标:在本节课的教学中,借助数轴向学生渗透数形结合的思想,利用绝对值把有理数的加法运算化归为小学算术的加减运算,体现化归的思想,以及适度加强法则的形成过程,着重培养学生”观察、猜想、验证、归纳、运用“等综合能力。

3、情感目标:遵循学生学习的认知规律和初一学生的身心特点,按照启发式教学原则用发现法和直观教学法激发学生探究教学的兴趣,培养学生敢于探索、乐于创新的精神。

4、教学重点、难点和教学关键:

解决问题的关键是有理数加法中结果符号的确定。

二、教法分析:

为了充分调动学生的积极性,变被动学习为主动学习使教学生动、有趣、高效,我采用启发式教学,发现法教学形成性学习和多媒体教学手段共用,考虑到学生目前仍以直观思维为主,在教学中,我采用针对性较强的相应措施。首先,我创设具体的问题情景运用多媒体手段进行必要的动态演示,让学生看的清楚,听的明白逐步从图形的直观向深化过渡,最后向抽象思维过渡,引导学生观察与思考,以增强教学的直观性、有效性;其次,引导学生从特殊到一般的探究,师生共同归纳出有理数的加法法则,以以增强教学的直观性、有效性、深刻性这既是形象思维转化为抽象思维的过程,也是对学生观察、归纳思维能力的过程,再让学生参与知识的形成过程,促进认知结构的建构,培养学生活动知识的能力,从而使学生在学习知识的过程中,获得成功的体验。

三、学法指导:

课堂教学要体现以学生的发展为本,为充分体现教师为主导、学生为主体的教学原则,我采用启发式教学原则,通过提出问题,多媒体的直观演示和学生一起分析,归纳出法则。始终让学生参与整个问题的全过程,在整个教学过程的设计中力求发挥学生的主体意识,尽情创造性的学习,无论在法则的形成,还是法则的运用数学思想方法的渗透,都避免教师的灌输方法,有意识的让学生主动观察、比较、分类、归纳积极思考,教师在教学中加以引导、及时点拨,激发学生的探索精神和求知欲望,培养学生的学习数学的主动性,让学生在愉悦的气氛中感受到数学学习的无限乐趣。

四、说教学过程:

2、然后设置这样一个问题情景,利用动态演示带领学生进行新课探索,首先我提出问题”两次一共向东走了多少米?“用什么方法呢?接着我提醒学生注意审题,暗示学生题中没有明确小明朝那个方向走,通过暗示,引导学生思考。

3、接着我又提出问题2”在东西走向的马路上小明从o点出发,向东走了20米,又向西走了-20米,那么两次一共走了多少米?“利用动态演示,学生很容易得出”互为相反数的两数相加得0“之后我又提出问题3”在东西走向的马路上小明从o点出发,向东走了20米,又向西走了0米,那么两次一共走了多少米?“学生很容易得出”一个数与0相加,仍得0“从而利用上面的演示过程,归纳出有一个加数为0的法则。

4、至此,通过师生多种情形的归纳,一起归纳出有理数的加法法则。

1、同号两数相加,取相同的符号,并把绝对值相加;

3、互为相反数的两数相加得0。

4、一个数与0相加,仍得0】意义上教学过程通过多媒体演示,把数、式、形的静变为动,以增强法则的直观性,加深法则的理解,突出本节课的重点、突破难点,同时也增强了数形结合的思想运用,在归纳出法则后,我有进一步启发引导学生分析法则的'特点,并总结规律”两有理数相加,所得的和为符号和和两部分组成,加法运算的关键是福海的确定,符号运算一旦解决,余下的就是小学算术的加减问题了“在这里,我给出两个具体的实例通过对他们的分析得出:

