初三数学数与式教案(专业19篇)

格式:DOC 上传日期:2023-12-06 13:27:09
初三数学数与式教案(专业19篇)
时间:2023-12-06 13:27:09     小编:曼珠

教案应根据学生的学习特点和需求,以及教学内容的特点进行有针对性的设计。在编写教案时,要根据学生的实际情况和学习特点,制定适合的教学策略。以下是一些经过实际教学验证的教案案例,供大家参考借鉴。

初三数学数与式教案篇一

3.培养和发展学生的实验操作能力,发现美和创造美的能力。

教学重点及难点。

会利用轴对称的知识画对称图形。

教学手段及方法。

1、创设情景,引发思维。

2、组织讨论,深化思维。

3、加强练习,发展思维。

预习作业。

1.欣赏p1的图片,你发现了这些图形有什么相同点和不同点?

2.同桌互相说说什么样的图形叫作轴对称图形?

3.仔细观察例1中的图形,你发现了什么?你知道怎么画对称图形吗?

4.试着在例2的格子图片上画一画。

5.你能用预习到的知识用纸来折、剪出一个轴对称图形吗?

教学过程(集体备课可以用不同颜色笔在相应区域书写即可)。

教师活动学生活动设计意图。

一、复习引入:

(3)轴对称图形的概念:

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

(4)通过例题探究轴对称图形的性质:

二、例题1:

你能发现什么规律。

三、交流。

教师:“在轴对称图形中,对称轴两侧相对的点到对称轴两侧的距离相等”我们可以用这个性质来判断一个图形是否是对称图形。或者作对称图形。

四、教学画对称图形。

例题2:

(2)在研究的基础上,让学生用铅笔试画。

(3)通过课件演示画的全过程,帮助学生纠正不足。

五、练习:

(1)欣赏下面的图形,并找出各个图形的对称轴。

(2)学生相互交流。

你们还见过哪些轴对称图形?

用尺子,量一量,数一数题中每个轴对称图形左右两侧相对的点到对称轴的距离,

(1)思考:

a、怎样画?先画什么?再画什么?

b、每条线段都应该画多长?

1.课内练习一-----第1、2题。

《新课程标准》强调,动手实践,自主探索与合作交流是学生进行有效的数。

学学习活动的重要方式。教学中要鼓励每个学生亲自实践,积极思考,体会活动的乐趣,在乐学的氛围中,培养学生动手能力,并学会且应用新知。

板书设计。

轴对称。

如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。

教学反思或后记(教学的成败得失、学生的信息反馈、今后的教学建议)。

将本文的word文档下载到电脑,方便收藏和打印。

初三数学数与式教案篇二

请用以上所讲的平移、轴对称、旋转等图形变换中的一种或组合完成下面的图案设计.

例1.(学生活动)学生亲自动手操作题.

按下面的步骤,请每一位同学完成一个别致的图案.

(1)准备一张正三角形纸片(课前准备)(如图a)。

(2)把纸片任意撕成两部分(如图b,如图c)。

(3)将撕好的如图b沿正三角形的一边作轴对称,得到新的图形.

(4)并将(3)得到的图形以正三角形的一个顶点作为旋转中心旋转,得到如图(d)(如图c)保持不动)。

(5)把如图(d)平移到如图(c)的右边,得到如图(e)。

(6)对如图(e)进行适当的修饰,使得到一个别致美丽的如图(f)的图案.

老师必要时可以给予一定的指导.

初三数学数与式教案篇三

1.如果两个圆心角相等,那么()。

a.这两个圆心角所对的弦相等。

b.这两个圆心角所对的弧相等。

c.这两个圆心角所对的弦的弦心距相等。

d.以上说法都不对。

2.下列语句,错误的是()。

a.直径是弦。

b.相等的圆心角所对的弧相等。

c.弦的垂直平分线一定经过圆心。

d.平分弧的半径垂直于弧所对的弦。

初三数学数与式教案篇四

教学目标:。

l知识技能。

1.了解中心对称、对称中心、关于中心的对称点等概念及掌握中心对称的性质。

2.能根据中心对称的性质,作出一个图形关于某点的中心对称的对称图形。

l数学思考与问题解决。

经历中心对称的探索过程,通过观察、操作、发现、探究中心对称的有关概念和对称性质,培养学生的观察能力和动手操作能力。

l情感态度。

通过中心对称的学习,感受对称、匀称、均衡的美感,体验图形变化的规律,感受图形变换和图形的美丽,感受生活中的数学,热爱数学。

教学重点:

理解中心对称的定义,掌握中心对称的性质,并利用中心对称的性质作图.

教学难点:

中心对称的性质及利用性质作图。

教学方法:

观察法、探究法、多媒体演示法,作图法。

初三数学数与式教案篇五

1.儿童节期间,某公园游乐场举行一场活动.有一种游戏规则是在一个装有8个红球和若干个白球(每个球除颜色不同外,其他都相同)的袋中,随机摸1个球,摸到1个红球就得到1个玩具.已知参加这种游戏的儿童有40000人,公园游乐场发放玩具8000个.

(1)求参加此次活动得到玩具的频率;。

(2)请你估计袋中白球的数量接近多少.

