编写教案应注重教学方法的选择和教学资源的合理利用。教案的编写应当考虑到教学资源的充分利用和教学环境的适应。教师要具备良好的教案编写习惯,提高教案的整体质量和实用性。
积的变化规律教学教案篇一
《积的变化规律》是整数四则运算内容中的一个重要内容,本节课教材以两组较为简单的乘法算式为载体,引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律,使学生在探索的过程中理解两个因数相乘时,积随着基中的一个因数的变化而变化。我在本节教学中,教学流程是:“研究具体问题——引导发现规律——举例验证规律——总结规律——应用规规律”。通过这个过程的探索,不但让学生理解两数相乘时,积的变化随着其中一个因数或两个因数的变化而变化,同时体会事物间是密切相关的,受到辩证思想的启蒙教育。
在本课教学中,我就充分注意这一点,把课本表格的数字编成应用题,请学生列式计算,注重让学生充分参与积的变化这个规律的发现,充分调动学生参与的主动性,让学生在大量的举例、充分地观察中去感悟积的变化的规律,初步构建自己的认知体系。一是引导学生从上往下观察算式,研究一个因数不变另一个因数变大,积的变化情况;二是引导学生从下往上观察算式,研究一个因数不变,另一个因数变小,积的变化情况;三是引导学生将两个发现总结到一起形成积的变化规律,形成板书,并揭示课题。
在本课教学中,学生通过举例、观察对积的变化规律有了初步的感悟、也有了初步的理解,但学生在描述规律时,语言总是不够准确、表述总是不够完整。此时,我充分地发挥了自己的自主作用,通过语言过渡,是不是所有的乘法算式都有这个规律呢?这时,让学生列举例子来验证。再引导学生完整、准确地描述出积变化的规律,并通过一些重点词的理解,使学生更加深刻地理解规律,构建起完整的认知体系。
在本节课的练习设计中,我注重了练习的层次性和开放性,让学生在练习中不但学会运用积的变化规律解决问题,同时训练了思维的广度与深度,体验到发现规律是一件快乐的事情。
如第一组练习除了让学生完成书中的看算式直接写得数的练习外,我还设计了让学生看算式或图形填运算符号或数字,让学生从具体的数字抽象到图形,培养了学生的推理能力。
第二组练习让学生运用规律解决生活中的问题,其中包括绿地扩建,求面积和超市促销买商品的问题。学生在解决问题的过程中会出现不同的解题思路,我会对学生的不同解题方法进行有效的评价,使学生灵活应用积的变化规律解决问题,从而体验成功的快乐。
第三组练习时让学生完成书中59页的第五题,让学生探索学一个算式中当两个因数都发生变化,积会怎么变,使学生的探索进一步深化。
本节课提出来要研究的地方:要求学生自己出题说明积的变化规律,是否把学生看得太高,课堂生成解决了问题,练习题没有按计算完成。
积的变化规律教学教案篇二
《积的变化规律》是教材四年级上册第三单元的内容,它是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的。本节课主要引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。
在本课教学中,我注重让学生充分参与积的变化这个规律的发现,让学生在充分地观察、大量的举例中去感悟积的变化的规律,充分调动学生参与的主动性,初步构建自己的.认知体系。让学生自己经历研究问题的一般方法是:研究具体问题——归纳发现规律——解释说明规律——举例验证规律。让学生真正成为了课堂的主人,给学生留出了充足的探索空间,让学生自主地进行探索与交流。老师只是适时补充或纠正。我在练习题的设计上,既注重了基础知识的巩固,又注意了不同层次学生的需求。我不仅使学生了解课本上的积的变化规律:两数想乘,一个因数不变,另一个因数乘(或除以)几,积就乘(或除以)几;我还通过练习,让学生感知了:两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)几,积不变的规律;两数相乘,两个因数分别扩大若干倍,积就扩大两因数扩大倍数的积的倍数。如:6×2=1260×20=1200。拓展了学生的思路,我认为平时的教学不应受教材的框框限制,适合自己,适合学生,教会学生思考的方法,培养学生的数学思想是最重要的。
但我反思自己课堂上的一个现象就是:学生通过举例、观察对积的变化规律有了初步的感悟、也有了初步的理解,但学生在描述规律时,语言总是不够准确、表述总是不够完整。“语言表达是学生思维的全面展现”,学生们对于新知内容的理解在很大程度上靠语言描绘去反馈,当学生的概括能力受挫时,我想:首先应该反思的是我们的教学是否让学生真正明白了。当学生真正明白了一道、两道、十道,甚至更多的题目后,怎样概括,而不是让学生就题论题似乎也是个问题。今后我要不断尝试充分地发挥自己的主导作用,怎样抓住一些关键的例子、抓住一些关键的词语让学生去推敲、去体会,最终引导学生完整、准确地描述出积变化的规律,并通过一些重点词的理解,使学生更加深刻地理解规律,构建起完整的认知体系。切不可因为怕耽误进度、怕麻烦、怕罗嗦而剥夺了学生说的权利,剥夺了锻炼学生思维的机会,使主导霸道地代替了主体。
另外,只有让学生真正深刻地理解规律,才能熟练、恰当地运用规律,而不是生搬硬套。
2、一块长方形的果园,长是18米,面积是108平方米。如果长不变,宽扩大3倍,扩大后的果园面积是多少平方米?很显然,这两道题用积的变化规律来解决是最简便快捷的方法。而学生只有真正深刻地理解了积的变化规律,才会活学活用,而不至于再用老法子去绕圈解决,从而使学生更深体会到学数学、用数学,生活中处处有数学。
积的变化规律教学教案篇三
教学目标:
1.使学生经历积的变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2.尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
教学设计:
一、出示尝试题,唤起学生得探求新知的欲望。
同学们的计算能力非常强,能快速口算这些题吗?(出示)。
6×2=1280×4=320。
6×20=12040×4=160。
6×200=120020×4=80。
非常好!同学们,请仔细观察上面每组算式,你能根据每组算式的特点接着再往下写2个算式吗?试一试。
学生独立写出。
二、自主学习,探索新知。
1.现在就请同学们以小组为单位,互相交流自己写得算式,并说一说你是怎样想的?
