级数学教案大全(15篇)

格式:DOC 上传日期:2023-12-06 08:39:09
级数学教案大全(15篇)
时间:2023-12-06 08:39:09     小编:HT书生

通过编写教案,可以帮助教师提前规划好课堂教学的步骤和过程。编写教案时应结合教材内容和学生的学习能力,合理选择教学方法和手段。以上是小编为大家整理的教案范文,供大家参考和学习,希望能对大家有所帮助。

级数学教案篇一

1、理解小数除法的意义。

2、掌握小数除以整数(恰好除尽)的计算方法。

(二)能力目标:能够在情境中发现问题、提出问题,在观察比较的过程中感受小数除法的异同,能够与他人合作交流解决问题。

(三)情感目标:经历探索小数除以整数(恰好除尽)计算方法的过程,体验获得成功的乐趣。

小数除法的意义,小数除以整数(恰好除尽)的计算方法。

商的小数点与被除数的小数点对齐。

探究、交流、引导。

一、导入新课,创设情境。

1、淘气打算去买牛奶,你从图上得到了什么数学信息?

2、根据图上的数学信息,你能提出哪些数学问题?

3、教师根据学生提出的问题,引导学生列出算式:11。5÷512。6÷6。

引导学生观察这两个算式与以往我们学过的除法算式有什么不同。(被除数都是小数,除数都是整数。)。

师:我们今天就来研究小数除以整数的计算方法,看看淘气到底应该买哪个商店的牛奶。

二、探索新知,解决问题。

1、师:两个商店牛奶的单价分别是多少呢?我们先算一算甲商店的牛奶单价。

2、学生交流讨论,教师巡视指导。

3、教师引导学生比较汇总的各种方法,认为哪个方法比较简便实用?

引导出“商的小数点与被除数的小数点对齐”。

4、理解算理。

5、引导归纳总结,明确小数除法的计算方法:按照整数除法的计算方法;商的小数点与被除数的小数点对齐。

6、学生尝试计算,教师巡视指导。

三、巩固练习,拓展延伸。

1、完成教材第3页练一练第1题。

集体订正。

2、我是小小神算手。

20。4÷496。6÷4255。8÷31。

引导学生通过对比发现小数除以两位数与除以一位数的,都要注意商的小数点要与被除数的小数点对齐。

3、完成教材第3页练一练第4题。

教师巡视指导。

四、全课总结。

今天你有什么收获呢?

板书设计:

甲商店牛奶每袋多少钱?乙甲商店牛奶每袋多少钱?

11。5÷5=2。3(元)12。6÷6=2。1(元)。

级数学教案篇二

师:同学们前几天我们栽了蒜苗,还记录了它在15天内生长情况的数据,昨天,大家把自己栽种蒜苗的数据进行了整理,制成条形统计图,举在手里,展示一下。

展示一学生的条形统计图

生汇报图中数据

2.提出问题,学生探究作图

师:如果我们还想了解它从第3天到第15天整个的生长变化的情况,该怎么画呢?老师这有几种统计图,请你仔细观察,看哪一种更合适。(师出示条形统计图、扇形统计图、折线统计图)生任选其一。

能不能在你作的条形统计图上作一些修改或补充,把它变成这种统计图呢?

学生在小组内先讨论,再在图上试一试。

学生作图后展示,汇报作了哪些修改,表示什么意思?

3.生成新知,揭示课题

提醒同学们:变成真正的折线统计图还要把原有的条形统计图擦掉

揭示课题:折线统计图

1. 读点

师:图中的点表示什么呢?

生说点的意义,(课件显示并标数量)

2.读趋势,

师:同学们都读出了点所表示的数量(板书数量),由点连成的线呢?

生说表示蒜苗从矮长到高的生长趋势。

读局部趋势,从第几天到第几天长得快,从第几天到第几天长得慢(板书趋势)

3.估计

根据这一趋势请你估计蒜苗第10天大约长到多少厘米?

4.预测

预测第20天大约长到多少厘米,并说说你的想法。

师:我们会读折线统计图了,那你会画折线统计图吗?怎么画呢?

出示笑笑蒜苗生长情况统计表,你能将它制成折线统计图么?

学生独立绘制笑笑的蒜苗生长情况折线图

汇报评价

说说图中的信息

对比自己与笑笑的蒜苗生长趋势,哪些地方相同,哪些地方不同

1.出示 北京地区20xx年5月新增病人的统计图

(1)从上图中你能说说非典新增病人的变化趋势吗?

(2)你能与同学说说产生这种变化趋势的原因吗?

2.出示小玲家室内气温的变化统计图

(1)小玲每隔( )时测量一次气温

(2)这一天从8:00到16:00的气温从总体上说是如何变化的?

(3)请你再提出一个数学问题,并尝试解答。

3、出示百货大楼一年销售冰箱的总数量统计图

根据趋势,作出决策

师:如果你是销售经理,根据今年销售趋势,明年你有什么打算?大约进多少?为什么?

下课后收集生活中的折线统计图,下节课交流

级数学教案篇三

1、能绘制平面示意图,通过制作平面图的过程,使学生知道如何根据方向和距离,在图上标出物体的位置。

2、通过绘制平面图,培养学生的动手操作能力。在活动中,培养学生合作探究的意识和能力。

3、通过解决问题,使学生体会所学知识在生活中的应用,增强学生学好数学的兴趣和意识。

目标:是通过看图回答问题,复习、巩固有关图上方向、角度、距离等知识,为下面自己绘制平面图作准备。

(1)停车场在广场的方向,距离大约是米。小红家在广场的偏方向,距离大约是米。

(2)地铁站在广场东偏南45度方向,距离广场100米。你能在图上标出地铁站的位置吗?并说一说是怎么想的。

1、出示学校的录相或图片

问:学校中有哪些建筑?现在有一些数据,能根据这些数据将这些建筑物在平面图上标出来吗?出示数据:教学楼在校门的正北方向150米处。图书馆在校门的北偏东35度方向150米处。体育馆在校门的西偏北40度方向200米处。活动角在校门的东偏北15度方向50米处。

2、小组讨论:你们打算怎么完成任务?有什么问题要解决吗?