1.(20xx?兰州)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()。

a.20b.24c.28d.30。

2.(20xx?宜昌)在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法估算正面朝上的概率,其实验次数分别为10次、50次、100次,200次,其中实验相对科学的是()。

a.甲组b.乙组c.丙组d.丁组。

初三数学数与式教案篇六

《旋转对称图形》这节课是几何图形教学中的一个重点和难点,为了上好这节课,我在课前做了很多准备工作,例如,对教材的分析,教案和课件的设计,教具的准备,还有了解学生。上完这节课,我对本堂课进行了深入的反思:

本节课的亮点:

一.利用观察比较引入新课。

让学生通过观察旋转与旋转对称图形之间存在的差异,一个是旋转过程中位置发生了变化,另一个是旋转过程中位置没有发生变化,激发学生的学习兴趣和求知欲望,由此进入新课的学习。

二.运用现代信息技术,实现了教学目标,体现了现代信息技术与数学学科的整合。

1.利用多媒体,展现美丽的图案,让学生体会到数学源于生活,服务于生活。

2.利用多媒体辅助教学,以“静”为“动”,突破教学重点与难点。我利用多媒体展示了图形的旋转,让学生观察正n边行(主要是等边三角形,正方形,五边形,六边形)绕着旋转中心旋转一定的角度后能与自身重合。展示旋转地全过程,给学生一个完整的表象,而不是凭空想象。

三.动手操作与亲身经历过程。

本节课设计了两个探究活动环节,在课堂上,每位学生都能够参与到探究活动中来。通过探究一,学生更深入了解旋转对称图形的概念,并深刻体会到旋转对称图形存在的奥秘,让学生探索如何确定旋转中心和旋转角度。

本节课存在的不足:

一.与学生互动不是很融洽,不能够调动学生的情趣与活跃课堂气氛,语气平和,没有抑扬顿挫。

二.教学语言不够简洁,表达不够明确。

三.时间分配不当,在探究二这一环节花费的时间较多,本来学生对作一个图形关于一条直线对称的图形掌握程度很好,我就因为个别同学在这知识点上花了大量时间讲解。导致后面的时间很紧,没有让学生巩固练习,加深对知识的理解和应用。

经过对这节课的教学实践,在完成了本节课的教学目标和学习目标,还存在很多问题需要改进:

由于对知识背景与联系不足,造成知识串联和整合度不高。同时教学教学语言艺术方面需要大大提高,还知识停留在用数学语言和知识进行单纯的引导,语言与学生的理解还有待于接近。同时经验和技巧的欠缺使教学缺乏灵活度和简便性。今后要深研教材,深入了解学生的知识认知水平,做好每一节课的反思。

初三数学数与式教案篇七

1.使学生掌握的概念,图象和性质.

(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.

(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.

(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.

2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.

教材分析。

(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.

(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.

(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.

教法建议。

(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.

(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.

关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.

初三数学数与式教案篇八

1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.

2.能根据具体问题的实际意义,检验结果是否合理.

【教学重点】列一元二次方程解有关传播问题、平均变化率问题的应用题。

【教学难点】发现传播问题、平均变化率问题中的等量关系。

【学习过程】。

一、知识回顾。

1、解一元二次方程都是有哪些方法?

2、列一元一次方程解应用题都是有哪些步骤?

二、新知探究。

分析:设每轮传染中平均一个人传染了x个人,

第二轮传染中,这些人中的每个人又传染了_______人,第二轮后共有_______人患了流感。

初三数学数与式教案篇九

1、在游戏活动中,理解进位四的运算道理,并能较熟练地进行听题打算盘。

2、能积极投入探索活动,操作寻找总结方法。

鞭炮若干,算盘(人手一份),苹果、梨子(每人一个)、汽车六辆、数字卡片若干、记数卡片若干、开汽车的音乐。

1、游戏“放鞭炮”(学习进位加4的运算法)。

(1)激发幼儿关心爷爷、奶奶的情感:

师:再过几天就是重阳节了,是谁的节日?我买来许多的鞭炮一起和爷爷、奶奶过节,好吗?我买的鞭炮有些不同,你要做出里面的题目才会响。

(2)出示鞭炮卡片(9+4)幼儿尝试自己拨珠计算,并说说为什么这样算?

集体边讲述边操作理解之后,我们一起来放个鞭炮(乒!乓!)。

出示鞭炮卡片(7+4)师:请一个小朋友在大算盘上做,你是怎么做的?为什么这样做?(集体拨打),答对之后师:这个鞭炮我们也可以放了。(乒!乓!)。

出示鞭炮卡片(16+4)师:再请一个小朋友来做,你为什么这样做?集体拨打,我们一起来放放这个鞭炮。(乒!乓!)。

出示鞭炮卡片(8+4)师:我也来做做,(错误指法),对不对?哪里不对?应该怎样做?(小结:先去再进)(乒!乓!)。

(3)师:大鞭炮放完了,我们再来放放小鞭炮。(教师出示小鞭炮并翻开题卡,幼儿按题拨珠)。

幼儿自由选择拨题,教师巡回观察引导幼儿并引导能力弱的幼儿讲讲这样算的原因。

师:放完了鞭炮,我们还该给爷爷奶奶买什么礼物呢?(幼儿发散思维)商店离这很远我们要乘车去买礼物,可是这些车没有车牌,不可以在马路上开。(出示红、黄、蓝、绿、橙六辆小汽车)我们先要把车牌号码找出来。车牌号码在哪呢?(出示数字4、7、1、2、9)秘密就在这些数字中。