点拨:扩大的倍数相同。
教师进一步引导:刚刚在这组算式里同学们发现,一个因数不变,另一个因数扩大10倍,积也扩大10倍。
如果让你接着再往下写,你还能再写出来吗?
3.猜一猜,如果一个因数不变,另一个因数扩大5倍,积会有怎样的变化?
请同学们写出一组这样的算式验证一下。学生写出后汇报。
如果扩大30倍呢?如果扩大100倍呢?
你能试着用一句话来概括一下我们发现的这些规律吗?
让我们一起把刚才的发现记录下来:(板书)一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数。
根据我们发现的规律,同学们来查一查你写的算式,对吗?
板书:一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。
谁来出一组算式,验证一下我们的猜想!
5.同学们,你能把我们发现的规律用一句话来概括吗?
板书:一个因数不变,另一个因数扩大(或缩小)几倍,积也扩大(或缩小)相同的倍数。
6.你还有什么问题吗?
刚才同学们通过积极得动脑思考,交流探究,发现了……(学生读板书)这也就是我们这节课重点学习的“积的变化规律”(同时板书课题)。
运用这个规律,能帮助我们解决许多的数学问题。想不想试一试?
三、巩固拓展,运用新知。
59页3、2、4、5。
四、结束。
积的变化规律教学教案篇四
《积的变化规律》是小学数学四年级第三单元的内容,我在上课前进行了认真备课,并向其他教师虚心请教,精心编写了教案,较好地完成本节课的教学任务。
在教学过程中,有许多值得自己反思的方面,现总结如下:
在上课过程中更加认识到小组学习在当前教学中的作用,通过小组合作学习,让每个学生充分发表自己的见解、交流自己对知识的理解。在使用学习的过程中,既能认识到自己的不足,又能迅速学习同伴的长处,取长补短。
尽管在收获中我针对学生的实际学习情况迅速进行了教案的调整,但因此而延长了情境探索的时间,而在后面的自主探索、解决问题中,没有及时调整所用的时间,因此到巩固应用时,时间略显仓促,对练习题的处理没留出足够的时间,使学生在通过练习题提高中,没有达到课前预设的目标,成为一个遗憾,只有在下一结课中弥补。
积的变化规律教学教案篇五
《积的变化规律》是小学四年级数学下册第三单元的内容,这部分内容是在学生学习了三位数乘两位数的基础上进行的教学。本课重点引导学生探究在一个因数不变时,另一个因数与积的变化规律。它是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的。本节课的教学目标是让学生探索因数变化引起积的变化规律,感受发现数学中的规律。
在本节课的教学过程中,我注重让学生参与积的变化规律的发现过程,通过学生的充分观察和认真思考,举出许多实例来感悟积的变化的规律,让学生自己经历研究问题的一般方法:提出具体问题——解决问题——归纳发现规律——解释说明规律——举例验证规律。让学生真正成为了课堂的主人,给学生留出了充足的探索空间,让学生自主地进行探索与交流。
我不但要让学生掌握的积的变化规律,我还通过练习,让学生感知了两个乘数都在变化,积的变化规律。在教学过程中我觉得教学生如何去思考,培养学生的数学思想才是最重要的。
经历的本节课的教学,我发现由于本课例题比较简单,大部分学生通过口算就能直接算出答案,无需通过积的变化规律进行计算,这就给部分思维发散性较差的学生形成了一个假象,以至无法真正懂得该规律的`应用。但这个问题在后面的巩固练习中及拓展应用知识时得到了解决,练习中出现了数字较大的练习,学生能较好地运用规律来解决问题。这在后面拓展应用知识时表现的尤为明显,部分学生还是用以前的老方法进行计算,而不是找到规律直接写得数。在以后的教学中,要特别关注思维慢一些的学生,加强对他们的引导,使他们能更积极更有目标的去思考,增强学生的自信心,使学生能积极主动地去获取知识。
在课堂教学中还存在着一个的问题,那就是学生的语言表达能力有待进一步提高。例如,学生在举例或总结时,经常出现叙述不完整、表达不够准确。“语言表达是学生思维的全面展现”,学生们对于新知内容的理解在很大程度上靠语言描绘去反馈,当学生的概括能力受挫时,我想:首先应该反思的是我们的教学是否让学生真正明白了。经过这次教学反思,我明白了一个道理,只有学生真正理解了所学的知识,在熟练掌握的基础上,才会灵活运用,也只有这样才能使学生更深刻地体会到数学在生活中的作用。