3、小组汇报完成平面图绘制的计划,教师进行梳理:

(1)绘制平面图的方法:

先确定平面图上的方向,再确定各建筑物的距离。如果学生没有说道,老师可以进行引导:你们打算怎样在图上表示出150米,200米和50米?从而帮助学生确定比例尺,和图上距离。

(2)小组合作完成,可以怎样分工,能在有限的时间内又好又快地完成任务。

4、小组活动,绘制平面图。

5、展示各组绘制的平面图,集体进行评议。

(1)评价绘制的正确性,如果平面图有问题,说一说问题是什么,应该怎样确定位置。

订正后交流:你们组认为在确定这点在图上的位置时,应注意什么?怎样确定?

教师小结:绘制平面图时,一般先确定角度,再确定图上的距离。

(2)比较各个平面图,为什么有的图大,有的图小?

小结:1厘米表示的大小不同,图的大小也不同。练习:1、完成书上习题21页3、4题并订正。

老师提供给学生一些建筑物的图片:如医院、学校、商店、银行、邮局、药店等

级数学教案篇四

1、在具体的情境中,进一步认识分数,发展数感,体会数学与生活的密切联系。

2、结合具体情境,进一步体会“整数”与“部分”的关系。

二、重点难点

重点:理解整体“1”,体会一个分数对应的“整体”不同,所表示的具体数量也不相同。

难点:充分体会“整数”与“部分”的关系。

三、教学过程

(一)复习旧知,导入新课

2、今天我们一起来学习《分数的再认识》。

(二)创设情境,学习新知

活动一:分笔游戏,体会单位一

1、分笔活动,找4名同学拿着自己的笔来到讲台。(笔数是2的倍数:4、4、6、8)

2、请你们4名同学拿出自己笔的1/2,看谁拿的又快又准。

3、另找4名同学检查。

4、同学们自己说说是怎么分的。(把全部铅笔平均分成两份,拿出其中的一份。)

5、师提问:他们都是拿出全部笔的1/2,可是拿出来的笔却有的一样多,有的不一样多,这是为什么呢?(每位同学的总数不一样)

活动二:教材p34说一说。

1、带着新的认识,我们来判断两个小朋友看的书一样多吗?

2、小刚和小明都看了各自书的1/3,他们看得页数一样多吗?为什么?学生独立思考一会,同桌交流,再全班反馈。

3、师总结:因为书的薄厚不同,也就是总页数不同,所以两人看的页数也不同。(整体不同,相同分数表示的数量也不同。)

4、在什么情况下,他们读的一样多呢?(整体相同,相同分数表示的数量也相同。)

(三)巩固练习

1、教材p34画一画。

2、教材p35练一练第一题、第二题。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)

四、板书设计

分数的再认识

整体不同,相同分数表示的数量也不同。

整体相同,相同分数表示的数量也相同。

五、教学反思

本节课的教学,我采取以小游戏为开篇来引导学生进一步认识分数,理解分数的意义。在教学和练习中我重点强调了“平均分”和体会“整数”与“部分”的关系。学生在练习时,也能体会到整体不同,相同分数表示的数量也不同,如“印度洋海啸捐款”一题。但在练一练第一题写分数时出现错误很多,其主要原因在于书中没有平均分,而是要画一条辅助线和旋转图形。

级数学教案篇五

(1)知识与技能:学生在已有的知识基础上经历集合思想的形成过程,初步理解集合知识的意义。能结合具体情境体会用“韦恩图”解决有重叠部分的问题的价值,理解集合图中每部分的含义,能解决简单的有重叠部分的问题。

(2)过程与方法:通过观察、猜测、操作、交流等活动,学生在合作学习中感知集合图的形成过程,能用集合图分析生活中简单的有重复部分的问题。

(3)情感态度价值观:在解决实验问题的过程中感受选择解决问题策略的重要性,养成善于思考的良好习惯,体会数学的严谨性,感受数学与生活的联系,提高学习数学的兴趣。

集合思想方法解决简单的实际问题。

集合思想方法的形成过程。

“学习之星”和“劳动之星”的获奖奖励,“智慧星”和“守纪星”的获奖奖励,集合名称的磁板,获奖学生名字的卡片,课件。

一、脑筋急转弯导入新课师:今天这节课上老师会根据同学们的表现,评选出智慧星和守纪星。想要获得智慧星,那你课上需要积极动脑、认真思考。想要获得守纪星,那你课上就要认真听讲、坐姿端正、书写规范。看谁这节课既能获得智慧星又能获得守纪星。

谈话:同学们,你们玩过脑筋急转弯的游戏吗?想不想玩一玩?出示脑筋急转弯——理发师的困惑:

教师边讲解,边用课件播放声音。

师问:进来的怎么只有三个人呢?你们能帮理发师解决他的困惑吗?生:略师:在这里爸爸有双重身份,他既是孩子的爸爸又是爸爸的孩子。身份在这里重复了一次,所以只有3人。(板书:既??又??)像这样的问题,数学上称之为“重叠问题”今天就让我们一起去研究这类问题。