师:红颜色的汽车车牌号码是把这些数字从小排到大。猜猜是多少?(12479)。

师:兰颜色的汽车车牌号码是把这些数中最小的放在第一位,后面的由大到小(分组说是多少?19742)。

师:绿颜色汽车车牌号码是把这些数单数放在前,双数放在后,然后从大排到小(个别说,演示排列法97142)。

师:还有三辆汽车的车牌在我的卡片上,请你们记住拨入算盘。(教师出示卡片,幼儿记数拨珠)。

师:水果店到了,在每张桌子中间都有装满水果的筐,水果的背面都有一道题,请你们用心算的方法算出来,算对即可买到这只水果。

幼儿心算买水果。

师:现在我们一起把水果分给爷爷奶奶吧!

初三数学数与式教案篇十

北师大版小学数学三年级上册p84页―p85页“可能性”

1、通过“猜想――实践――验证”,经历事件发生的可能性大小的探索过程,初步感受某些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。

2、在活动交流中培养合作学习的意识和能力。

3、培养学生的数学应用意识,学会用数学眼光分析、观察生活中的问题。

通过“猜想――实践――验证”,经历事件发生的可能性大小的探索过程。初步感受某些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。

多媒体课件。

摸球盒、转盘。

一、谈话引入课题。

数学故事:《生死签》

但是陷害这个犯人的官员故意把盒子里的两张签都写上了“死”字,请问,这时犯人只抽一张签结果会是什么?一定吗?他会抽到“生”签么?一定抽不到也就是不可能会抽到。

板书:可能(不一定)一定不可能

【可能性】

二、创设情境,提出问题。

老师这节课为大家安排了一个摸球游戏,让同学们共同学习和探索可能性的知识。

1、介绍学具,将学生分成小组,每个小组一个纸箱、8个黑球、1个红球(两种球的大小和轻重一样)。

2、【猜想】请想一想:摸到的球可能是什么球?摸到的什么球的可能性更大些?【出示课件】学生对老师提出的问题进行猜测,并把自己的想法告诉给组内的同学填在书上。

三、探索研究,得出结论。

实践探索。

(1)【操作体验】以小组为单位开展摸球游戏,把每次摸得的结果记录再下表中,然后把球放回去再摸。每人摸5次,并把结果记录在表格里(组长负责)。

(2)【验证】统计摸球的结果,看一看;摸到什么球的次数多?摸到什么球的次数少?

(3)【深化认识】各小组将摸球的结果进行交流,看一看是不是得到同样的结果。实际摸到的结果与原来的猜测是否吻合。初步感受到在日常生活中有些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。

(4)延伸:如果要一定摸到黑球,该怎么办?

如果要黑球和红球的可能性一样大,怎么办?

四、实际应用。

1、试一试(1)先让学生按题中要求进行摸球游戏活动,然后思考题出的问题,小组内交流。接着教师组织学生进行全班交流。

(课本85页练一练)

2、分析从下面四个箱子里,分别摸一个球,结果是哪个?连一连。【出示课件】

学生在分析的时候可能很容易找到“一定是白球”、“一定不是白球”这两个该连接的盒子,但是对于“很可能是白球”、“白球的可能性很小”会有一些争议。这里需要通过演示活动来帮助学生辨别“很可能”与“可能性很小”两者表达事情发生的程度大小。

3、问题:下面三个地方的冬天下雪吗?请用“一定”“很少”“不可能”说一说。

【出示课件】首先可以和学生说明:北方地区冬天比较寒冷(冬天会下雪),内陆地区如:江西省的冬天怎样?(学生回答),南方沿海如广西、海南等地属于x气候,冬天不太冷,不会下雪;让学生说一说“武汉”、“海南”和“哈尔滨”在中国地图上的位置,查一下这几个地方的气候特点以及各季的平均气温,然后让学生分析,“下雪”时,气温的特点!再对收集到的信息进行分析,判断各地下雪的可能性!

4、说一说活动。

【出示课件】

五、全课小结。

六、布置作业。

初三数学数与式教案篇十一

三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形。

三角函数式的求值的类型一般可分为:。

(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

三角函数式常用化简方法:切割化弦、高次化低次。

注意点:灵活角的变形和公式的变形。

重视角的范围对三角函数值的影响,对角的范围要讨论。

课堂小结】。

三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形。

三角函数式的求值的类型一般可分为:。

(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。

三角函数式常用化简方法:切割化弦、高次化低次。

注意点:灵活角的变形和公式的变形。

重视角的范围对三角函数值的影响,对角的范围要讨论。

初三数学数与式教案篇十二

不知道有没有同学,听过这样一句话"得数学者得天下",确实,在大型考试中,数学的分数很重要。下面是本站小编为大家收集整理的初三数学随笔,欢迎大家阅读。

------存在问题。

一个学期又结束了,作为初三毕业班的数学老师,我深感肩上的压力之大,责任之重是空前的。目前,对于初三这个重要的学习阶段,如何进行有效的教学可以使学生的学习起到很大的作用是值得我们思考的。经过一个学期的观察和反思,我觉得目前在学生的学习中常出现以下学习的情况:

一、多数情况下,也比较擅长提出启发性的问题来激发学生的思考,但问题提出后没给学生留下足够的思维空间甚至不留思维空间,往往习惯于自问自答,急于说出结果.显然,学生对题目只是片面的理解,不能引发学生的深思,就不能给学生深刻的印象,因此造成很多学生对于做过的题一点印象也没有。

二、我在备课的时候对问题已备选了一个或几个解决方案,但教学中的不确定因素很多,当学生的思路与我的思路相左或学生的想法不切实际时,往往因为时间关系,有时会采取回避、压制措施,使学生的求异思维、批判思维、创造性思维被束缚。

三、对问题的坡度设置的还有待研究,坡度过大,导致思维卡壳,学生的思维活动不能深入进行而流于形式。

——对策。

1.对过多的题,进行适当的筛选。

2.还给学生一片思维空间,让学生受到适当的“挫折”教育,以加深对问题的认识。

3.学生有不同想法单独与教师交谈,好的想法给予鼓励并加以推广;不对的想法,给予单独的指正。这样,学生即可以大胆放心的说出自己的想法,又可以把一些教学中漏洞补上。

4.精心设置问题的坡度,使学生步步深入,并探究出规律。课堂上注意课堂节奏,尽量让中下游的学生跟上老师的步伐,多给学生自己练习的时间,让学生真正成为学习的主体,做到不仅是老师完成任务,还要学生完成任务。

另外,折叠问题、动点问题、图形变换问题是近年来的热点问题,学生有些陌生感,引导学生在折叠、移位时,应该注意前后的线段、角的相等关系。作为发散学生思维的一个重要手段,应该注重多种方法的运用,培养学生的解题能力。

相信经过我的不懈努力,加上学生的合作,一定会不断取得进步。

在初三数学教学工作的,我发现一个严重的问题,许多学生对基础知识掌握不扎实,运算准确性差,对于一些常见的题目出现了各种各样的错误,平时教学中总感到这些简单的问题不需要再多强调,但事实上却是问题严重之处,所以,在平时的教学中要注重“双基”教学,及时纠错,查漏补缺。

首先纠错要及时,课堂教学中应注意引导学生上课集中精力,勤于思考,积极动口、动手。可利用提问或板演等多种方式得到学生的反馈信息,一般我们应把提问、解答、讲评、改错紧密的结合为一体,不要把讲评和改错拖得太长。最好当堂问题当堂解决,及时反馈在一日为好。

其次纠错要准确,在教学中必须经常深入到学生中去了解他们的困难和要求,积极热情地帮他们释疑解难,使他们体会到师长的温暖,尝试到因积极与老师配合、真实地提供信息而尝到学习进步的甜头。

另外纠错要灵活,我们在教学中可采用灵活多样的纠错形式。必须提前设计纠错方案,也可预测学生容易出错的地方,了解到错误的原因,认真分析其问题的实质,然后有针对性地实施纠错方案。在作业的检查过程中,要求进一步落实学生是否存在抄作业现象,是否认真订正作业。总之,把纠错一定要落在实处。

总之,在教学中,纠错是一个重要的教学环节,也是不可缺少的工作。要做好这项工作,除了主动给学生辅导,调动学生学习的积极性,培养学生的主动性和自觉性,让学生想学,爱学,乐学,还必须要有持之以恒,不厌其烦的精神。

近二十年的中学数学教师,经历了不同版本的数学教学工作,应该说每种教材都体现着不同时代的特点,完成了这一时代的使命。现就我个人对数学新课程下如何教学谈谈自己的看法:

1.传统的教材过分的强调了数学的单一性、工具性等特点。

传统数学教学认为数学是思维的体操。但学习过程中学生感觉理论性太强了,且有部分内容没有实用价值性,忽略了数学学科与其他学科之间的联系,人为的编制一些飘渺的、没有实际意义的偏题、难题、怪题、导致学生耗掉了大量的时间,结果学生解决实际问题的能力却丧失了,部分学生的思维停滞在闭门造车的水平上。另外由于应试教育在很大程度上掩盖了数学课程的本来面目,数学被认为就是做题,题海战术是教师和学生应付考试的最有力武器,歪曲了数学原应有的过程:经历、体验、探索等。这样反而让学生产生厌学情绪。

2.《新课程标准》(以下称标准)的理念以及人教版教材的特点:

《新课程标准》在教育理念上迎合了时代的特点。首先学生是人,是知识的载体,过分枯燥乏味的单一教学模式已经不适应现代的中学生,他们需要的是合作、民主、开放式的教学,同时也具有强烈的参与探究意识。《新课程标准》在教学理念上就体现了时代性,可用性实用性的特点。“人人学有价值的数学”就体现了数学的实用性,使数学不再脱离实际,而和实际生活有着密切的联系。“人人获得必需的数学”体现了数学来源于生活,又服务于生活。“不同的人得到不同的发展”,体现了数学因材施教,真正有数学天赋的学生会有与众不同的作为。具体目标中增加了“经历(感受)、体验(体会)、探索等刻画数学活动水平的过程性目标,同时也指出数学不单纯是模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的主要方式。新数学中教师不单纯教,学生不单纯学。新数学教材上增加了各种练习形式和大量精美的插图,生动形象的语言,显得图文并茂,直观形象,情节生动。如做一做、听一听、说一说、试一试、想一想、练一练等,特别是青少年学生喜闻乐见的拟人化的卡通形象的出现,更符合孩子们的口味。我国古代教育家孔子说:“知之者不如好之者,好之者不如乐之者”。学习兴趣是学习动机中最活跃、最积极的成分,也是学习活动中最基本的内驱力因素,如教材中“游戏是否公平”、“跟我学”、“试试看”等极富情趣和创意的字词会令我们身不由已的进入数学的世界。新课程的实施像一场及时的春雨,焕发出勃勃生机与活力。一接触新教材,我们可以立即感觉到扑面而来的新数学、新气息、新思想、新理念,不仅给教师很大触动,也给学生带来了一种学习的渴望,更为广大教师、学生提供了学习和发展的机会。