(-4)+(-8)=-(4+8)=-12。

同号两数相加取相同的符号通过绝对值化归为算术数和的过程。

(-9)+(+2)=-(9-2)=-7。

异号两数相加取绝对值较大符号通过绝对值化归为算术数减的过程。

总结:同号两数之和——名副其实的和——做加法。

异号两数之和——表面是”和“实际上是做减法。

运算步骤:1、先判断类型:同号还是异号;2、确定和的符号;

3、后进行绝对值的加减运算。

简单归为:8字诀——符号法则+算式加减。

通过以上的设计,进一步加深了对法则中难点问题的理解之后教师引导学生归纳出运算步骤,然后又教师归纳出加法法则。

6、接下来我又设置了一道改错题:

设置问题,强化关键判断正误,并改错。

1、两个负数相加,绝对值相加;

2、正数加负数,何谓负数;

3、负数加正数,和为正数;

4、两个有理数和为负数时,着两个有理数都是负数它是专为学生在运用法则时易出错的问题而设计的为促使学生在引用时仔细审题,通过分析辩误,抓住关键。

7、为了完成从掌握知识到引用知识的转化,使知识教学与智能训练相结合,我设置了以下例、习题易培养他们的逻辑思维和严密的计算能力,下面的这组练习由浅入深、循序渐进的原则,其目的在于巩固法则,加深对法则的理解和记忆,练习2通过强化与训练,使学生熟中生巧、将知识转化为技能,也为以后的学习奠定基础。

计算下列各题:

例题1、(-6)+(-8)2、5.2+(-4.5)。

练习:1、计算下列各题:并说明理由(1)、(-4)+(-7)。

(2)、(-4)+(+7)(3)、(+4)+(+7)。

(4)、(-4)+(+4)(5)、(-9)+0。

练习:2、计算下列各题:

(1)、15+(-22)(2)、(+0.9)+1.5(3)、(+2.7)+(-3.5)。

8、到这时,整个教学过程也接近尾声了,为了是学生对所学知识有一个完整的框架,利于学生对知识的理解和记忆,师生共同合作,从以下三方面进行小结:

1、本节课学习的主要内容;

2、运用有理数加法法则的关键问题;

9作业布置:(必做)练习2、3、4、(选作)习题1、

10、最后是我的板书设计:

法则小结。

步骤与口诀布置作业。

结论。

以上是我从四个方面阐述了本节课”教什么,怎么教,有理数的加法为什么这样教"希望各位专家、老师对本节课提出宝贵意见,再次谢谢各位评委老师。

七年级数学教案有理数的加法篇三

理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。

二、过程与方法。

经历对有理数进行分类的探索过程,初步感受分类讨论的思想。

三、情感态度与价值观。

通过对有理数的学习,体会到数学与现实世界的紧密联系。

教学重难点及突破。

在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。

教学准备。

用电脑制作动画体现有理数的分类过程。

教学过程。

四、课堂引入。

2.举例说明现实中具有相反意义的量。

3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意义?

4.举两个例子说明+5与-5的区别。

七年级数学教案有理数的加法篇四

1、知识目标:了解有理数乘法法则的合理性,掌握有理数的乘法法则,熟练运用有理数的法则进行准确运算。

2、能力目标:通过对问题的变式探索,培养自己观察、分析、抽象、概括的能力。

3、情感目标:培养积极思考和勇于探索的精神,形成良好的学习习惯。

重点:有理数乘法运算法则的推导及熟练运用。

难点:有理数乘法运算中积的符号的确定。

1、在小学我们已经接触了乘法,那什么叫乘法呢?

求几个的运算,叫乘法。

一个数同0相乘,得0。

2、请你列举几道小学学过的乘法算式。

规定:向右为正,现在之后为正。

3分钟后蜗牛应在o点的()边()cm处。

可以列式为:(+2)(+3)=。

问题2:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟后蜗牛在什么位置?

规定:向右为正,现在之后为正。

3分钟后蜗牛应在o点的()边()cm处。

可以列式为:

问题3:如果蜗牛一直以每分钟2cm的速度向右爬行,那么3分钟前蜗牛在什么位置?