二、集合圈的深入探究师:根据同学们上一周的表现,李老师评选出了7名学习之星和5名劳动之星,那你们知道一共有多少名同学获奖了吗?(12名)师:有不同意见吗?生:没有师:那你们想不想知道都有谁获奖了?(课件展示获奖学生名单)师:从这张光荣榜里,你发现了什么?生:xxx既获得了“学习之星”又获得了“劳动之星”。

师:你这个词用的真好,既??又??(板书)这样说我们就听得很明白了,谁还能像这位同学一样说说你的发现?生1:xxx既获得了“学习之星”又获得了“劳动之星”。

师:谁能把这两个同学的发现连起来说说?生2:

和都既获得了“学习之星”又获得了“劳动之星”。

师:你真会表达。下面请获奖的同学赶快到前面来,老师给大家颁奖。学习之星站到老师的右手边,劳动之星站到老师的左手边。你们俩应该站到哪儿?师:咦,我发现了一个问题,刚才我们明明算了12名同学获奖了,怎么才来了10个人呢?那两个人呢?(学生举手,迫不及待的回答问题。)你们有话想说,那好,你来说说?生:

和都既获得了“学习之星”又获得了“劳动之星”,所以他们两人在获奖名单里重复了。

师:哦,原来是这样。看来同学真是理解了这两个同学的位置了,那这两边呢?谁来说说右边同学的获奖情况?生:右边同学获得了“学习之星”。

师:“学习之星”还有中间的两个同学呢,我们只描述这5个人的获奖情况。

生:这5个人单单只获得了“学习之星”。

师:那谁来说说左边这3位同学的获奖情况?生:左边这3位同学只获得了“劳动之星”。

师:真不错,这下我们弄清楚了。那老师开始颁奖了,左边的同学每人发一颗“学习之星”,右边的同学每人发一颗“劳动之星”,中间的同学每人既发一颗“学习之星”又发一颗“劳动之星”。(师边说边给学生发小星星)师:那刚开始我们算得有12名同学获奖了,在今天的这种获奖的情况下是不对的,你能用画图的方法表示出今天有10位同学获奖了吗?先听清要求:画图时,要画清同学们的获奖情况,还要让我们能直观的看出一共有多少名同学获奖了,注意老师已经把这些同学的名字编好了相应的序号(课件展示),不要写这些同学的名字了,我们只用序号来表示同学就可以了。

生:独立画图。

师:画好的同学可以小组相互交流一下,看看小伙伴们画的图有没有值得你借鉴的地方。(师巡视学生画的图,选择有代表性的图到前面投影。)师:老师选择了几位同学画的图,下面请这几位同学分别到前面来讲一讲他们画的图。

师:像这种重叠问题,我们可以用韦恩图来表示。它是英国的数学家韦恩在1881年发明的,后来人们为了纪念他把这个图叫作韦恩图,也叫集合圈。(板书:集合)师:下面就请同学们跟老师一起用集合圈的方式来画画图。(师边讲边在黑板上画集合圈)先画一个封闭的椭圆表示“学习之星”,画好之后贴上这个集合圈的名字是“学习之星”。接下来该画什么了?生:“劳动之星”的集合圈。

师:那“劳动之星”的集合圈我们应该画在什么位置呢?师:为什么要把“劳动之星”的集合圈有一部分画到“学习之星”的集合圈里面呢?生:因为有人既获得了“学习之星”又获得了“劳动之星”。

师:再画一个封闭的椭圆表示“劳动之星”。下面我们把这些获奖同学的名字贴在相应集合圈的位置里。

师:这个集合圈我们就算画好了,那集合圈的各部分表示什么呢?我们一起来看大屏幕。阴影部分表示什么?师:根据我们画的集合圈在小卷子上列出算式(生列算式)。

师:谁来说说你怎么列的算式,并给大家讲讲你为什么这样列算式?生:我列的算式是7+5-2=10(名),“7”表示7名“学习之星”,“5”表示5名“劳动之星”,减去“2”是因为有2名同学重复了。

师:你讲的真清楚,大家都听明白了吧。

师:谁还有不同的方法?你们看这个图我们相当于把这些获奖同学分了几部分?(3部分)哪三部分?分别是几人呢?那你会列算式了吗?三、问题拓展师:这个问题我算式弄清楚了,现在老师又有想法了,我们下周还要选出7名“学习之星”,5名“劳动之星”,你们帮老师想一想有可能有多少名同学会获奖吗(出示课件)?今天的获奖情况是有2名同学重复了,有10个同学获奖了。那下次获奖可能多少名同学重复呢?生:3名,1名。

师:最多有多少名同学重复获奖?生:5名。

师:为什么?生:因为“劳动之星”只有5人,所以最多只能有5人重复获奖了。

师:谁能按照一定的顺序把下周我们班获奖的重复情况都想全了,并说一说。

生:没有重复、重复1人、重复2人、重复3人、重复4人、重复5人(随着学生说,课件出示)。

师:那每种情况下有多少人获奖呢?分组做师:没有人重复获奖的情况。

生:7+5=12(人)师:那这个集合图该怎么画呢?生:画两个单独的圈,没有重复的部分。

师:(找学生说重复1人、重复3人、重复4人、重复5人的算式,并让学生说3/4清这样列式的原因。)那重复5人的时候,这个集合圈又该怎样画呢?生:“劳动之星”的圈都跑到“学习之星”的圈里去了(课件展示)。