3、教师教学形式及教学方法的转变。

当然,任何一种新的事物的出现需要有一个适应过程,有些教师认为新的人教版的教材过于凌乱,知识不系统。我粗浅的认为这正是新教材的又一特点,它将初中的数学知识内容按照学生的年龄特点,人们的认知规律,分年段来完成,是可取之举。

初三数学数与式教案篇十三

一、教学目标:

1、知识目标:通过教学使学生学会从实际生活中抽象出数,并会认、会读、会写6.7这两个数,并能用6和7表示物体的个数及事物的顺序和位置,学会比较数的大小。

2.能力目标:培养学生观察、比较、口头表达的能力,渗透数学来源于生活,理解数学与日常生活的紧密联系,并运用于生活的辨证唯物主义思想。

3.情感目标:通过探究活动,激发学生学习的热情,培养学生主动探究的能力。

二、教材的重点、难点:

本节课的重点是:会读写6和7,并能用6和7表示物体的个数和事物的顺序。

本课难点是:渗透集合、对应、统计等思想

三、教学过程

(一)复习导入

复习数数012345

(二)创设情境说一说、数一数

出示同学们值日的情境图

1、让学生说一说,图上都有些什么?

2、它们各有几个,数一数。

3、说一说你是怎样数的?

(三)、摆一摆、画一画

1、让学生数出6根小棒,摆一摆,看看你能摆出什么?

2、用7个你喜欢的图形表示数字7.

(三)拓展应用、说一说

说说教室中,哪些物品能用6和7表示?

(四)拨一拨,看一看

1、

2、

3、

4、请学生在计数器上练习拨6个、7个珠子.(说一说你是怎样拨的?)观察直尺,说一说,你发现了什么?比一比(6和7比较大小)猜数游戏(6和7)

(五)说一说,议一议

出示课本图片,共同探讨6和7的意义:

(六)写一写

让学生说一说6和7各像什么?然后教师范写,学生观察,最后学生线描黑,再练习写。

五、课堂小结

初三数学数与式教案篇十四

课题:圆柱的认识(六年级下)。

教材分析:

(一)此部分内容为人教版小学数学六年级下册第二单元的内容,也是小学阶段学习几何知识的最后一部分内容,具体包括圆柱和圆锥的认识,圆柱的表面积,圆柱的体积和圆锥的体积。这两种图形是人们在日常生活中常见的几何形体,教学这一部分内容,有利于进一步发展学生的空间观念,也能为今后的空间几何学习打下基础。本课时教学内容为第一节——圆柱的认识,具体在课本的10~12页。

(二)教材中首先呈现的主题图为现实生活中具有圆柱特征的物体的图片,然后从这些实物中抽象出圆柱的立体图形,给出图形的名称,使学生对圆柱的认识经历由形象——表象——抽象的过程。例1教学圆柱的组成及其特征。并通过快速转动贴有长方形纸的小棒,使学生从旋转的角度认识圆柱,感受平面图形与立体图形的转换。例2教学圆柱侧面、底面及其之间关系。让学生想像侧面展开后的形状,接着让学生剪开侧面,通过操作看到:圆柱的侧面展开后是一个长方形或正方形。然后,再引导学生思考:圆柱展开得到的长方形的长、宽与圆柱的关系,使学生亲历立体图形与其展开图之间的转化。“做一做”通过让学生制作圆柱,加深对圆柱特征以及圆柱侧面与底面、侧面与圆柱的高之间的关系的理解。

教学目标:(1)认识并能指出圆柱的底面及其高,侧面。

(2)掌握圆柱的特征,能列举生活中的圆柱形物体。

(3)理解圆柱的侧面积展开图与圆柱底面的关系。

(4)增强自主探究能力,进一步发展空间观念。教学重点:掌握圆柱的基本特征。

教学难点:圆柱的侧面展开图的认识以及它与圆柱底面的关系。教具学具准备:圆柱模型,纸质圆柱模型(学生用),ppt课件,硬纸板,剪刀,胶水,直尺教学过程:

一、创设情境,激发兴趣。

1.图片欣赏,整体感知圆柱体形象:(ppt)小朋友们,老师这里有一些图片,请大家欣赏。(比萨斜塔,客家围屋,岗亭,蜡烛,灯笼)有没有发现,这些物体的形状有什么共同特点?2.设疑:为什么要把它们设计成圆柱形呢?(美观,坚固,容易滚动。。)。