规定:向右为正,现在之后为正。

3分钟前蜗牛应在o点的()边()cm处。

可以表示为:

问题4:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟前蜗牛在什么位置?

规定:向右为正,现在之后为正。

3分钟前蜗牛应在o点的()边()cm处。

可以表示为:

2、观察这四个式子:

(+2)(+3)=+6(—2)(—3)=+6。

(—2)(+3)=—6(+2)(—3)=—6。

正数乘正数积为__数:负数乘负数积为__数:

负数乘正数积为__数:正数乘负数积为__数:

乘积的绝对值等于各乘数绝对值的_____。

思考:当一个因数为0时,积是多少?

两数相乘,同号得,异号得,并把绝对值。

任何数同0相乘,都得。

1、你能确定下列乘积的符号吗?

37积的符号为;(—3)7积的符号为;

3(—7)积的`符号为;(—3)(—7)积的符号为。

2先阅读,再填空:

(—5)x(—3)。同号两数相乘。

(—5)x(—3)=+()得正。

5x3=15把绝对值相乘。

所以(—5)x(—3)=15。

填空:(—7)x4____________________。

(—7)x4=—()___________。

7x4=28_____________。

所以(—7)x4=____________。

[例1]计算:

(1)(—5)(2)(—5)。

(3)(—6)(—0.45)(4)(—7)0=。

解:(1)(—5)(—6)=+(56)=+30=30。

请同学们仿照上述步骤计算(2)(3)(4)。

(2)(—5)6==。

(3)(—6)(—0.45)==。

(4)(—7)0=。

让我们来总结求解步骤:

两个数相乘,应先确定积的,再确定积的。

1、小组口算比赛,看谁更棒。

(1)3(—4)(2)2(—6)(3)(—6)2。

(4)6(—2)(5)(—6)0(6)0(—6)。

2、仔细计算。,注意积的符号和绝对值。

(1)(—4)0.25(2)(—0.5)(—2)(3)(—)。

(4)(—2)(—)(5)(—)(—)(6)(—)5。

1、下列说法错误的是()。

a、一个数同0相乘,仍得0。

b、一个数同1相乘,仍得原数。

c、如果两个数的乘积等于1,那么这两个数互为相反数。

d、一个数同—1相乘,得原数的相反数。

2、在—2,3,4,—5这四个数中,任意两个数相乘,所得的积最大的是()。

a、10b、12c、—20d、不是以上的答案。

3、计算下列各题:

(5)(—6)(—5)=;(6)(—5)(—6)=。

七年级数学教案有理数的加法篇五

学习目标:。

1、理解加减法统一成加法运算的意义.

2、会将有理数的加减混合运算转化为有理数的加法运算.

3、培养学习数学的兴趣,增强学习数学的信心.

教学方法:讲练相结合。

教学过程。

1、一架飞机作特技表演,起飞后的高度变化如下表:

高度的变化上升4.5千米下降3.2千米上升1.1千米下降1.4千米。

记作+4.5千米—3.2千米+1.1千米—1.4千米。

请你们想一想,并和同伴一起交流,算算此时飞机比起飞点高了千米.

2、你是怎么算出来的,方法是。

1、现在我们来研究(—20)+(+3)—(—5)—(+7),该怎么计算呢?还是先自己独立动动手吧!

2、怎么样,计算出来了吗,是怎样计算的,与同伴交流交流,师巡视指导.

如:(-20)+(+3)-(-5)-(+7)有加法也有减法。

=(-20)+(+3)+(+5)+(-7)先把减法转化为加法。

=-20+3+5-7再把加号记在脑子里,省略不写。

可以读作:“负20、正3、正5、负7的”或者“负20加3加5减7”.