积的变化规律教学教案篇六
计算、再观察比较下列算式:30*24=720(30*2)*24=(30*4)*24=30*(24*5)=后面三个算式等号左边与第一个算式左边比,什么发生了什么变化,算出后三题的积再与第一题的积比一比,你有什么发现?30*24=720(30÷2)*24=(30÷5)*24=30*(24÷6)=后面三个算式等号左边与第一个算式左边比,什么发生了什么变化,算出后三题的积再与第一题的积比一比,你有什么发现?学生在课始交流计算结果与自己的'人发现时,习惯于表述成:一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数;一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。
为了验证大家的发现,我们首先让大家用书中的例题验证,再让大家各举一个例子验证得出积得变化规律。但遗憾的是在后面的练习中学生还是习惯于直接计算积却不用所学的积得变化规律去求积,在我的追问下好的学生想到根据记得变化规律直接用原来的积乘几求到现在的积。
我也反思我的教学中是否有导致学与用剥离的现象,可能在开始的教学中教师只注重学生得出规律的结果反而削弱了学生对规律本身的理解与实际应用,于是在课即将结束前我出示了题目:根据275*46=12650直接写出275*92=的结果并说明解题思路,到此学生才全部理解了记得变化规律的有用性。虽然是后知后觉但毕竟是真正有了“知觉”了。
积的变化规律教学教案篇七
《积的变化规律》是人教版四年级上册第三单元的内容,它是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的。本节课主要引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。
在本课教学中,我注重让学生充分参与积的变化这个规律的发现,让学生在充分地观察、大量的举例中去感悟积的变化的规律,充分调动学生参与的主动性,初步构建自己的认知体系。让学生自己经历研究问题的一般方法是:研究具体问题——归纳发现规律——解释说明规律——举例验证规律。让学生真正成为了课堂的主人,给学生留出了充足的探索空间,让学生自主地进行探索与交流。老师只是适时补充或纠正。我在练习题的设计上,既注重了基础知识的巩固,又注意了不同层次学生的需求。我不仅使学生了解课本上的积的变化规律:两数想乘,一个因数不变,另一个因数乘(或除以)几,积就乘(或除以)几;我还通过练习,让学生感知:两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)几,积不变的规律;还让学生感知两数相乘,两个因数都扩大相同的倍数,积就扩大这两个倍数的乘积倍。如:6×2=12(6×10)×(2×10)=60×20=1200。拓展了学生的思路,我认为平时的教学不应受教材的框框限制,适合自己,适合学生,教会学生思考的方法,培养学生的`数学思想是最重要的。
虽然课堂上学生通过举例、观察对积的变化规律有了初步的感悟、也有了初步的理解,但学生在描述规律时,语言总是不够准确、表述总是不够完整。“语言表达是学生思维的全面展现”,学生们对于新知内容的理解在很大程度上靠语言描绘去反馈,当学生的概括能力受挫时,我想:首先应该反思的是我们的教学是否让学生真正明白了。当学生真正明白了一道、两道、十道,甚至更多的题目后,怎样概括,而不是让学生就题论题似乎也是个问题。今后我要不断尝试充分地发挥自己的主导作用,怎样抓住一些关键的例子、抓住一些关键的词语让学生去推敲、去体会,最终引导学生完整、准确地描述出积变化的规律,并通过一些重点词的理解,使学生更加深刻地理解规律,构建起完整的认知体系。切不可因为怕耽误进度、怕麻烦、怕罗嗦而剥夺了学生说的权利,剥夺了锻炼学生思维的机会,使主导霸道地代替了主体。
另外,只有让学生真正深刻地理解规律,才能熟练、恰当地运用规律,而不是生搬硬套。例如:1、货车在普通公路上以45千米/时的速度行驶,4小时可以行多少千米?8小时呢?12小时呢?2、一块长方形的果园,长是18米,面积是108平方米。如果长不变,宽扩大3倍,扩大后的果园面积是多少平方米?很显然,这两道题用积的变化规律来解决是最简便快捷的方法。而学生只有真正深刻地理解了积的变化规律,才会活学活用,而不至于再用老方法去绕圈解决,从而使学生更深体会到学数学、用数学,生活中处处有数学。