3.导入课题:恩,圆柱体可谓是我们日常生活中常见的几何图形,它也能给生活带来很多便利,这一节课就让我们再一起好好地认识一下圆柱体。(板书:圆柱的认识)。

二、观察操作,探究新知。

1.实物模型观察,初步了解圆柱的组成:老师这里有一个圆柱模型,每一位小朋友手里的学具中也由一个纸质的圆柱形模型,可以把它拿出来,仔细观察一下,用手摸一摸。思考一个问题:圆柱是由哪几部分组成的?除此之外,你还发现了什么?可以同桌小伙伴合作。(板画:圆柱图形)2.课堂交流:

(1)谁已经知道了圆柱是由哪几部分组成的?谁愿意告诉大家。(两个圆和中间部分)(2)概念学习:

a.我们把这两个圆面称之为圆柱的底面(黑板图中注释指明),所以一个圆柱有两个底面,它们都是圆形。

b.中间这部分称为圆柱的侧面,小朋友们可以再摸一摸,它是凹凸不平的还是光滑的,它是一个平面图形呢还是?(通过观察,我们发现圆柱的侧面是一个光滑的曲面)黑板上注明侧面。

(3)学习了两个概念,通过刚才的观察,你还想说什么?预设1:圆柱的两个底面是一样大小的圆;预设2:圆柱的上下是一样粗细的。。(4)教学圆柱的高:老师有一个疑问,想请大家帮忙——圆柱有没有高呢,它的高究竟是在哪?谁来帮老师指一指,也可以在黑板上画一画。

(5)总结圆柱体的高的特征:通过刚才的学习,我们了解到(1)圆柱的高有无数条(2)圆柱底面上任意一点到对面作任意垂线都是圆柱的高(3)连接圆心之间的距离也是圆柱的高。(若学生面有难色,则老师直接示范几种高,包括正确的,和错误的,请学生从中找出正确的高,并尝试总结圆柱体的高的特征)。

(6)延伸学习:圆柱形生活用具中的高(硬币的高称为厚度,毛巾架的高就是它的长度)。

三、练习应用。

练习一:(ppt)判断下列图形哪些是圆柱体。若是,请分别指出底面,侧面和高;若不是,请说明理由。(圆柱,圆台,侧躺的圆柱,中间小两头大的近似圆柱体)。

四、设置问题障碍,深化圆柱特征学习。

1.设疑:思考一个问题:是不是任意两个完全相等的圆和一个侧面就一定能组成一个圆柱?(ppt明确问题)。

2.实践操作:有的小朋友说能,有的小朋友反对。没关系,我们亲自动手试一试,看看究竟圆柱的底面和侧面有什么关系。请再次拿出你的圆柱模型,拿起剪刀,试试把它沿着虚线剪开,分成两个圆和一个侧面,然后再看一看,这个侧面究竟是怎么样的图形。(师走动了解学生操作情况并辅导)。

3.课堂交流:发现了吗?原来圆柱的侧面是一个(齐答:长方形)那么长方形的长和宽与圆柱体又有什么关系的?再思考一下。(若学生觉得困难,可提示:想不到的小朋友,不妨把其中的一个圆放在桌上,然后试着把剪下来的长方形侧面卷起来,使它刚好可以跟圆贴合)4.总结规律:长方形的长就是圆柱的高,宽就是圆柱底面的周长。

5.回归问题,明确答案:现在谁再来回答老师刚才的问题:是不是任意两个完全相等的圆和一个侧面就一定能组成一个圆柱?(错误,因为圆柱的侧面与底面大小是有关系的)。

五、练习巩固。

1.练习一(ppt出示课本练习)。

2.练习二:请根据圆柱的底面与侧面的关系,自己动手做一做圆柱体。并在模型中注明底面半径,高的长度。

初三数学数与式教案篇十五

1.知道0和任何数相乘都得0的结论。

2.理解0和任何数相乘都得0的道理,并能正确地进行计算。

3.培养学生运用数学思维解决实际问题。

掌握0和任何数相乘都得0的结论。

初步理解0和任何数相乘都得0的道理。

引导探究法、激趣法、问题迁移法。

多媒体课件。

一、复习导入(多媒体出示)(抢答)。

9+0=100+0=256-0=872-0=3407-0=8255+0=。

师:同学们真厉害,这么大的数你们怎么算的这么快呢?是不是发现了什么规律?

生1:“0”和任何数相加还等于原来的那个数。

生2:任何数减“0”也还等于原来的那个数。

师:这节课就在这个基础上继续研究多位数乘一位数的计算。

(揭示课题,有关0的乘法)。

二、创设情境。

师:同学们喜欢小猴子么?(喜欢)这节课老师把几只贪吃的小猴子请到了课堂上,谁能说说你发现了什么。(课件出示教材第66页情境图)。

师:(指名同学说图中的信息)。

师:根据图中的信息,谁愿意给大家编一个有关数学的故事呢?(指名学生根据信息看图讲故事)。

师:学生独立思考然后指名提出问题。

生:(7个盘子里一共还有多少个桃子?)。

三、互动新授。

1.教学例4。

师出示课件(7个盘子里一共还有多少个桃子?)。

要解决这个问题你想到了什么方法,能用算式表示吗?

生1:用加法计算:0+0+0+0+0+0+0=0(个)。

师:你为什么这么计算?为什么7个0相加等于0?

生:因为0表示什么都没有。

师:还可以怎么列算式?

