教案要注重培养学生的创造力和实践能力。其次,教案应选择适当的教学方法,根据学生的学习特点和教学内容进行灵活运用。以下是一些成功教案的特点,希望对您的教学设计有所启发。
三角函数的教案设计篇一
2.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;。
3.能利用三角函数线解决一些简单的三角函数问题。
2.让学生从所学知识基础上发现新问题,并加以解决,提高学生抽象概括、分析归纳、数学表述等基本数学思维能力.
1.通过学生之间、师生之间的交流合作,实现共同探究获取知识.
教学难点:利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用它们的几何形式表示出来.
三角函数的教案设计篇二
本节课是锐角三角形这章的第一节课,是学生在学了直角三角形及勾股定理基础上再来研究直角三角形边与角的关系的内容,本章的知识通过解直角三角形与实际问题中的坡度、方向角方位角建立联系,解决问题。本章是中考必考的知识点,特别是特殊角的三角函数值,一定要熟记。本节课虽考虑到本班学生自从分班以后,学习氛围不浓,而基础又较差,因而必须将难度降低想办法调动学生的学习积极性;但在引入时,既用了直角三角形在数学中的重要地位,用:“黑夜给了我一个黑色的眼睛,我用它来寻找光明”类比数学中的“上帝给了我一双黑色的眼睛,我用它来寻找直角三角形”说明寻找直角三角形对解决数学问题的重要性;然后又引入用学生最近反应学习苦,学习累和不爱护公共财物的情况,从引入课桌要到了到其他贫困地区孩子午休谁桌子下的情况引入爱护公共财物,今儿从而引出本节课相关的知识。虽然大家都在说这节课的亮点就是将德育与数学知识结合起来,注重学科之间的联系。但我始终觉得这样的结合不免显得优点牵强,下来我将在思考如何让本节课的引入与内容结合得更好。
还有一个问题就是我在设计教学时,想到学生函数的基础不好,很怕函数,没有考虑到和函数的定义联系起来,而学生虽然会计算一个锐角的三角函数了,但对为什么把这些值成为这个锐角的三角函数并不清楚,在教学中我忽视了这一细节,也没有一个学生提出疑问,这说明学生只停留在定义的表面,并没有深入思考。因此,在下次教学时,我要设计这么一个问题:“为什么把它们成为函数值?”来启发学生。
三角函数的教案设计篇三
1、下列命题中正确的是()。
a、第一象限角一定不是负角b、负角是第四象限角。
c、钝角一定是第二象限角d、第二象限角一定是钝角。
e、锐角是小于的角f、第一象限角一定是锐角。
g、第二象限角比第一象限角大h、终边相同的角一定相等。
2、集合的关系是()。
a、b、c、d、以上都不对。
3、若三角形的两内角、满足,则此三角形形状是()。
a、锐角三角形b、钝角三角形c、直角三角形d、不能确定。
4、若,且,则为第_______象限角。
5、已知角终边经过点,且=,则=_________。
6、化简:(1)(2)。
例1、已知与角的终边相同,判断和是第几象限角。
变:已知是第三象限角,判断和是第几象限角。
例2、已知扇形的周长为,圆心角为,则扇形的弧长和面积为多少?