师:那这个部分表示什么意思?有几人?(课件出示如下)学习之星生:这部分表示只获得了“劳动之星”,有2人。

师:我们来观察这些算式,你发现了什么?生:有几个人重复了,就去掉几人。

四、练习提升师:班里获奖同学的情况,我们都弄清楚了,真了不起,那今天没有获奖的同学呢?比如xxx,我想把他的名字也贴在黑板上,我应该贴在什么位置上。(贴在集合圈的外面)为什么啊?贴在外面表示什么呢?师:所以我们班里其他没有获奖的同学,都可以贴在获奖集合圈的外面。现在班里每位同学都找到了自己的位置,下面我们来帮同学们找到自己的位置。

这节课获得智慧星的有人,获得守纪星的有人,两项都获得的有人,两项都没有获得的有人,来上课的学生一共有多少人?师:请同学们,在小卷上独立完成,要求画出集合圈,并列算式。

六、课堂小结师:

今天我们学习了重叠问题,还用集合知识解决了不少问题,谁来说说你这节课的收获?

生1:我学会了画集合圈。

生2:我学会了重叠的问题可以用画集合圈的方法来解决。

生3:集合圈的画图方法能让我们很清楚得看清每个部分有多少人和一共有多少人。

师:你们的收获还真不少同学们,集合圈可以帮我们解决生活中有重复现象的问题以后这样的问题还有很多很多,就等着同学们去发现和解决。好,这节课就上到这里,下课。

级数学教案篇六

教学目标:

1.经历探索分数的基本性质的过程,理解分数的基本性质。能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。

2.经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。培养学生的观察、比较、归纳、总结概括能力。能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。

3.经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。体验数学与日常生活密切相关。

教学重点:

理解分数的基本性质。

教学难点:

能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数

教学过程:

一、创设情境,激趣引新,

1、师:故事引入,揭示课题

同学们,你们听说过阿凡提的故事吗?今天老师这里有一个“老爷爷分地”的数学故事,你们想听吗?(课件出示画面)谁愿意把这个故事讲给大家听?指名读故事(尽可能有感情地)

故事:有位老爷爷要把一块地分给他的三个儿子。老大分到了这块地的,老二分到了这块地的,老三分到了这块的。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈大笑了起来,给他们讲了几句话,三兄弟就停止了争吵。

2、师:你知道,阿凡提为什么会笑吗?他对三兄弟讲了哪些话?

3、学生猜想后畅所欲言。

4、同学们的想法真多啊!聪明的阿凡提是怎么让三兄弟停止争吵的?

二、探究新知,解决问题

1、动手操作、形象感知

(1)、三兄弟分的地真得一样多吗?你能用自己的方法证明吗?

(2)学生独立操作验证。

方法1、涂、折、画的方法

方法2、计算的方法。

方法3:商不变的性质。

(3)观察,说说你发现了什么?

级数学教案篇七

教学目的:

1、使学生理解倒数的意义。掌握求一个数的倒数的方法。

2、渗透事物都是普遍联系观点的启蒙教育。

教学重点:理解倒数的意义和怎样求倒数。

教学难点:求倒数方法的叙述。

教学过程:

开车、步行有前进倒退之分,那么,倒数到底是什么意思呢?今天的内容老师想请同学们自己先来学学。

自学书本p19。并思考以下问题:

1、什么叫倒数?

2、怎么求一个数的倒数?

3、是不是任何数都有倒数?小数有吗?带分数有吗?

1、什么叫倒数?

2、看下面四道题,你能说一些什么有关“倒数”的话。

3、存在倒数有那些条件

(1)两个数。

(2)这两个数的乘积是1。

4、能不能说80是倒数,1/80也是倒数?一个数能叫做倒数吗?

5、概括:倒数是对两个数来说的,它们是相互依存的,必须一个数是另一个数的倒数,不能孤立地说某一个数是倒数。

6、总结求一个数的倒数的方法。

0.2的倒数是多少?

请学生说一说这节课学习了哪些内容。

练习五3—8。

级数学教案篇八

1、知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。

2、认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。

3、理解和掌握分数的基本性质,会比较分数的大小。

4、理解公因数与公因数、公倍数与最小公倍数的意义,能找出两个数的公因数与最小公倍数,能比较熟练地约分和通分。

5、会进行分数与小数的互化。

1、分数的意义和分数的基本性质。

2、理解单位“1”的含义。

1、充分利用教材资源,用好直观手段。

本单元教材在加强教学与现实世界的联系上做了不少努力,同时,教材还运用了多种形式的直观图式数形结合,展现了数学概念的几何意义,从而为老师与学生提供了丰富的学习资源。教学时,应充分利用这些资源,发挥形象思维和生活体验对于抽象思维的支持作用。

2、及时抽象,在适当的水平上,构建数学概念的意义。

为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。因此,在充分展开直观教学,让学生获得足够的感性认识的基础上,要不失时机地引导学生由实例、图式加以概括,构建概念的意义。

3、揭示知识与方法的内在联系,在理解的基础上掌握方法。

在本单元中,假分数化为带分数或整数,约分与通分,分数与小数互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。因此,教学时不宜就方法论方法,而应突出方法的过程,使学生明白操作方法背后的算理,这样就能依靠理解掌握方法,而不是依赖记忆学会操作。

建议共分17课时。

1、分数的意义3课时。

2、真分数和假分数2课时。

3、分数的基本性质2课时。

4、约分4课时。

5、通分4课时。

6、分数和小数的互化2课时。

级数学教案篇九

教学目标:

在具体的情境中,使学生进一步体会加减法的含义,掌握两位数加减整十数的计算,能正确进行计算。

教学过程:

一、导入新课

师:同学们,你们认识青蛙吗?谁能给大家讲一讲关于青蛙的一些知识?(学生互相说说。)

师:同学们,地球是我们生存的家园,我们每个人都有义务保护我们生存的环境,爱护人类的朋友——动物。青蛙就是我们的好朋友。它们每天可以帮助农民伯伯除掉农田里许多的害虫,今天我们就请来了两只可爱的青蛙。(出示情境图)

二、探究新知

1、学生观察“青蛙吃害虫”情境图,看图编故事。

师:谁能看图给同学们讲一个小故事?(指名讲故事)

2、学生自已提出问题并尝试解决问题。

师:你能提出哪些数学问题?