生2:用乘法计算:0×7=0(个),也就是求7个0是多少。

师:说的真好这是一道解决有关0的乘法的问题,同学们在列完算式以后,千万不要忘记写答语。

2.想一想,0×3,9×0,0×0各等于多少呢?为什么?(课件出示)。

(1)学生独立完成计算。

(2)指名汇报计算结果,并说一说自己的计算思路。

师:谁来说说第一题,并告诉老师你是怎么想的?

生:0×3表示3个0相加的和,就是0。

师:说的很好,谁可以再来说一说?

生:0×3表示3个0相加的和,就是0。

师:其他同学是不是这么想的?

生:是。

师:照着老师的方法同桌讨论分别说一说第二小题,第三小题你又是怎么想的?

(同桌说一说,汇报)。

生:9×0表示9个0相加的'和,就是0。

师:同学们,我们一起来看看他说的对不对(课件出示)。

生:对。

师:谁能来复述一遍。

生:9×0表示9个0相加的和,就是0。

师:0×0又表示了什么?

生:0×0表示一个也没有,还是0。

师:同学们你们和他想的一样吗?

生:一样。

师:(课件出示)同学们真聪明竟然和小天使的想法都一样。

3.提问:请同学们仔细观察上面的算式,小组交流你从算式中发现了什么?(交流汇报)。

生1:上面的算式都是乘法算式。

生2:上面的乘法算式都是0和一个数相乘。

生3:上面的乘法算式的积都是0。

师小结:通过观察上面的算式和总结的规律,你发现了什么?

生:我发现了0和任何数相乘都得0。

4.我们学习了新知识,现在老师来考考大家,完成书上66页做一做第一题。(学生做完出示课件)(指名学生回答)。

师:同学们做完了吗?

生:做完了。

师:那现在老师想考考大家(出示课件)每个同学说一组。

追问个别题你是怎么计算出来的?(0×65+0)。

师:既然同学们都能把结果算出来,现在老师想让同学们通过上面的算式观察一下(讨论:0和一个数相乘与0和一个数相加结果一样吗?为什么?)(可以同桌讨论)。

生:不一样,0和一个数相乘结果还是00和一个数相加结果还是这个数。

四、巩固拓展。

1.完成教材第66页“做一做”的第二题。

2.课件出示:花瓶里插了多少支花?

3.快乐选一选。

4.你能很快说出下面两个算式的计算结果吗?

1+2+3+4+5+6+7+8+9+0。

1×2×3×4×5×6×7×8×9×0。

(因为第二个里面有0,乘后得0,还得0)。

(强调“0”乘任何数都得0)。

五、课堂小结。

师:通过今天的学习。你学会了什么?(指名学生总结回答)。

六、板书设计。

初三数学数与式教案篇十六

(二)通过总结规律的过程,培养学生观察比较,概括的能力.。

教师板书:35.673.567356.73567比较大小.。

订正后提问,这四个数有什么相同特点?(数字及排列顺序一样.)有什么不同?(小数点位置不同,大小不同.)。

板书课题:小数点位置移动的规律.。

1.例1把0.004米的小数点向右移动一位、两位、三位……小数的大小有什么变化?

(1)0.004米等于多少毫米?(板书:0.004米=4毫米)。

(2)师移动0.004米的小数点.。

向右移动一位,变为多少毫米?大小发生了什么变化?(板书:0.04米=40毫米,原数扩大10倍)。

向右移动两位,原数变为多少?是多少毫米?大小有什么变化?(板书:0.4米=400毫米,原数扩大100倍)。

向右移动三位,原数又变成多少?是多少毫米?大小又发生了什么变化?(板书:4米=4000毫米,原数扩大1000倍)。

小数点可不可以向右移动四位、五位甚至更多位?(可以)。

教师:所以我们要在移动位数和扩大倍数的后边点上省略号.。

板书:……。

(3)从这一例子看,小数点向右移动会引起原数怎样的变化?你能总结出规律来吗?

在同学充分发表意见的基础上,引导学生总结出:

小组讨论.。

全班交流讨论结果,引导学生得出:

小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……(板书)。

3.引导学生完整地概括小数点移动位置引起小数大小的变化规律.。

反馈:初步应用规律具体说明小数大小是怎样随着小数点向右(左)移动而变化的.。

完成105页“做一做”及106页上面的“做一做”.。

下面各数同0.372比较,各扩大多少倍?

3.72(扩大10倍,小数点向右移动一位)。

372(扩大1000倍,小数点向右移动三位)。

37.2(扩大100倍,小数点向右移动两位)。

下面的数同506比较,各缩小多少倍?

5.06(缩小100倍)0.506(缩小1000倍)50.6(缩小10倍)0.0506(缩小10000倍)。

4.引导初步解决问题.。

(1)试把0.654扩大10倍、100倍、1000倍各是多少?

(2)同理把43.9缩小10倍,10o倍各得多少?

5.小结:

今天学习了什么知识?

小数点移动变化的规律是什么?

1.填空.(投影)。

(1)把0.3的小数点向右移动一位,原来的数就()()倍,得().。

(2)把8.72的小数点向右移动两位,得(),这个数就比原来()倍.。

(3)把142.5缩小100倍,小数点向()移动()位,得().。

2.下面各数去掉小数点,各扩大多少倍?

0.81.254.0368.73。

3.下面各数,如果把小数点都移到最高位数字的左边,小数的大小有什么变化?