4、师生完整写出解题过程。

1、解决引例中的问题,再比较前面的方法,你的感觉是。

2、例题:计算-4.4-(-4)-(+2)+(-2)+12.4。

3、练习:计算1)(—7)—(+5)+(—4)—(—10)。

1、小结:说说这节课的收获。

2、p241、2。

3、计算。

1)27—18+(—7)—322)。

五、作业。

1、p2552、p26第8题、14题。

七年级数学教案有理数的加法篇六

1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行有理数的加法运算.

2.通过有理数的加法运算,培养学生的运算能力.

教学重点与难点。

重点:熟练应用有理数的加法法则进行加法运算.

教学过程。

(一)复习提问。

1.有理数是怎么分类的?

2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?

3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?

-3与-2;3与-3;-3与0;。

-2与+1;-+4与-3.

(二)引入新课。

在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学有理数的加法运算.

两次行走后距原点0为8米,应该用加法.

为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:

1.同号两数相加。

(1)某人向东走5米,再向东走3米,两次一共走了多少米?

这是求两次行走的路程的和.

5+3=8。

用数轴表示如图:略。

从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.

可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.

(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?

显然,两次一共向西走了8米。

(-5)+(-3)=-8。

用数轴表示如图:略。

从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.

可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.

总之,同号两数相加,取相同的符号,并把绝对值相加.

例如,(-4)+(-5),同号两数相加。

(-4)+(-5)=-(),取相同的符号。

4+5=9把绝对值相加。

(-4)+(-5)=-9.

口答练习:

(1)举例说明算式7+9的实际意义?

(2)(-20)+(-13)=?

2.异号两数相加。

(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?

由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.

5+(-5)=0。

可知,互为相反数的两个数相加,和为零.

(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?

由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.

就是5+(-3)=2.

(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?

由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.

就是3+(-5)=-2.

最后归纳。

例如(-8)+5绝对值不相等的异号两数相加。

85。

(-8)+5=-()取绝对值较大的加数符号。

8-5=3用较大的绝对值减去较小的绝对值。

(-8)+5=-3.

口答练习。

用算式表示:温度由-4℃上升7℃,达到什么温度.

(-4)+7=3(℃)。

3.一个数和零相加。

(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?

显然,5+0=5.结果向东走了5米.

(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?

容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.

请同学们把(1)、(2)画出图来。

由(1),(2)得出:一个数同0相加,仍得这个数.

总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.

特例:两个互为相反数相加;。

(3)一个数和零相加.

每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.

(四)例题分析。

例1计算(-3)+(-9).

分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).

解:(-3)+(-9)=-12.

例2。

分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调两个较大一个较小)。

解:解题时,先确定和的符号,后计算和的绝对值.

(五)巩固练习。

1.计算(口答)。

(1)4+9;(2)4+(-9);(3)-4+9;(4)(-4)+(-9);。

(5)4+(-4);(6)9+(-2);(7)(-9)+2;(8)-9+0;。

2.计算。

(1)5+(-22);(2)(-1.3)+(-8)。

(3)(-0.9)+1.5;(4)2.7+(-3.5)。

将本文的word文档下载到电脑,方便收藏和打印。

七年级数学教案有理数的加法篇七

1.1正数和负数(2)。

教学目标:

教学重点:

深化对正负数概念的理解。

教学难点:

正确理解和表示向指定方向变化的量。

教学准备:彩色粉笔。

教学过程:

一、复习引入:

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分界,是基准.

二、讲解新课。

度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。

思考:教科书第4页(学生先思考,教师再讲解)。

三、课堂练习课本p4练习1,2,3,4。

四、课时小结。

引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.

五、课外作业教科书p5:2、4。

板书设计:

七年级数学教案有理数的加法篇八

2.内容解析。

有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的.

与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是“使原有的运算律保持不变”.本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到“要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么”的结论,从而使学生体会乘法法则的合理性.与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析.由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心.

基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则.

二、目标及其解析。

1.目标。

(1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法.

(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性.

2.目标解析。

达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果.

达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程.