例3、已知,求,的值。
例4、已知2,求下列各式的值:
(1)(2)。
例5、已知点在角的终边上,且,求的值。
例6、已知sin=,求的值。
班级:高一()班姓名__________。
1、若角与角的`终边相同,则。
2、若是第二象限角,则是第象限角,是第象限角。
3、在半径为的轮子上有一点,轮子按顺时针方向旋转二周半,则圆心与点的连线所转过的角的弧度数为_________,点经过的路程为_________。
4、若,则______________。
5、若,则_________________。
6、已知2,求下列各式的值:
(1)(2)。
7、已知,求下列各式的值:
(1)(2)(3)。
8、已知,且,求的值。
9、化简:(3)(4)。
10、设,求的值。
三角函数的教案设计篇四
1、教材的地位和作用:
同角三角函数的基本关系这一节的内容选自人民教育出版社普通高中课程标准实验教科书a版必修4第一章第二节第二课时,是学生学习了任意角和弧度值,任意角的三角函数后,安排的一节继续深入学习的内容,是求三角函数值、化简三角函数式、证明三角恒等式的基本工具,是整个三角函数的基础,在教材中起着承上启下的作用。同时,它体现的数学思想与方法在整个中学数学学习中都有着重要的作用。所以本节课的重点是同角三角函数基本关系式及在求值中的应用。
2、教学目标。
根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标:
(1)知识与技能:让学生理解公式的推导过程,熟练掌握同角三角函数的基本关系,并能在已知某角的一个三角函数值的情况下,求出其他三角函数值。
(2)过程与方法:通过公式的推导、证明和应用,培养学生逻辑推理能力;通过例题与练习的教学提高学生运算能力和分析解决问题的能力。
(3)情感态度与价值观:培养学生积极参与大胆探索的精神;让学生通过自主学习体验学习的成就感,培养学生学习数学的兴趣和信心。
3、教学重点和难点。
(1)教学重点:同角三角函数的基本关系。
(2)教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式运用。
二、学情分析。
为本节课的学习奠定了良好的思想基础和能力基础,但在探究问题的能力,合作交流的意识等方面还有待加强。所以同角三角函数关系式在解题中的灵活选取,及使用公式时由函数值正负号的选取而导致的角的范围的分类讨论是本节课的一个难点。
三、教法分析。
本节课主要采用自主探究式教学方法.充分利用已学过的知识,尽可能地增加教学过程的趣味性、实践性.在教师的启发指导下,强调学生的主动参与,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的。通过教师在教学过程中的点拨,启发学生通过主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。
四、学法指导。
在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,通过合作交流、共同探索来寻求解决问题的方法。
五、教学方法:
引导发现法、启发法。
三角函数的教案设计篇五
2结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期。
3会用代数方法求等函数的周期。
4理解周期性的几何意义。
周期函数的概念,周期的`求解。
1、是周期函数是指对定义域中所有都有。
即应是恒等式。
2、周期函数一定会有周期,但不一定存在最小正周期。
例1、若钟摆的高度与时间之间的函数关系如图所示。
(2)求时钟摆的高度。
(1)(2)。
总结:(1)函数(其中均为常数,且。
的周期t=。
(2)函数(其中均为常数,且。
的周期t=。
例3、求证:的周期为。
例4、(1)研究和函数的图象,分析其周期性。
(2)求证:的周期为(其中均为常数,
且
总结:函数(其中均为常数,且。
的周期t=。
例5、(1)求的周期。
(2)已知满足,求证:是周期函数。
课后思考:能否利用单位圆作函数的图象。
六、作业:
七、自主体验与运用。
a、b、c、d、
a、b、c、d、
a、b、c、d、
a、b、c、d、
5、设是定义域为r,最小正周期为的函数,
若,则的值等于()。
a、1b、c、0d、
7、已知函数的最小正周期不大于2,则正整数。
的最小值是。
8、求函数的最小正周期为t,且,则正整数。
的最大值是。
9、已知函数是周期为6的奇函数,且则。