你能解决自已提出的问题吗?

3、小组讨论交流计算方法。

讨论:你是怎么样算的?

讨论:你是怎么样想的?

谁能用计数器拨一拨自已的计算过程?

4、拨计数器,学生根据拨的过程说出相应的算式及结果。

5、游戏:看谁看得最快。

6、看谁算得又对又快。

7、练习

三、课堂小结

这节课你学到什么?

四、布置作业

级数学教案篇十

1.在“数学乐园”的一系列活动中,复习巩固10以内数的顺序,序数和基数;巩固10的组成,10以内的加减法计算。

3.在实践中培养学生初步分析数据,提取数学信息的能力,形成简单的统计观念。

1.激趣。

师:同学们,认识他们吗?(cai播放1~9九个数字娃娃的小动画)

数字娃娃今天特地邀请我们班同学到数学乐园参加游戏比赛。有没有兴趣?

生:有!!!

师:数字娃娃说,只要闯过他们摆的迷宫,大家就可以进数学乐园。敢不敢接受挑战?

生:敢!!!

2.观察迷宫,明确规则。

师:数学娃娃摆了一个什么样的迷宫呢?

生:有1到9个数字,有两个出口。

师:按照什么顺序才能走出迷宫呢?谁知道?

学生发言(按照从1到9的顺序)。

师:指给大家看看吧。

(一个学生上台划出路线图,展示给学生。)

师:对。只有按照从1到9的顺序,才能走出迷宫见到数字娃娃。如果不按顺序,就会被困在迷宫里,也到不了数学乐园了。

3.独立闯迷宫,展示成果。

师:谁有不同方法路线走出迷宫?把它划在自己的课本上。看看自己最多能找出几条路。

(学生在自己课本上用笔划出路线,教师观察学生操作情况。)

师:走出迷宫的同学请举手。到这里来指给大家看看吧。

(学生到黑板上划一划,说一说。)

师: 谁和他不一样?来。

(学生划出不同路线图。)

4.肯定方法的多样,闯出迷宫。

师: 大家找到了这么多条路,都能顺利走出迷宫。但有一点是相同的,都是按照从1到9的顺序。数字娃娃要带大家去数字乐园了。走吧。

师:请大家闭上眼睛,一起从1数到9……到了。(cai出示“数学乐园”画面)

进数学乐园还要有门票的。怎么办呢?

生:有!!!

师:屏幕上出现哪两个数字,就说一个关于它们的组成。比如2,6。

生:2和6组成8。

师:还能怎么说?

生:6可以分成2和4。

师:都可以。

师:我们来“开火车”。哪列“火车”顺利到站,他们小组就可以拿到门票。“小火车,……”

生(齐接儿歌):“……开起来,一开开到我这来。”

(cai随机出现一组组的两个数字)

学生用开火车的形式一个接一个说数的组成。

(游戏顺利完成的,卡片以小组为单位发到各个学生手中。)

1.写算式。

学生用水彩笔在空白卡片上写一个算式,不写得数。

2.同桌互换。

把写有算式的卡片和同桌互换。

3.验门票,进乐园。

学生按小组,挨个读出门票上的算式,说得数,投入写有对应数字的票箱,其余学生做裁判。计算正确投递正确的学生进入“数学乐园”。

1.教师发指令,选拔学生。

师:同学们经过这么多考验,终于顺利来到数学乐园了。等不及要参加游戏比赛了吧?

可是,比赛规定只要十个男同学,十个女同学。怎么办呢?还是考考大家,通过考验了才能参加比赛。

师:请同学们坐整齐了,听到口令作出反应,又快又对的就能参加比赛。准备好了吗?

级数学教案篇十一

1. 使学生知道素数与合数的意义,会判断一个数是素数还是合数,会将自然数按因数的个数进行分类。

2. 使学生在探究活动中,进一步培养观察、比较、分析和归纳能力,感受数学文化的魅力,培养勇于探索的精神。

谈话:同学们,今天先向大家介绍一个世界数学史上著名的猜想。

课件播放:哥德巴赫是200多年前德国的数学家,他提出了一个伟大的猜想任何一个大于4的偶数都可以表示成两个奇素数的和。另一个大数学家欧拉又补充指出:任何大于2的偶数都是两个素数之和。这一猜想被称为哥德巴赫猜想。虽然人们知道这一猜想是正确的,但一直没能从理论上加以证明。数学家们把这一猜想称为数学皇冠上的明珠。我国数学家王元、潘承洞、陈景润先后在哥德巴赫猜想的证明上取得了重大进展,特别是陈景润所取得的研究成果,轰动了国内外数学界,被公认为是最具有突破性和创造性的,是当代在哥德巴赫猜想的研究和证明方面最好的成果。

提问:看了上面的短片,你想到了什么?有什么问题想问吗?(学生可能提出什么样的数是素数等问题)

谈话:大家想知道什么样的数是素数吗?我们今天就一起来研究这一问题。(板书:素数)

谈话:我们来做个实验。请同学们拿出信封里的小正方形,小组分工合作,分别用2个、3个、4个、6个、7个、11个、12个小正方形拼长方形,看看拼出的结果怎样。

学生在小组内活动,教师巡视并指导。

引导:仔细观察拼出的结果,你发现了什么?