三、教学问题诊断分析。

有理数的乘法与小学学习的乘法的区别在于负数参与了运算.本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题“要使这个规律在引入负数后仍然成立,那么应有……”为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性.上述过程中,学生对于为什么要讨论这些问题、什么叫“观察下面的乘法算式”、从哪些角度概括算式的规律等,都会出现困难.为了解决这些困难,教师应该在“如何观察”上加强指导,并明确提出“从符号和绝对值两个角度看规律”的要求.

本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律.

四、教学过程设计。

教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数.

设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想.

问题2下面从我们熟悉的乘法运算开始.观察下面的乘法算式,你能发现什么规律吗?

3×3=9,

3×2=6,

3×1=3,

3×0=0.

追问1:你认为问题要我们“观察”什么?应该从哪几个角度去观察、发现规律?

如果学生仍然有困难,教师给予提示:

(1)四个算式有什么共同点?——左边都有一个乘数3.

(2)其他两个数有什么变化规律?——随着后一个乘数逐次递减1,积逐次递减3.

设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备.通过追问、提示,使学生知道“如何观察”“如何发现规律”.

教师:要使这个规律在引入负数后仍然成立,那么,3×(-1)=-3,这是因为后一乘数从0递减1就是-1,因此积应该从0递减3而得-3.

追问2:根据这个规律,下面的两个积应该是什么?

3×(-2)=,

3×(-3)=.

练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.

设计意图:让学生自主构造算式,加深对运算规律的理解.

先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的.绝对值等于各乘数绝对值的积.

设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础.

问题3观察下列算式,类比上述过程,你又能发现什么规律?

3×3=9,

2×3=6,

1×3=3,

0×3=0.

鼓励学生模仿正数乘负数的过程,自己独立得出规律.

设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力.

追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?

(-1)×3=,

(-2)×3=,

(-3)×3=.

练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.

先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积.

追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?

设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出“异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积”.既使学生感受法则的合理性,又培养他们的归纳思想和概括能力.

问题4利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?

(-3)×3=,

(-3)×2=,

(-3)×1=,

(-3)×0=.

追问1:按照上述规律填空,并说说其中有什么规律?

(-3)×(-1)=,

(-3)×(-2)=,

(-3)×(-3)=.

设计意图:由学生自主探究得出负数乘负数的结论.因为有前面积累的丰富经验,学生能独立完成.

问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?

学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书.

学生独立思考、回答.如果有困难,可先让学生看课本第29页有理数乘法法则后面的一段文字.

设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤.

例1计算:

(1)。

;(2)。

;(3)。

学生独立完成后,全班交流.

教师说明:在(3)中,我们得到了。

=1.与以前学习过的倒数概念一样,我们说。

与-2互为倒数.一般地,在有理数中仍然有:乘积是1的两个数互为倒数.

追问:在(2)中,8和-8互为相反数.由此,你能说说如何得到一个数的相反数吗?

设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘-1之间的关系(反过来有-8=8×(―1)).

设计意图:利用有理数乘法解决实际问题,体现数学的应用价值.

小结、布置作业。

请同学们带着下列问题回顾本节课的内容:

(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?

(3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则.

(4)你能举例说明符号法则“负负得正”的合理性吗?

设计意图:引导学生从知识内容和学习过程两个方面进行小结.

作业:教科书第30页,练习1,2,3;第37页,习题1.4第1题.

五、目标检测设计。

1.判断下列运算结果的符号:

(1)5×(-3);。

(2)(-3)×3;。

(3)(-2)×(-7);。

(4)(+0.5)×(+0.7).

2计算:

(1)6×(-9);(2)(-6)×0.25;(3)(-0.5)×(-8);。

(4)。

;(5)0×(-6);(6)8×。

设计意图:检测学生对有理数乘法法则的理解情况.