积的变化规律教学教案篇八
对课进行了调整,第二次上课是有毕老师进行执教、先由一组口算导入,交流解题的好方法,从而引出课题,以以温馨提示出示自学指导,整节课经历了学生大胆的猜测,验证,最后得出结论,整节课充分体现了“找规律”课型的特点。在整个授课过程中,毕老师思路清晰,环环相扣。如果能够认真倾听孩子的问题,对孩子的问题进行跟踪提问,这样的课堂还会更紧揍,更有激情一些。
积的变化规律教学教案篇九
您现在正在阅读的人教版《积的变化规律》教学反思文章内容由收集!本站将为您提供更多的精品教学资源!人教版《积的变化规律》教学反思《积的变化规律》是人教版四年级上册第三单元的内容,它是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的。本节课主要引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。
在本课教学中,我注重让学生充分参与积的变化这个规律的发现,让学生在充分地观察、大量的举例中去感悟积的变化的规律,充分调动学生参与的主动性,初步构建自己的认知体系。让学生自己经历研究问题的一般方法是:研究具体问题归纳发现规律解释说明规律举例验证规律。让学生真正成为了课堂的主人,给学生留出了充足的探索空间,让学生自主地进行探索与交流。老师只是适时补充或纠正。我在练习题的设计上,既注重了基础知识的巩固,又注意了不同层次学生的需求。我不仅使学生了解课本上的积的变化规律:两数想乘,一个因数不变,另一个因数乘(或除以)几,积就乘(或除以)几;我还通过练习,让学生感知:两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)几,积不变的规律;还让学生感知两数相乘,两个因数都扩大相同的`倍数,积就扩大这两个倍数的乘积倍。如:62=12(610)(210)=6020=1200。
拓展了学生的思路,我认为平时的教学不应受教材的框框限制,适合自己,适合学生,教会学生思考的方法,培养学生的数学思想是最重要的。
虽然课堂上学生通过举例、观察对积的变化规律有了初步的感悟、也有了初步的理解,但学生在描述规律时,语言总是不够准确、表述总是不够完整。语言表达是学生思维的全面展现,学生们对于新知内容的理解在很大程度上靠语言描绘去反馈,当学生的概括能力受挫时,我想:首先应该反思的是我们的教学是否让学生真正明白了。当学生真正明白了一道、两道、十道,甚至更多的题目后,怎样概括,而不是让学生就题论题似乎也是个问题。今后我要不断尝试充分地发挥自己的主导作用,怎样抓住一些关键的例子、抓住一些关键的词语让学生去推敲、去体会,最终引导学生完整、准确地描述出积变化的规律,并通过一些重点词的理解,使学生更加深刻地理解规律,构建起完整的认知体系。切不可因为怕耽误进度、怕麻烦、怕罗嗦而剥夺了学生说的权利,剥夺了锻炼学生思维的机会,使主导霸道地代替了主体。
另外,只有让学生真正深刻地理解规律,才能熟练、恰当地运用规律,而不是生搬硬套。例如:1、货车在普通公路上以45千米/时的速度行驶,4小时可以行多少千米?8小时呢?12小时呢?2、一块长方形的果园,长是18米,面积是108平方米。如果长不变,宽扩大3倍,扩大后的果园面积是多少平方米?很显然,这两道题用积的变化规律来解决是最简便快捷的方法。而学生只有真正深刻地理解了积的变化规律,才会活学活用,而不至于再用老方法去绕圈解决,从而使学生更深体会到学数学、用数学,生活中处处有数学。
积的变化规律教学教案篇十
本节课是人教版课标实验教材小学数学四年级上册第五单元中的一个知识点,它是在学习了比算乘法和笔算除法的基础上进行教学的。与旧教材相比,本知识点作了适当调整:旧教材中只研究了商不变的规律,而新教材中却改为了商的变化规律,引导学生探讨被除数不变上随除数的变化而变化的规律和除数不变商虽被除数的变化而变化的规律,这就使是这一部分知识更加系统、更加全面。
教材利用学生已有的计算技能,通过计算填表,提出问题引导学生自己思考发现商的变化规律。这部分内容渗透函数思想。这部分内容的教学可以巩固所学的计算知识,同时培养学生初步的抽象、概括能力以及善于观察、勤于思考、勇于探索的良好习惯。