10、若函数,则。
11、用周期的定义分析的周期。
12、已知函数,如果使的周期在内,求。
正整数的值。
13、一机械振动中,某质子离开平衡位置的位移与时间之间的。
函数关系如图所示:
(2)求时,该质点离开平衡位置的位移。
14、已知是定义在r上的函数,且对任意有。
成立,
(1)证明:是周期函数;。
(2)若求的值。
三角函数的教案设计篇六
本节课是第一轮初三中考总复习有关锐角三角函数的复习课,根据现在的中考特点及考纲要求,进行相应的复习和巩固。现就本节课的课堂教学评价如下:
1、正确分析现在中考命题的方向、热点及考纲要求,得出有关锐角三角函数考点的知识要点及各种题型,通过课堂教学在锐角三角函数的基本概念及运算等基础知识和基本技能得到相应的发展。
2、本节课采用分阶段,分层次归类复习。
(1)基本概念领会阶段。学生对概念,公式,定义的理解与掌握。
(2)基本方法学习阶段。使学生对有关基本技能训练,掌握课本例题类型,能举一反三,触类旁通。
(3)针对练习阶段。检查学生对基本概念,基本技能的掌握情况。
3、本节课选题方面有以下几个特点。
(1)有针对性,突出重要的知识点和思想方法。
(2)具有一定的应用性,即能考察学生的数学基础知识,又能考察学生的数学应用能力。
(3)富有一定的思考性。有几个例题,有分类思想方法,能锻炼学生思维的灵活性。
(4)有计划地设置练习中的思维障碍,使练习具有合适的梯度,提高训练的效率。
4、本节课教师能够充分调动学生上课兴趣,从而使学生复习数学的积极性,主动性发挥出来,这样做到以学生为主,教师起主导作用。
三角函数的教案设计篇七
一、弄清对邻斜。
锐角三角函数是定义在直角三角形中的研究边角之间的关系。而锐角三角函数值实质上就是边与边之间的'一种比值,它能沟通了边与角之间的联系,为解直角三角形提供了角边关系的根据。不管角怎样变,斜边是固定的,直角边或是某一锐角的对边或是某一锐角的邻边。不要死记硬背a,b,c的比值。记清对邻斜两者之比。
三、应用公式变形解决实际问题。
三角函数的教案设计篇八
教学反思:
锐角三角函数在解决现实问题中有着重要的作用,但是锐角三角函数首先是放在直角三角形中研究的,显示的是边角之间的关系。锐角三角函数值是边与边之间的比值,锐角三角函数沟通了边与角之间的联系,它是解直角三角形最有力的工具之一。
在今后教学过程中,自己还要多注意以下两点:
(1)还要多下点工夫在如何调动课堂气氛,使语言和教态更加生动上。初中学生的.注意力还是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。如何找到适合自己适合学生的教学风格?或严谨有序,或生动活泼,或诙谐幽默,或诗情画意,或春风细雨润物细无声,或激情飞扬,每一种都是教学魅力和人格魅力的展现。我将不断摸索,不断实践。
(2)我将尽我可能站在学生的角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,舍得把课堂让给学生,让学生做课堂这个小小舞台的主角。而我将尽我最大可能在课堂上投入更多的情感因素,丰富课堂语言,使课堂更加鲜活,充满人性魅力,下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。
三角函数的教案设计篇九
这是一节初三总复习课,内容是锐角三角函数。王老师以基础知识的复习、基本技能的训练为主,紧跟教学大纲,选择了几个典型例题,开拓了学生的知识面,丰富了学生的题型结构。同时向学生进行了一题多种解法思想的渗透,这样活跃了学生的思维,丰富了学生的知识内涵。老师对教材,教学大纲理解得非常透彻,对课堂把握能力强,反应很快,能积极跟上学生的思维,因时制宜的调整教学节奏,语速快而清晰,教态、板书也能给学生有积极的影响,富有感染力。例题的选择合理、新颖且有难度,即有常见的基本计算与证明,也有一定难度的探索型、操作型问题,更有对于知识点综合应用的综合题,层次鲜明,满足了不同奋斗目标学生的不同要求。教学上多媒体的运用,较直观地了解题意,提高解答的准确率,课堂上充分发挥了学生的主体性,以学生的发展为本,通过小组合作,增强了学生的合作意识,又取长补短,互相竞争,营造了良好的教学氛围,而教师知识组织者,只是参与、启发、点拨、纠偏,培养了学生的创造能力和发散思维能力。
三角函数的教案设计篇十
《同角三角函数关系式》是人教版高中新教材必修4第一章第二节的第二课。本节内容是同角三角函数关系式的运用,三种题型“知值求值”“弦化切”“函数思想的应用”。
二、学生情况分析。