七年级数学教案有理数的加法篇九

1.1正数和负数(2)。

教学目标:

教学重点:

深化对正负数概念的理解。

教学难点:

正确理解和表示向指定方向变化的量。

教学准备:彩色粉笔。

教学过程:

一、复习引入:

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分界,是基准.

二、讲解新课。

度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。

思考:教科书第4页(学生先思考,教师再讲解)。

三、课堂练习课本p4练习1,2,3,4。

四、课时小结。

引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.

五、课外作业教科书p5:2、4。

板书设计:

七年级数学教案有理数的加法篇十

(1)正确理解乘方、幂、指数、底数等概念.

(2)会进行有理数乘方的运算.

2.过程与方法。

通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化思想.

3.情感态度与价值观。

培养探索精神,体验小组交流、合作学习的重要性.

重、难点与关键。

1.重点:正确理解乘方的意义,掌握乘方运算法则.

2.难点:正确理解乘方、底数、指数的概念,并合理运算.

3.关键:弄清底数、指数、幂等概念,注意区别-an与(-a)n的意义.

教学过程。

一、复习提问。

1.几个不等于零的有理数相乘,积的符号是怎样确定的?

答:几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.值观:体验小组交流,合作学习的重要性。

七年级数学教案有理数的加法篇十一

学习目标:

1.会用正.负数表示具有相反意义的量.

2.通过正.负数学习,培养学生应用数学知识的意识.

3.通过探究,渗透对立统一的辨证思想。

学习重点:

用正.负数表示具有相反意义的量。

学习难点:

实际问题中的数量关系。

教学方法:

讲练相结合。

教学过程。

一.学前准备。

通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.

问题1:“零”为什么即不是正数也不是负数呢?

引导学生思考讨论,借助举例说明.

参考例子:温度表示中的零上,零下和零度.

二.探究理解解决问题。

问题2:(教科书第4页例题)。

先引导学生分析,再让学生独立完成。

(2)20xx年下列国家的商品进出口总额比上一年的变化情况是:

美国减少6.4%,德国增长1.3%,

法国减少2.4%,英国减少3.5%,

意大利增长0.2%,中国增长7.5%.

写出这些国家20xx年商品进出口总额的增长率.

解:(1)这个月小明体重增长2kg,小华体重增长―1kg,小强体重增长0kg.

(2)六个国家20xx年商品进出口总额的增长率:

美国―6.4%,德国1.3%,

法国―2.4%,英国―3.5%,

意大利0.2%,中国7.5%.

三.巩固练习。

从0表示一个也没有,是正数和负数的分界的角度引导学生理解.

在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.

在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.

通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.

四.阅读思考1页。

(教科书第8页)用正负数表示加工允许误差.

问题:1.直径为30.032mm和直径为29.97的零件是否合格?

2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.

五.小结。

1.本节课你有那些收获?

2.还有没解决的问题吗?

六.应用与拓展。

1.必做题:

教科书5页习题4.5.:6.7.8题。

2.选做题。

1).甲冷库的温度是―12°c,乙冷库的温度比甲冷酷低5°c,则乙冷库的温度是.

七年级数学教案有理数的加法篇十二

比较正数和负数的大小。

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

负数与负数的比较。

一、复习:

1、读数,指出哪些是正数,哪些是负数?

—85。6+0。9—+0—82。

2、如果+20%表示增加20%,那么—6%表示。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

a、从0起往右依次是?从0起往左依次是?你发现什么规律?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“—8在—6的左边,所以—8〈—6”

5、再通过让另一学生比较“8〉6,但是—8〈—6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,所有的负数都在0的'左边,也就是负数都比0小,而正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习。

1、练习一第4、5题。

2、练习一第6题。

3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。

四、全课总结。

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

第二课教学反思:

许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

例3——两个不同层面的拓展:

1、在数轴上表示数要求的拓展。

数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1。5。建议此处教师补充要求学生表示出“+1。5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1。5和—1。5绝对值相等。同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