学情分析。
本节课从而激起学生一探究竟的兴趣。
关于商的变化规律,主要包含了商变和商不变两个内容,以前面掌握了乘法运算和除法运算为基础,从乘法变化规律入手,利用乘除法的密切关系,使学生不由自主的想到:在除法中是否也存在着这样的变化规律?它们可能是什么?但只有猜测是不够的,要想证明猜测是否正确,就必须予以事实证明,通过对三次验证过程不同角度的指导,促使学生在理解、掌握本课知识点的同时,经历猜测——验证——结论——应用的数学研究过程,尝试大胆合理猜测、举例加以验证的数学研究方法。学生比较难理解被除数不变,除数和商之间的变化规律。
教学目标。
1、通过猜测、探究引导学生发现并掌握被除数、除数和商的变化规律,并能运用规律解决问题。
2、引导学生经历猜测验证结论应用的一般研究过程,培养学生研究问题、解决问题的能力。
3、培养学生善于观察、勇于发现、积极探索的好习惯。
教学重点和难点。
难点:正确理解被除数不变,除数和商之间的变化规律。
积的变化规律教学教案篇十一
积的变化规律是学生学习乘法以来遇到的第一个规律性的内容。从内容上来说,它更加抽象化,更接近纯数学的学习。如何走好这一步,对学生下一阶段的数学学习,思维能力的发展,具有重要的作用。整堂课的设计始终以学生自主探究为主体,注重展开知识的发生发展过程,重视展开学生的思维过程,使学生真正成为学习的主人,而教师是数学学习的组织者、引导者和合作者,帮助学生在实践探索的过程中体验数学,培养学生数学交流的能力和合作意识,初步获得探索和发现数学规律的基本方法和经验。
《数学课程标准》指出“数学内容应当是现实的”,应当“学有用的数学”。教师不仅考虑到了与生活实际相联系,激发学生的学习欲望,更考虑到与本堂课的知识点要相结合,有利于学生进行探究的素材。本节课联系全社会非常关注的西藏发展和青藏铁路建设为线索,教师充分提供表象将学生带到真实的生活中,让他们在一种宽松的学习氛围下,遵循从具体到抽象的认知规律,兴致勃勃地探索数学知识的奥秘——积的变化规律,并一次次地创设情景,让学生运用规律作出分析、判断和计算,解决了西藏铁路运输和校园改造等生活实际问题,培养了学生的数学意识。
学生参与探索活动,经历发现规律的过程是新课标教材编排的意图,面对新的数学问题,教师鼓励学生在主动观察、猜测、讨论、交流和验证等数学活动中,感受到数学问题的探究性和挑战性,通过看、想、说、动手做、练的过程,顺利的完成本课的教学任务,并能充分体现了数学学习的“亲历性”,努力使学生在获得对数学理解的同时,在思维能力、情感态度等多方面也得到一定的进步和发展。特别是在初步感知规律后,引导学生猜想:是不是所有的乘法算式都具有这样相同的特点呢,再自己想办法加以验证。学生们个个像数学家一样,进行大胆的猜想,并自主地收集例证材料进行验证,发现真正的数学规律。这样,学生在研究发现数学规律的同时,受到了一次科学研究方法的启蒙,是发展学生的创新意识和创造性学习的有效途径。
积的变化规律教学教案篇十二
《商的变化规律》这部分是在学生学习过除数是一位数、两位数的笔算除法的基础上进行教学的。这部分知识的掌握,既为后面学习简便运算做准备,也为学生今后学习小数除法、分数和比的有关知识做铺垫。是小学数学中十分重要的基础知识。
通过分析教材,我觉得三个规律要想在一堂课教学中完成,会显得仓促,不利于学生对知识的理解和掌握。三个规律中,商不变的规律是重点,商随除数变化的规律是难点。只有把它弄清楚了,下面的学习才会顺利。因此我将这一节课分为两个课时,第一课时教学商随被除数、除数变化而变化的规律。总结出:“在除法里,被除数不变,除数乘或除以一个数(0除外),商就除以或乘一个相同的数”。“除数不变,被除数乘或除以一个数(0除外),商也乘或除以一个数相同的数”之后,就进行巩固练习;第二课时教学商不变的规律。总结出:“在除法里,被除数和除数同时乘或除以相同的数(0除外),商不变”这个性质,同时补充被除数、除数末尾同时有零时利用这一性质进行竖式的简化。这样就能够使每一部分的内容都足够完整,使学生有足够的时间通过“计算——观察——猜测——交流——验证——总结”完成学习任务,获得的知识足够清楚明白。在学生参与发现规律、探究规律、总结规律、验证规律的过程中,让学生成为学习的.主人。同时在观察、思考、尝试、交流过程中,实现师生互动、生生互动。