本课时研究的是同角三角函数关系式的运用、逆用及变形,因此在教学过程中要发展学生的已有认知,发挥知识迁移。
知识目标:
1、掌握同角三角函数关系式的运用、逆用及变形;
2、掌握同角三角函数关系式的三种题型。
能力目标:
渗透分类讨论思想、方程思想。
情感、态度、价值观目标:
发展学生研究问题、解决问题的能力。
四、教学重难点。
重点:
同角三角函数关系式的运用、逆用及变形;
难点:
2、灵活运用公式做运算。
五、教学方法与策略。
教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学。
三角函数的教案设计篇十一
数学的大题是由小题堆积起来的,只是增加了逻辑过程;难题是由易题延伸出来的,只是将定义与概念以及原理隐藏的更深而已。所以,三角函数的学习,更加注重对定义域概念的学习和深刻的理解。在平时的学习中,更应立足教材,学好用好教材,深入地钻研定义与概念,切忌眼高手低,偏重难题,搞题海战术!比如,弧度制下角的概念,六种三角函数的定义,所有的公式来源,三角函数图像的平移与放缩,等等。说句狠话:弄不懂概念,你就别做题!你做了题,就要弄明白你是在使用什么概念什么定义什么公式!不要追求方法与技巧,因为方法与技巧来源于概念与定义。
2、记住公式不是靠背。
任何一种学习活动,都是先有理解,再有记忆,而后是灵变与应用。面对众多的三角公式,很多同学采用错误的做法:死记硬背!其结果是仍然会用错,仍然记不住。与其花费大量的时间稀里糊涂做题,不如花点时间先从最原始的定义与概念推到公式!我曾经有过一种比较极端然而却非常有效的做法,让一位一想到三角函数公式就晕就错的学生先不做题,先整理理论,用定义与概念相互说明,用公式与公式相互推导。理论系统明白了,解题的思路和方法技巧也就顺理成章了。
3、学会反思与整合。
建构主义学习观认为知识并不是简单的由教师或者其他人传授给学生的,而只能由学生依据自身已有的知识、经验,主动地加以建构。建构一词包含有两重含义,一是悟,二是创造。一个批判、选择、和存疑的过程,一个充满想象、探索和体验的过程。你不想学,老师强行的逼迫是不容易的或者说是作用不大,俗话说“强扭的瓜不甜”嘛!数学学习不但要对概念、结论和技能进行记忆,积累和模仿,而且还要动手实践,自主探索,并且在获得知识的基础上进行反思与整合。所以我们在平时学习中要注意反思,只有这样才能使内容得到巩固,知识的得到拓展,能力得到提高,思维得到优化,创新能力得到真正的发展,希望大能够让数学反思与整合成为我们的自然的习惯!
三角函数的教案设计篇十二
3.探究发现任意角与的三角函数值的关系.
利用诱导公式(二),口答下列三角函数值.
(1).;(2).;(3)..
喜悦之后让我们重新启航,接受新的挑战,引入新的问题.
由sin300=出发,用三角的定义引导学生求出sin(-300),sin1500值,让学生联想若已知sin=,能否求出sin(),sin()的值.
1.探究任意角与的三角函数又有什么关系;。
2.探究任意角与的三角函数之间又有什么关系.
遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题-观察发现-到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战.而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战.彼此相信,彼此信任,产生了师生的默契,师生共同进步.
诱导公式(三)、(四)。
给出本节课的课题。
标题的后出,让学生在经历整个探索过程后,还回味在探索,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结.
的三角函数值,等于的同名函数值,前面加上一个把看成锐角时原函数值的符合.(即:函数名不变,符号看象限.)。
设计意图。
简便记忆公式.
设计意图。
本练习的设置重点体现一题多解,让学生不仅学会灵活运用应用三角函数的诱导公式,还能养成灵活处理问题的良好习惯.这里还要给学生指出课本中的“负角”化为“正角”是针对具体负角而言的.
学生练习。
化简:.
设计意图。
1.小结使用诱导公式化简任意角的三角函数为锐角的步骤.
2.体会数形结合、对称、化归的思想.
3.“学会”学习的习惯.
1.课本p-27,第1,2,3小题;。
2.附加课外题略.
设计意图。
加强学生对三角函数的诱导公式的记忆及灵活应用,附加题的'设置有利于有能力的同学“更上一楼”.