2、渗透负数加减法。

教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

例4——薄书读厚、厚书读薄。

薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)。

例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

将厚书读薄——无论哪种类型,比较方法万变不离其宗。

无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“86,所以—8—6”来阐述其原因,其实也与数轴相关。因为当绝对值越大时,表示离原点的距离越远,那么在数轴上表示的点也就在原点左边越远,数也就越小。所以,抓住精髓就能以不变应万变。

在此,我还补充了—3/7和—2/5比较大小的练习,提升学生灵活应用知识解决实际问题的能力。

七年级数学教案有理数的加法篇十三

2、在教学设计中,除了考虑学生探索新知的'需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力.另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性.在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的是让学生顺利地掌握法则,并达到熟练运用的程度。

七年级数学教案有理数的加法篇十四

从简单的转盘游戏开始,使学生在生活经验和试验的基础上,进一步体验不确定事件的特点及事件发生的可能性大小。

能用实验对数学猜想做出检验,从而增加猜想的可信度。 解决问题

在转盘游戏过程中,经历猜测结果,实验验证,分析试验结果等数学活动,增加数学活动经验。

情感态度与价值观

在合作与交流过程中,体验小组合作更有利于探究数学知识,敢于发表自己观点,提高个人认识。

在实验中,体会不确定事件的特点及事件发生可能性大小;使每个学生都能积极认真参与课堂设计中的实验,真正在实验中获得知识上的认识。

创设情境,切入标题

请同学们猜测,当我自由转动转盘时,指针会落在什么颜域呢?

请各小组分别派一名代表,看哪组能转出红色。

结果,8小组有6组转出了红色。

为什么会出现这样的结果呢?

因为,在这个转盘中,红域的面积大,白域的面积小,因此,当转盘停上转动时,指针落到红域的可能性大。

大家同意这种看法吗?下面我们亲自动手感受一下。

学生按照题目要求进行实验。

请各组组长把你组的实验数据汇报一下(教师把数据填写在表格里) 实验结果:六个小组每组实验16次,全班共实验96次,指针落在红域的次数分别如下9,6,10,5,8,12。共计50次。

请同学们对我们的实验结果进行分析交流,谈谈你在试验中有哪些心得。

根据观察,转盘上红域的面积为总面积的一半,指针落在红域的可能性也应该是一半。通过对我们全班的实验结果分析,指针落在红域的比例是50∶96,结果接近百分之五十。

在小组内实验结果不明显,实验次数越多越能说明问题。

通过实验,我们确定感受到,转盘游戏中各区域的面积的可能性大小与指针落在什么区域的可能性大小有直接关系。以后在生活中再遇到转盘游戏问题可要想想今天的实验结论。

下面我们利用转盘做一下数学游戏(出示幻灯片),学生按教学设计中要求进行游戏,教师巡回指导。

每组每人游戏一次,全班共游戏48次。其游戏结果是,平均数增大1的,共35次,平均数减小1的,共13次。

请同学们对下列问题进行交流(幻灯片出示教材206页4个问题)。 这个转盘转到“平均数增大1”区域的可能性大,从面积大小就可以看出。

如果平均数增大1,我是在卡片上增加一个数,这个数等于卡片上数字的个数加1,如果是平均数减小1,我就在每个数上都减去1。

同学们说出很多种方法,不一一列举。

“平均数增大1”的次数占总次数的百分之七十三,“平均数减小1”占百分之二十七。

如果将这个实验继续做下去,卡片上所有数的平均数会增大。

同学们说的都很好,课后能不能自己也利用转盘设计一个新的游戏,感兴趣的同学可以在课下与我交流。

以下过程同教学设计,略去。

指导学生完成教材第206页习题。

学生可从各个方面加以小结。 布置作业

仿照课堂游戏,自编一个新的游戏。 能否利用扑克牌设计本节转盘游戏。

七年级数学教案有理数的加法篇十五

1、知识目标:借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性,会判断一个数是正数还是负数。

2、能力目标:能应用正负数表示生活中具有相反意义的量。

3、情感态度:让学生了解有关负数的历史、体会负数与实际生活的联系。教学重难点。

重点:理解有理数的意义。

难点:能用正负数表示生活中具有相反意义的量。

教学过程。

一、创设情境、提出问题。

某班举行知识竞赛,评分标准是:答对一题加1分,答错一题扣1分,不回答得0分;每个队的基础分均为0分。两个队答题情况见书上第23页。

二、分析探索、问题解决。

分组讨论扣的分怎样表示?