在教学的过程中,教师要多为学生创造交流和思考的时间和空间。把学习的主动权真正地还给学生。让学生在一种宽松、和谐、民主的氛围中去探索交流,感受学习的乐趣,体验成功的快乐,进而提高学习的兴趣。
积的变化规律教学教案篇十三
“商的变化规律”是人教版四年级上册第六单元教学内容。教材内容分两部分呈现,第一部分是商的变化规律,第二部分是商不变规律。在呈现商的变化规律时,教材的呈现方式只呈现了两组式题,让学生计算下面两组题,你能发现什么?而把重点放在商不变规律的探究上。
根据以往的经验,感觉商不变规律更容易探究,也更容易表述。而商的变化规律才是难点,学生更不容易发现与表述,所以在设计时我把“商不变的规律”单独放在第二课时,如此也可以引导学生自主探究,进而有时间去深度探究。第一课时先探究被除数不变时,商和除数的变化规律,再探究除数不变时,商和被除数的变化规律,探究前两个商的变化规律时,由于前面探究过积的变化规律,学生有了一定的经验积累,会通过举例子的方法探究,因此我采用扶放结合,以使学生充分地理解商的前两个变化规律。抓住“什么没变,什么变了,怎么变的,同时商是如何变的?”这一主干线,让学生通过计算,比较被除数和除数的变化,在揭示第一组规律时采取教师引导学生先从上往下观察发现规律,然后让学生举例去验证所发现的规律:除数不变时,被除数乘几,商也乘几,也就是说二者的变化一致,可以说是“朋友关系”,在这个环节,我着重引导学生通过他们之间的交流或补充,比如乘的数不能是0,如此逐步概括归纳,最后自己总结出规律:除数不变时,被除数乘几,商也乘几(0除外),在此基础上再让学生从下往上观察刚才所研究的例子,引导学生归纳概括:除数不变,被除数除以几,商也除以几(0除外),最后启发学生再归纳概括积的变化规律时,可以把两个规律归纳在一起,刚才你们发现的这两条商的变化规律能否也归纳在一起呢?请和同桌先说一说,然后汇报交流。让学生在计算验证的基础上通过讨论交流,最后自己归纳概括出规律,这个过程是学生计算、思考、验证、交流等亲身经历的,里面融入了更多学生的思维碰撞,可以说是鲜活的、灵动的、丰富多彩的。这样的课堂才是有活力的课堂,是有生命的课堂。
在第二组探究商的变化规律教学时,我完全放手让孩子们自己迁移前面的方法主动去从上往下观察,并口述规律,举例验证规律,进而得出结论,充分发挥师生双主体作用,继而通过和第一组规律进行比较,发现:被除数不变时除数乘几,被除数反而除以几,此时的除数和商的变化方式刚好相反,可以说是“敌人关系”,如此通过举例验证,同时采用打比方的方法,更容易让学生理解并记住这个规律。紧接着,我引导学生从下往上观察来研究商的变化规律,最后在小组交流补充下归纳概括出商的第二条变化规律:被除数不变时除数乘(或除以)几,被除数反而除以(或乘)几(0除外)。
这节课,在实际教学过程中仍有许多的环节处理得不够得当,导致学生的体验不深刻,教学时间不够充分,反思有以下几点欠妥:
在学生举例子研究的过程中,我是唯恐完不成这节任务,对于少数困难生来说,节奏有些快,他们还没来得及思考,甚至这个例子还没看清被除数或除数乘了几,老师就要求总结概括规律。学生比较被动。
正是因为节奏快,尽管学生所举的例子才单一,感悟怎会深刻?虽然本节课在积的变化规律的基础上,学生对乘法中各个量之间的关系及其变化规律有了感知,有一部分同学能够很快迁移过来,但也有一部分同学不能或不会迁移过来,因此不能让一部分同学的回答来代表全体同学的回答。而是让他们回答过后,多让其他的同学来说说相关数的变化规律。可以同桌说,说的时候可以让他们按照一定的格式,如被除数不变,除数从xx到xx乘(或除以)了几,商xx,这样的话,多比较几题,多说几遍,中下学生的印象也就深刻起来。另外有个别学生为了省事,不是通过计算来验证规律的,而是直接运用规律,得出答案,缺少了探究的过程。
本节课是新课,要学习商的前两个变化规律,教学的容量比较大。因此在练习的设计上不易过多、过难,以使学生不适应。本课在学习完前两个规律后,出示了有关的5道选择题,主要是被除数与除数、商的之间的变化情况,因为确少了具体的算式的支持,对学生来说比较抽象,因此虽然花费了不少的时间,但效果不够好,应该让学生在熟练掌握商的变化规律的基础上去拓展延伸,同时引导学生通过举例子的方法来观察商的变化情况。从而提过学生应用知识的能力。