八.课后反思。
对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,针对教材的内容,编排了一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来,通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到了一定的预期效果,尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。
然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。
在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。用全新的理论来武装自己,让自己的课堂更有效。
三角函数的教案设计篇十三
本课教学虽然是复习课,但是学生兴趣盎然,通过本节课的学习把学生学习的三角形单元的各个零散的知识点进行系统梳理,形成知识网络.还通过解决一些实际问题加深对所学知识的理解和运用,还通过一些题组练习区别学生容易混淆的知识点。这样一边整理知识点,一边应用这些知识点解决实际问题,使学生在不知不觉中把三角形的不同知识点有机的联系起来,形成一个完整的知识网络。
1.探索与实践环节。
设计目的是让学生感受到复习课,不仅是已学知识的整理复习,同时还是所学知识的延续,更是探索新知的起点。我设计的题目是应用三角形的内角和来探索n边形的内角和,同时也想渗透一点完全归纳法的思想,当然并不是要让学生知道完全归纳法。
2.数学的发展史环节。
主要是让学生了解三角形知识的发展史,既是数学的发展史。通过神秘的金字塔中三角形知识的运用,让学生体会到数学历史以及学习数学的快乐,增强学习数学浓厚兴趣。
3.评价与反思环节。
设计目的是让学生初步感受更深层次的数学学习评价,让学生逐渐明白学习数学不仅仅只有通过单元测试卷这种书面的形式来评价自己的学习能力和水平,还有更多的评价方法和评价标准,特别是要提醒学生,评价自己是否掌握了学习数学的方法往往比做对了一道题更为重要。
本课重视建构知识网络,发展了学生观察、推理的能力,使学生在复习整理旧知识的同时还能有所获有所得,真正体现了新课提出的练中获得新知,提高了学生的分析综合能力。但是本节课在教学中还没有完全让学生自主回顾、有效参与旧知的整理。
三角函数的教案设计篇十四
角三角函数是定义在直角三角形中的研究边角之间的关系,而锐角三角函数值实质上就是边与边之间的一种比值,它能沟通了边与角之间的联系,为解直角三角形提供了角边关系的根据。
本节课重难点就是对比值的理解,可以从以下几方面着手研究:
(1)讨论角的任意性(从特殊到一般)(2)运用相似三角形性质,让学生领悟到:在直角三角形中,对于固定角,无论直角三角形大小怎么样改变,都影响不到其对边与斜边的比值。
采用激趣设疑方法,从修建扬水站铺设水管问题入手,让学生参与问题讨论,唤起学生学习兴趣和求知欲。再根据从特殊到一般的学习方法,利用特殊角来探究锐角的三角函数,通画图,找出边的长度、角的度数,计算相关方面进行探究,学生发现:特殊角的三角函数值可以用勾股定理求出相关边的长度,然后就问:三角函数与直角三角形的边、角有什么关系,三角函数与三角形的形状大小有关系吗?整堂课都在愉快的氛围中进行。多数学生都能积极动脑积极参与思考。教学中,要关注学生的情感态度,对那些积极动脑,热情参与的同学,都给予了鼓励和表扬,促使学生的情感和兴趣始终保持最佳状态,从而保证施教活动的有效性。
在以后教学中,还要多注意以下两点:
(1)要多花点时间来研究如何调控课堂气氛。学生的注意力是比较容易分散的,兴趣也比较容易转移,因此,越是生动形象的语言,越是宽松活泼的气氛,越容易被他们接受。要不断摸索,不断实践找到合适的教学风格,每一种个性教学都是教学魅力和人格魅力的展现。
(2)要学会换位思考,站在学生的'角度上思考问题,设计好教学的每一个细节,上课前多揣摩。让学生更多地参与到课堂的教学过程中,让学生体验思考的过程,体验成功的喜悦和失败的挫折,学会真正把课堂还给学生,让学生来做课堂的主角。
(3)下课后多反思,做好反馈工作,不断总结得失,不断进步。只有这样,才能真正提高课堂教学效率。
三角函数的教案设计篇十五
1、锐角三角形中,任意两个内角的和都属于区间,且满足不等式:。