通过比较学生会发现:用2个、3个、7个或11个小正方形拼长方形,只有一种拼法;用4个、6个或12个小正方形拼长方形,可以有两种或两种以上的拼法。

提问:为什么用2个、3个、7个或11个小正方形拼长方形只有一种拼法,而用4个、6个或12个小正方形拼长方形可以有两种或两种以上的拼法呢?(2、3、7或11只有两个因数,而4、6或12都有三个或三个以上的因数)

谈话:请同学们先在自己的练习本上写出1~20,并找出每一个数的所有因数,然后根据每个数因数的个数,将它们进行分类。

学生活动,教师巡视。

反馈:根据每个数因数的个数,你把这些数分成了几类?是哪几类?(根据每个数因数的个数,可以把它们分成三类:一类是只有两个因数的;一类是有三个或三个以上因数的;1只有一个因数,分为一类)

提问:只有两个因数的数,它们的因数有什么特点?(两个因数分别是1和它本身)

提问:有三个或三个以上因数的数,它们的因数有什么特点?(除了1和它本身外,还有其他的因数)

再问:为什么把1单独分为一类?(1是一个很特殊的数,它只有1个因数)

谈话:同学们通过自己的活动把自然数分成了三类,并总结出了这三类数的不同特点,那么,它们分别叫什么数呢?打开课本第78页,把例题认真地读一读,填一填,并和同桌的同学说一说你知道了什么。

学生自学课本之后,师生共同揭示素数和合数的概念(补充板书:和合数),同时明确1既不是素数,也不是合数。

提问:在2~20各数中,哪些数是素数?哪些数是合数?

谈话:关于素数和合数,你还想研究哪些问题?还有哪些不懂的问题?

根据提出的问题,有选择地引导学生交流和探索,同时解答学生提出的问题。

出示题目:先找出21、23、29的所有因数,再写出这三个数分别是素数还是合数。

先让学生说一说怎样找出每一个数的所有因数,再判断这三个数是素数还是合数,并说明理由。

先让学生按要求划一划,再说一说哪些数是素数,哪些数是合数。练习后引导学生说一说怎样判断一个数是素数还是合数。

学生独立完成判断,并说明理由。

提问:通过今天的学习,你知道了哪些知识?有什么新的收获?

学生举例检验。

谈话:通过检验,我们发现哥德巴赫猜想是正确的,只是至今还没有人能从理论上完全证明它。我相信,在不久的将来,一定有人能解开哥德巴赫猜想之谜,让我们一起努力吧!

在典型的数学背景材料中激发探索新知的兴趣。数学是人类的一种文化。本节课的设计,教师独具匠心地把素数与合数的教学置于数学文化的背景之中,让学生感受数学文化的魅力,激发了学生对数学的兴趣。课的开始,为学生呈现了有关哥德巴赫猜想的数学背景材料,这是一个200多年来诸多数学家不能解决的问题,但中国的数学家在这方面取得了重大的突破,激发了学生的民族自豪感,数学的奇妙吸引了学生的眼球。而这一情境中素数的概念学生还不了解,解开素数的奥秘自然地成为学生的自觉需要。课的结尾,再一次提出哥德巴赫猜想的问题,让学生通过举例检验猜想的正确性,使课的首尾呈呼应之势。同时,通过简短的语言,引导学生树立探索数学奥秘的理想,体现了教师对促进学生持续发展的关注。

在有效的探索活动中逐步明确素数和合数的内涵。动手实践、自主探索与合作交流是学生学习的重要方式。本课中,教师寓素数与合数的概念于拼长方形的操作活动中,先让学生在操作中初步感受小正方形的个数与拼成长方形的种数之间的关系,将注意力集中到一个数的因数上来;接着,通过写出1~20的所有因数,并根据各个数因数的个数对这些数进行分类,引导学生逐步概括出素数和合数的共同点;最后,让学生自主阅读课本,明确素数和合数的内涵。学生在这一过程中,积累了丰富的数学活动经验,发展了自主探索的意识和数学思考能力,增强了学好数学的信心。

级数学教案篇十二

1、经历把一些物体平均分的活动过程,体会平均分的含义。

2、在数学活动中,学会与他人合作解决问题,培养合作意识。

体会平均分的含义。

媒体课件、桃子卡片、圆片、学生准备圆片、小棒

师生活动

备注

一、课前导入。

二、教学新课。

三、巩固练习。

四、小结。

同学们,新的学期又开始了,在新的学期里,我们将一起学习新的知识,掌握新的本领,解决新的问题。

1、让学生体会平均分的含义。

(1)、出示桃子图片,让学生随意分。

小朋友手里都有6个桃子,你能把它们分成两份吗?小朋友可以互相合作,也可以自己动手分。

(2)、展示学生分的成果。

谁来说说,你是怎么分的呢?

学生会有很多种分发,教师用媒体课件都展示出来。

(3)、发现“平均分”。

让小朋友发表意见,教师可以引导学生发现有两种分法的每一份都是相同的。

小朋友们都发现了有两种分法与别的不同,那么我们就仔细来观察这两种分法:我们发现这两种分法的每一份的数目都是相同的。我们把这样的每一份都一样的分法就叫做“平均分”。让学生和教师共同读几遍。

教师接着演示:把4个桃子分成左边2个,右边2个,引导学生说出这是平均分。并连贯说:“把4个桃子平均分成2份,每份分得2个。”

2、进一步理解平均分的含义。

(1)、教师出示几种物体的分法,让学生说说是不是平均分。

(2)、如果是平均分,分成里几份,每份有几个?