用前面学的数能表示吗?

数怎么不够用了?

引出课题。

讲授正数、负数、有理数的定义。

用负数表示比“0”低的数,如:-10,读作负10,表示比0低10分的数。启发学生再从生活中例举出用负数表示具有相反意义的数。

三、巩固练习。

1、用正数或负数表示下列各题中的数量:

(2)球赛时,如果胜2局记作+2,那么-2表示______;。

(3)若-4万表示亏损4万元,那么盈余3万元记作______;。

(4)+150米表示高出海平面150米,低于海平面200米应记作______.

分析:用正、负数可分别表示具有相反意义的量,通常高于海平面的高度用正数表示,低于海平面的高度用负数表示;完全相反的两个方向,一个方向定为用正数表示,则另一个方向用负数表示;如运进与运出,收入与支出,盈利与亏损,买进与卖出,胜与负等都是具有相反意义的量。

2、下面说法中正确的是().

a.“向东5米”与“向西10米”不是相反意义的量;

b.如果汽球上升25米记作+25米,那么-15米的意义就是下降-15米;

c.如果气温下降6℃记作-6℃,那么+8℃的意义就是零上8℃;。

d.若将高1米设为标准0,高1.20米记作+0.20米,那么-0.05米所表示的高是0.95米。

三、小结回顾、纳入体系。

学生交流回顾、讨论总结,教师补充如下:

概念:正数、负数、有理数。

分类:有理数的分类:两种分法。

应用:有理数可以用来表示具有相反意义的量。

七年级数学教案有理数的加法篇十六

《有理数的加法》是有理数混合运算的第一堂课。正因为万事开头难,可见这堂课在接下来的教学中起着非常重要的指向作用。下面是我上这堂课的总结:

一.在引入部分和同学们共同探讨书上的问题,采用了让学生相互先探讨的方法,发现学生非常的投入,课堂气氛被充分调动起来了。由于问题的难度一下跨越太大,太抽象,所以在教学中采用了动画解析的过程,更为形象具体,让问题深入浅出,容易让学生接受。

二.在一些细节部分处理到位。比如说解应用题的步骤,应将它的完整步骤都在黑板上演示一下。电子白板大大的提高了效率和课堂容量。

三.在推导有理数加法法则时,学生的回答让学生说完他的思路,然后引导他将其他情况补充完整。这个说明课堂应变能力十分重要,整个课堂中,我注意力十分集中,真是耳听八方,眼观四路。

四.整堂课的语言需要改进,应更加精练,简洁。本堂是概念课,对于概念课来说,概念不要重复太多遍,尤其是一些说出来比较拗口的概念,容易混淆,所以当表述的差不多的时候就可以写出来,不必在这个问题上纠缠不清。这点需要改进。说,读,写结合,增强记忆。

七年级数学教案有理数的加法篇十七

本节课的重点是有理数加法的运算律,难点是:灵活运用加法运算律进行简化运算。课堂中学生由刚开始的引入学生学习积极性较高,达到了本节课的第一个高潮,为了突破重难点设置了两组习题练习。

学生认真,完成正确率较高。同时展示了学生的解题技巧,并设置了大家一起来找茬这一活动,把课堂推向了第二次高潮。总体来说课堂效果很好。学生都能掌握解题技巧。

【本文地址:http://www.xuefen.com.cn/zuowen/17724586.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档