即:一角的正弦大于另一个角的余弦。
2、若,则,。
3、的图象的对称中心为(),对称轴方程为。
4、的图象的对称中心为(),对称轴方程为。
5、及的图象的对称中心为()。
6、常用三角公式:。
有理公式:;。
降次公式:,;。
万能公式:,,(其中)。
7、辅助角公式:,其中。辅助角的位置由坐标决定,即角的终边过点。
8、时,。
9、。
其中为内切圆半径,为外接圆半径。
特别地:直角中,设c为斜边,则内切圆半径,外接圆半径。
10、的图象的图象(时,向左平移个单位,时,向右平移个单位)。
11、解题时,条件中若有出现,则可设,。
则。
12、等腰三角形中,若且,则。
13、若等边三角形的边长为,则其中线长为,面积为。
14、;。
三角函数的教案设计篇十六
这是一节初三的复习课,王老师在教案中讲到在近几年中考数学试题中,在锐角三角函数这节命题多以填空题,选择题的形式出现,主要考察三角函数的计算,三角函数的定义,三角函数的增减性,同角三角函数关系,互余三角函数关系。围绕着这个目标,王老师先让学生明白他们应该掌握什么,必须掌握什么,并精心设计了很多练习,从学生的反映中来看,大多数同学都掌握的比较好,基本达到了黄老师事先所制定的教学目标。
王老师教学基本功比较扎实,板书非常清晰,教态和语言有一定的号召力。对教学内容非常熟悉。我想如果把这节课分为两节课,那效果会更加好。
三角函数的教案设计篇十七
《同角三角函数关系式》是人教版高中新教材必修4第一章第二节的第二课。本节内容是同角三角函数关系式的运用,三种题型“知值求值”“弦化切”“函数思想的应用”。
本课时研究的是同角三角函数关系式的运用、逆用及变形,因此在教学过程中要发展学生的已有认知,发挥知识迁移。
知识目标:
1、掌握同角三角函数关系式的运用、逆用及变形;
2、掌握同角三角函数关系式的三种题型。
能力目标:
渗透分类讨论思想、方程思想。
情感、态度、价值观目标:
发展学生研究问题、解决问题的能力。
重点:
同角三角函数关系式的运用、逆用及变形;
难点:
2、灵活运用公式做运算。
教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学。
引入(课件中:)。
两个公式。
新课。
例1练习1(课件中)。
意图:加强学生对公式的理解,让学生学会知值求值,能注意角的取值范围,正确判断函数值符号。
例2练习1(课件中)。
意图:让学生掌握齐次式分子分母同除余弦化正切。
例3练习3(课件中)。
意图:让学生理解掌握方程思想的应用。
小结(课件中)。
作业(课件中)。
三角函数的教案设计篇十八
1.近几年高考对三角变换的考查要求有所降低,而对本章的内容的考查有逐步加强的趋势,主要表现在对三角函数的图象与性质的考查上有所加强。
(3)应用同角变换和诱导公式,求三角函数值及化简和等式证明的问题;
(4)与周期有关的问题。
3.基本的解题规律为:观察差异(或角,或函数,或运算),寻找联系(借助于熟知的公式、方法或技巧),分析综合(由因导果或执果索因),实现转化。解题规律:在三角函数求值问题中的解题思路,一般是运用基本公式,将未知角变换为已知角求解;在最值问题和周期问题中,解题思路是合理运用基本公式将表达式转化为由一个三角函数表达的形式求解。
4.立足课本、抓好基础。从前面叙述可知,我们已经看到近几年高考已逐步抛弃了对复杂三角变换和特殊技巧的考查,而重点转移到对三角函数的图象与性质的考查,对基础知识和基本技能的考查上来,所以在复习中首先要打好基础。在考查利用三角公式进行恒等变形的同时,也直接考查了三角函数的性质及图象的变换,可见高考在降低对三角函数恒等变形的要求下,加强了对三角函数性质和图象的考查力度。
三角函数的教案设计篇十九
(2)能熟练运用正弦函数的性质解题。
2、过程与方法。
通过正弦函数在r上的图像,让学生探索出正弦函数的性质;讲解例题,总结方法,巩固练习。
3、情感态度与价值观。
通过本节的学习,培养学生创新能力、探索归纳能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;使学生认识到转化“矛盾”是解决问题的有效途经;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。
【本文地址:http://www.xuefen.com.cn/zuowen/17574903.html】