3、让学生动手平均分。

(1)、让学生小组合作将手中的8个圆片平均分,并互相说说平均分成几份,每一份分得几个。

(2)、发表意见。

(3)、表扬说的好的小朋友。

4、动手操作。

(1)、教师提出意见,让学生边操作,边说出结果。

有8个桃子,每只小猴子分得2个,可以分给几只猴子呢?

(2)、让学生动手,找学生演示。

(3)、连起来说说。

(4)、在书上填写出来。

1、完成“试一试”的题目。

(1)、让学生相互合作,边操作边得出结果,填写在书上。

(2)、集体订正。

2、完成“想想做做”的题目。

(1)、完成第一题。

说出哪种是平均分,并说出理由。

(2)、完成第2题。

教师读题目,让学生先圈一圈,再填写。

填写后读一读。

(3)、完成第3题。

这道题目不让学生动手操作,看学生能否回答出。

回答后教师出示教具演示。

今天我们学习了什么?什么样的分法叫做“平均分”?

本节课是让学生发现什么叫做平均分的,所以有些学会已经掌握了平均分的含义,而有些学生却不十分理解。

级数学教案篇十三

这部分内容是在学生理解并掌握分数乘法的意义以及分数乘法的计算方法基础上进行教学的。它是分数应用题中最基本的,不仅分数除法应用题以它为基础,很多复合的分数应用题也是在它的基础上扩展的。因此,使学生掌握这咎应用题的解答方法对他们今后进一步学习较复杂的分数应用题具有重要的意义。例1只涉一个数量,要求一个数量的几分之几是多少。要求的是已知数量的一部分,属于部分与整体的问题。在这里用线段图帮助学生题意,明确求我国人均耕地面积,就是求2500的是多少。从而掌握求一个数的几分之几是多少的实际问题的解答方法。

学生对单位1已经有了一定的理解和认识。已经掌握分数乘法的意义以及分数乘法的计算方法。本课让学生分清把谁看作单位1。借助线段图分析题意,学生在画线段图时会遇到一定的困难,教师要适时指导。

1、经历对实际问题的探究的过程,掌握求一个数的几分之几的问题的解答方法。并能正确地解答。

2、培养学生的分析能力与表达能力。

掌握求一个数的几分之几的问题的数量关系,并能正确地解答。

正确地确定单位1

教学过程备注

分析题意,理解数量关系。

教师引导学生理解我国人均耕地面积仅占世界人均耕地面积的是什么意思?(是把占世界人均耕地面积五光平均分成5份,我国人均耕地面积占其中的2份。)

教师然后让学生试着画一画线段图,分析题意。

全班与教师一起画线段图,借助于线段图理解题意,要求我国人均耕地面积就是求2500的是多少。

列式为:2500=

学生独立完成。

集体订正。

巩固练习。

1、教师出示做一做。

这是一道关于两个量之间的,一个量是另一个量的几分之几的问题。在解答时,教师也先让学生画线段图分析。

然后再独立解答。

2、完成练习四中的部分练习。

课堂小结。

板书:

级数学教案篇十四

这部分内容是在学生认识了一些立体图形、平面图形的基础上进行教学的。主要是让学生经历具体的图形分类活动,对已学过的一些图形进行归类和梳理,了解图形的类别特征以及图形之间的联系。通过拉一拉,亲身体验、发现三角形和平行四边形的特性。

通过联系生活实际理解、感受三角形稳定性和平行四边形不稳定性在实践中的应用。教材安排了三次对图形的分类活动。第一次是对已学的一些图形按是否是平面图形进行分类,第二次是对平面图形按其是否由线段围成进行分类,第三次是对线段围成的图形的边数进行分类。由此可见,根据一定的标准对图形进行分类,了解这些图形的类别特征是本节课的教学重点,也应该是一个主要的目标。三角形的稳定性和平行四边形的易变性在日常生活中应用非常广泛,实用价值很高。由于特性比较抽象,学生理解起来还是有一定的难度。所以,这既是本节课的教学重点,也是教学的难点。

教学目标:

1、通过分类,对已学过的一些图形进行整理归类,了解图形之间的类别特征;

3、体会数学知识在实际生活中的应用,激发学生学习的兴趣。

第一、二个教学目标将在教学第二个环节“合作交流,探究新知”通过学生动手操作、小组合作交流来落实。第三个教学目标主要通过第三个教学环节“运用拓展,课外延伸”来落实。

学生在前面已经认识了这些图形,对它们的特征有了一个基本的了解。分类的思想,学生也已经接触过,曾进行过数的分类。加上城区学生基础比较好,所以按一定的标准进行分类应该不难。只是学生对三角形和平行四边形的特性应用平时关注的较少,理解起来可能会有困难。

1、说教法

(1)多媒体教学法

在教学中,我充分利用多媒体教学课件引发学生的兴趣,调动学生的情感投入,激活学生原有知识和经验并以此为基础展开想象和思考,自觉地构建良好的知识体系,特别是通过课件展示三角形和平行四边形特性在生活中的应用的实例,非常形象。,有助于学生理解。

(2)自主探索和合作交流教学法

动手操作、自主探索、合作交流是学生学习数学的重要方式,转变教师角色,给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考,并与同伴交流,亲身经历问题提出、问题解决的过程,体验学习成功的乐趣。

2、说学法

(1)自主观察思考

学生是学习的主体,只有当学生真正自己主动、积极的参与到学习中时,才能最为有效地提高学生的学习效果。引导学生自己来观察图形的特点,思考分类的标准,有助于培养学生的独立思考能力。