我想作为教师在读懂教材的同时,也要读懂学生,要多从学生的角度出发,以他们的兴趣水平、理解能力为出发点去精心安排教学内容、设计教学方法,组织数学学习活动,精选适当的练习题。比如本节课通过举例探究、猜想、然后再举例验证的方法,让学生经历规律的探究过程,在不断交流中,不断补充、完善,最后归纳概括规律水到渠成,如此才能使学生少走歪路,学得容易、学得轻松、学得牢固、学得快乐,真正达到减负、增效的目的。
积的变化规律教学教案篇十四
今天教学了积的变化规律,昨天布置了预习作业:计算、再观察比较下列算式30*24=720(30*2)*24=(30*4)*24=30*(24*5)=后面三个算式等号左边与第一个算式左边比,什么发生了什么变化,算出后三题的积再与第一题的积比一比,你有什么发现?30*24=720(30÷2)*24=(30÷5)*24=30*(24÷6)=后面三个算式等号左边与第一个算式左边比,什么发生了什么变化,算出后三题的积再与第一题的积比一比,你有什么发现?学生在课始交流计算结果与自己的人发现时,习惯于表述成:一个因数不变,另一个因数扩大几倍,积也扩大相同的倍数;一个因数不变,另一个因数缩小几倍,积也缩小相同的倍数。为了验证大家的发现,我们首先让大家用书中的例题验证,再让大家各举一个例子验证得出积得变化规律。但遗憾的`是在后面的练习中学生还是习惯于直接计算积却不用所学的积得变化规律去求积,在我的追问下好的学生想到根据积的变化规律直接用原来的积乘几求到现在的积。我也反思我的教学中是否有导致学与用剥离的现象,可能在开始的教学中教师只注重学生得出规律的结果反而削弱了学生对规律本身的理解与实际应用,于是在课即将结束前我出示了题目:根据275*46=12650直接写出275*92=的结果并说明解题思路,到此学生才全部理解了积的变化规律的有用性。虽然是后知后觉但毕竟是真正有了“知觉”了。
积的变化规律教学教案篇十五
教学内容:
人教版《义务教育课程标准实验教科书数学》四年级上册第93页。
教学目标:
3、在教学过程渗透函数的思想。
教学重点:
教学难点:
全面理解和掌握商的变化规律以及运用商的变化规律进行计算。
一、旧知—铺垫。
1.同学们,在第三单元我们已经学习了积的变化规律,谁来说说?(幻灯出示)现在请你运用规律分别求出这两组算式的积。(课件出示)。
2=80=。
200×20=40×4=。
40=20=。
二、探究——建构。
1、探究商随除数(或被除数)变化而变化的规律。
同学们的知识掌握得真牢固,现在老师把求积变为求商,商是多少呢?(课件出示)。
2=10080=20。
200÷20=1040÷4=10。
40=520=5。
a、这个200在除法算式里叫什么?(被除数)2呢?(除数)求的是(商)。
板书:被除数、除数、商。
b、师:请同学们仔细观察,你发现了什么?(同桌互相说说)。
c、各请一个同学上台汇报,师适时板书。
积的变化规律教学教案篇十六
《商的变化规律》这部分内容是在学生熟练掌握《积的变化规律》和除数是两位数商一位、两位的笔算除法的基础上教学的,让学生掌握这部分知识,既为学习简便运算作准备,也有利于以后学习的相关知识,是小学数学中十分重要的基础知识。教学《商的变化规律》这一课后,感慨颇多,收获也很大:
在前面学生已经学习了“积的变化规律”,为这节课的教学打好了知识基础。教学中我巧妙地抓住并利用了这一基础知识:“我们都知道乘法和除法有着密切的关系,既然乘法中有这样的规律,在除法中是否也存在着类似的规律呢?”引起了大家的思考,学生很自然的由乘法中的变化规律类推出了除法中的变化规律,既准确地找到了新知的切入点、着手点,合理的运用了知识的正迁移,又为后边学习活动的开展奠定了一个探索研究的基调。这就将整节课的落脚点定位在了培养学生解决实际问题的能力上,而非仅仅是知识点的掌握上。
在数学课中,教师要为学生创设三个不同的问题情境,放手让他们自己去观察、猜想、验证,留给学生足够的思维空间。不求十全十美,只求一得。因此,我在这节课中采用一领、二扶、三放的策略,放手让学生自己去探索,每个学生自由计算、思考,小组讨论总结,最后进行全班汇报。学生通过计算、发现、交流、辨析、整合,发现商的变化规律。整个过程比较真实,让学生参与发现规律、探究规律、总结规律的过程中,让学生成为学习的主人。同时让学生在观察、思考、尝试、交流过程中,实现师生互动、生生互动。促进学生主动参与。