27.35.940.248125.6。

练习二十二第1~3题.。

新课安排了三个层次。

在此基础上学生完整地归纳出移动规律.。

第三层,引导学生初步运用规律解决问题.(不包括补0的问题)。

初三数学数与式教案篇十七

(1)找一找田忌共有多少种比赛方法以及能够赢得齐王的方法。(2)分析这种方法为什么能够取胜齐王。

3、汇报研究分析结果。(1)谈一谈你是按照怎样的顺序来找的。(2)你有什么发现?(田忌只有一种可以取胜齐王的方法。)。

(3)分析:这种方法为什么能够取胜齐王?

小结:像同学们刚才这样,把解决问题的所有可能性一一找出来,并从中找到最好的方法,这是数学中的一种很重要的方法。

4、想知道田忌赛马的故事结局吗?师:田忌第一局比赛输了,正当他束手无策时,他的一个谋士,也就是出谋划策的人,叫孙膑,就像同学们刚才一样,为田忌一一分析各种策略的优缺点,最后找到了这唯一能够取胜的对策,最后,田忌以弱对强,反败为胜。

5、这个故事给我们什么启发?

三、巩固发散。

1、联系课开始的扑克牌游戏同学的牌:

最新人教版小学四年级数学上册全册教案10、7、5老师的牌:9、6、3老师怎样出牌,能够确保自己一定取胜?小结:在游戏中,能不能找到确保自己一定取胜的方法,非常重要。

2、p106——做一做独立思考后,把自己的想法和同学交流。

四、评价反馈。

说一说你有什么收获。

初三数学数与式教案篇十八

1、认识度、分、秒,会进行度、分、秒间单位互化及角的和、差、倍、分计算。

2、通过度、分、秒间的互化及角度的简单运算,经历利用已有知识解决新问题的探索过程,培养学生的数感和对数学活动的兴趣。

3、在独立思考的基础上,积极参与对数学问题的讨论,敢于发表自己的观点,尊重和理解他人的见解,从而在交流中获益。

度、分、秒间单位互化及角的和、差、倍、分计算。

度、分、秒间单位互化及角的和、差、倍、分计算。

量角器、三角尺。

(师生活动)设计理念。

复习。

任意画一个锐角和钝角,用字母分别表示这两个角,用量角器分别理出这两个角的度数。复习角的概念,角的表示及量角器的使用,为学习角度制作准备。

探究新知在航行、测绘等工作以及生活中,我们经常会碰到上述类似问题,即如何描述一个物体的方位。

让学生回忆学过的描述方法,师生共同探讨解决问题的办法。

不断移动可疑船的位置,让学生描述缉私艇的航线,探求解决问题的规律。

方位的表示通常用北偏东多少度、北偏西多少度或者南偏东多少度、南偏西多少度来表示。北偏东45度、北偏西45度、南偏东45度、南偏西45度,分别称为东北方向、西北方向,东南方向、西南方向。

初三数学数与式教案篇十九

本期即将过去,可以说紧张忙碌而收获多多。总体看,我认真执行学校教育教学工作计划,转变思想,积极探索,改革教学,在继续推进我校“自主――创新”课堂教学模式的同时,把新课程标准的新思想、新理念和物理课堂教学的新思路、新设想结合起来,转变思想,积极探索,改革教学,收到很好的效果。

怎样教物理,《国家物理课程标准》对物理的教学内容,教学方式,教学评估教育价值观等多方面都提出了许多新的要求。无疑我们每位物理教师身置其中去迎接这种挑战,是我们每位教师必须重新思考的问题。因此我不断的学习让我有了鲜明的理念,全新的框架,明晰的目标,而有效的学习对新课程标准的基本理念,设计思路,课程目标,内容标准及课程实施建议有更深的了解,本学期我在新课程标准的指导下教育教学工作跃上了一个新的台阶。

积极利用各种教学资源,创造性地使用教材,课前精心备课,撰写教案,实施以后趁记忆犹新,回顾、反思写下自己执教时的切身体会或疏漏,记下学生学习中的闪光点或困惑,是教师最宝贵的第一手资料,教学经验的积累和教训的吸取,对今后改进课堂教学和提高教师的教学水评是十分有用。较强的物理思想方法得于渗透。学生在观察、操作、实验、讨论、交流、猜测、分析和整理的过程中,公式的形成、获得、应用了然于心。提倡自主性“学生是教学活动的主体,教师成为教学活动的组织者、指导者、与参与者。”这一观念的确立,灌输的市场就大大削弱。九年级电路、图型连接、各种物理电学公式的计算、实验都体现学生自主探索、研究。突出的过程性,注重学习结果,更注重学习过程以及学生在学习过程中的感受和体验。这样的探索实验让学生成了学习的主人,学习成了他们的需求,学中有发现,学中有乐趣,学中有收获,这说明:设计学生主动探究的过程是探究性学习的新的空间、载体和途径。教学活动兼顾到知识教育与人文教育的和谐统一,而这些都并非是一朝一夕就能完完成的。需要每一位我不断学习、不断修炼,提高文化水平与做人境界,这将是一个长期而非常有价值的努力过程。

一份耕耘,一份收获。以上成绩的取得离不开领导的支持和全体老师的帮助,教学工作苦乐相伴。以后我将本着“勤学、善思、实干”的准则,一如既往,再接再厉,把工作搞得更好。

【本文地址:http://www.xuefen.com.cn/zuowen/17656296.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档