(2)小组合作学习

小组合作学习能够帮助学生在有限的时间里,通过与他人的合作获取更多的方法,找到合适、有效的解决问题的方法。本课让学生在自主观察思考的前提下,通过小组合作学习来进一步拓宽学生的思维空间,提升学生的学习能力。

本节课我主要设计了五大教学环节:

(一)创设情境,激趣导入

通过对话交流,引导学生回忆已经学过的图形,借机引出课题,交代学习目标。

(二)合作交流,探究新知

1、学生分组尝试分类

提出分类问题之后,让学生先思考一下如何分类,在独立思考的基础上再让学生借助学具分小组动手分一分,说一说。

2、集中交流分类标准

先让学生上台粘贴,再说一说是怎样分的。然后逐步引导学生一步一步地分。边分边交流分类的标准。

3、梳理思路,展示过程。教师用课件演示分类的过程,加深学生对图形类别特征的认识。

4、动手实践,探讨特性

先由生活中大桥、伸缩门等图片引出问题,引导学生大胆猜想,如果换成三角形、平行四边形将会出现怎样的情况。然后让学生借助学具动手操作,亲身体验、发现三角形和平行四边形的特性。再让学生回忆学生中应用了特性的实例,加深对特性的理解。

(三)运用拓展,课外延伸

1、谁能说说图的意思(教材23页第3题)。为什么现在可以坐了?

2、欣赏图片:其实在我们生活当中存在着许多我们学过的图形,聪明的建筑师们不仅利用他们设计出了许多漂亮的建筑,同时又利用他们的特性设计出了不可思议的雄伟建筑。它们中有的都有好几百年的历史了,虽然历经风雨沧桑,但是依然完好无损保持了原样。下面就请同学们跟着老师一起欣赏这些有名的建筑图片,去感受图形带来的魅力。

3、课外观察:生活中哪些地方应用了三角形的稳定性和平行四边形的不稳定性。

4、运用今天学过的知识加固摇晃的椅子。

(四)总结评价,交流收获

“这节课马上就要结束了,你能谈谈你的收获,并对自己或者其他同学的学习给出一个评价吗?”学生可以说知识上的收获,也可以说情感上的收获,既发挥了学生的主动性,又将本堂课的内容进行了总结。评价自己或他人的学习表现,生生互动评价,学生既认识自我,建立信心,又共同体验了成功,促进了发展。

级数学教案篇十五

1.理解三位数加三位数的算理,掌握计算方法,能够正确笔算三位数加三位数连续进位的加法题。

2.能根据实际,选取合理的方法正确、灵活地计算三位数加三位数。

3.理解验算的意义,会正确进行三位数加法的验算,初步养成检查与验算的习惯。

4.经历用万以内的加法解决问题的过程,体验数学与生活的密切联系。

掌握三位数加三位数的连续进位加法的计算法则,会正确的进行笔算和验算

正确笔算三位数加三位数的连续进位加法题;能结合实际选取合理的方法计算三位数加三位数。

(一)复习旧知

笔算346+93 657+329

笔算加法时应注意什么?

相同数位对齐,从个位加起。哪一位上的数相加满十,向前一位进1。

(二)新课导入。

1.谈话导入。

师:同学们去过湿地吗?

出示图片,介绍湿地情况。再出示信息:某湿地有野生植物445种,野生动物298种。

师:根据这两条信息,你能提出哪些信息呢?

2.交流问题。

学生交流,教师出示相应问题。

预设1:该湿地的野生植物和野生动物共有多少种?

预设2:该湿地的野生植物比野生动物多多少种?

预设3:该湿地的野生植物比野生动物少多少种?

师:今天这节课,我们先来研究第一个问题。

(三)新课展开

1.探究计算方法。

(1)完整出示例3。

师:这道题,同学们想用什么方法计算?

板书算式:445+298

(2)估算结果并交流。

师:这道题的结果大概是什么?同学们能估算吗?

(3)尝试计算并交流。

师:这道题到底等于多少?同学们能自己想办法计算出来吗?请大家试一试。

全班交流方法:

列竖式计算。

(4)与估算结果相比较。

2.探究验算方法。

(1)自主探索验算方法。

师:这道题算的对不对?同学们会验算吗?

(2)交流方法。

预设1:再重新用原来的竖式计算一遍,看看答案是否相同。

预设2:可以交换445、298的位置,再算一遍。

预设3:利用原来的竖式,把相同数位上的数从下往上再加一遍。

(3)归纳验算方法。

师:大家想出这么多的验算方法,你们真棒!今后大家可以选择自己喜欢的方法进行验算 ,可要养成及时验算的好习惯哦。

3.练一练。

我是小医生,把错误的改正过来。

163+979 395+475

4小结提炼笔算方法。

问题1.今天我们做的加法题有什么共同点?

连续进位

问题2.我们是按怎样的方法算出得数的呢?

相同数位对齐,从个位加起,哪一位上相加满十就要向前一位进1.

问题3.为了保证计算正确,你有什么要特别提醒大家注意的吗?

相同数位要对齐,从个位开始加起,进位的小数字不能漏写,做完以后要及时验算。

(四)练习拓展。

先想一想是否有进位,再计算并验算。

67+93 165+78 409+394

总结回顾

回顾本节课收获。

回顾新课导入时,学生提出的问题,请有兴趣的同学课后研究一下,下一节课继续研究。

作业布置

作业:第38页做一做,4题。

板书设计

【本文地址:http://www.xuefen.com.cn/zuowen/17580945.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档