本节课,学习了商的变化规律的三条规律,每一次都是让学生通过“观察——探索——交流——总结”完成任务,最后,一个环节,我都让学生根据黑板上的板书,用数学语言自己总结出规律,这样,更加深了学生对规律的记忆,理解。
但是在教学过程中,还是出现了几点值得反思的地方:
这节课的课堂容量比较大,因此,时间安排不够合理,前面花的时间较多,导致练习的时间较少;回答问题没能够面向全体学生;课堂气氛不够活跃,部分学生的积极性也不够高。
我觉得三个规律在一堂课中教学完显得仓促,虽然商不变规律是重点,但被除数不变的规律是难点,它弄清楚了,下面的学习,就轻松多了。课后我想是不是将这一节课分为两个课时,将商的变化规律与商不变的规律分为两节课来教,同时在商不变的规律中还可以加入被除数、除数末尾有零的时候竖式的简化,这样就能够使每一部分的内容都足够完整,使学生获得的知识足够清楚明白。
总之,这节课,使我充分感受到在教学的过程中,教师要多为学生创造交流和思考的时间和空间,把学习的主动权真正地还给学生。让学生在一种宽松的、民主的氛围中去学习,感受学习的快乐,提高学习的兴趣。这样的课堂,才是学生真正喜欢的课堂;在这样的氛围下学习,才是真正快乐的学习。所以,在今后的教学工作中,我会努力不断地去学习、去尝试,不断改变教学方法和授课模式,不断提升自己。
积的变化规律教学教案篇十七
本节课的教学目标是让学生探索因数变化引起积的变化规律,感受发现数学中的规律。在教学中,学生在我的引导下,通过对算式的观察,在小组里讨论自己的发现,自主的去探索规律、验证规律,并使用规律。本课在愉快的环境中进行去学习,鼓励学生积极发言,积极主动地探索新知,不断提高学生的`分析推理能力,让学生体会成功的喜悦,激发学习兴趣,增强自信心。
但也存在改进的地方:
1、对中差生的指导不足。由于本课例的例题较为容易,大部分学生通过口算就直接算出答案,无需通过积的变化规律进行计算,这就给部分思维发散性较差的学生形成了一个假象,以至无法真正懂得该规律的应用。在以后的教学中,特别对思维慢一些的学生,要加强对他们的引导,使他会更积极更有目标的去思考,增强学生的自信心,也提高了解题速度。
2、对学生的评价应该带有鼓励性。这节课的主要特点是让学生在一个愉悦的学习环境中进行思考、探索、讨论、发言,但是部分学生不敢举手大胆的交流。在以后的课堂教学中多一点给学生鼓励,多一点给学生信心,那么学生们就能畅所欲言了。
积的变化规律教学教案篇十八
商的变化规律是第五单元的教学内容,前边已经学习了“积的变化规律”,为这节课打好了知识基础,开始就抓住并利用了这一知识基础:“我们都知道乘法和除法有着密切的关系,既然乘法中有这样的规律,在除法中是否也存在着类似的规律呢?”一句话引起了学生的思考,学生很自然的由乘法中的变化规律类推出了除法中的变化规律,找到了新知的切入点,合理的运用了知识的.正迁移,那么猜测是否正确呢?需要我们进行验证。三次验证是层层递进的,引导学生在“猜”、“算”、“说”的过程中理解和掌握被除数、除数、商他们之间的变和不变的规律,培养了学生认真观察、敢于猜测、举例验证、得出结论的数学学习的方法。借助规律的发现培养学生的探究意识和能力。
这节课主要抓住两个切入点:一是利用好新旧知识之间的联系和乘法中积的变化规律的迁移,引起学生的学习欲望,提出猜测,进行探究学习;二是通过小组学习活动,吧猜测——举例验证——得出结论的数学方法渗透给每一个学生,培养学生的自主探究、自主交流的能力。
这节课用了连着的两个课时,如果让我重新上这节课,我会把商变化的规律和商不变的规律分开来上,充分地联系更多的生活实际,引导学生更深层次地去发现理解商的变化规律。
积的变化规律教学教案篇十九
在本课教学中,我就充分注意这一点,注重让学生充分参与积的变化这个规律的发现,充分调动学生参与的主动性,让学生在大量的举例、充分地观察中去感悟积的变化的规律,初步构建自己的认知体系。
在本课教学中,学生通过举例、观察对积的变化规律有了初步的感悟、也有了初步的理解,但学生在描述规律时,语言总是不够准确、表述总是不够完整。此时,我充分地发挥了自己的'主导作用,抓住一些关键的例子、抓住一些关键的词语让学生去推敲、去体会,最终引导学生完整、准确地描述出积变化的规律,并通过一些重点词的理解,使学生更加深刻地理解规律,构建起完整的认知体系。
【本文地址:http://www.xuefen.com.cn/zuowen/17522170.html】