六年级数的运算教学设计(优质16篇)

格式:DOC 上传日期:2023-12-05 13:53:15
六年级数的运算教学设计(优质16篇)
时间:2023-12-05 13:53:15     小编:念青松

每个人都应该定期做总结,以便更好地规划未来的方向和目标。总结要突出重点,准确表达自己的观点和看法。总结范文展示了不同领域和层次的总结方式和手法。

六年级数的运算教学设计篇一

1.在对已学知识的整理和复习中,进一步理解加法、乘法的交换律和结合律,能合理、灵活、正确地应用运算律进行简便计算。

2.能联系生活实际运用加法、乘法的交换律和结合律,解决简单的实际问题。

3.在自主探究、合作交流中获得成功的体验,激发学习数学的积极性。

教学过程。

一、创设情境,激趣引入。

1.引导观察。

谈话:下面是某新华书店销售的三种图书的价格。

出示:

书名。

每本书的价钱(元)。

《数学故事》。

12。

《成语故事》。

15。

《科幻故事》。

18。

提问:观察表格,你能从中获得哪些信息?能提出哪些数学问题?(如:买一本《数学故事》和一本《成语故事》要用多少元?买三本书一共要用多少元?三年级有5个班,每个班买3本《数学故事》,一共要用多少元?等等)。

随着学生的回答,投影出示学生所提出的问题,并对提出的问题进行整理。

2.解决问题。

提问:同学们很会动脑筋,提出了这么多数学问题,你想解答哪些问题?选择一些自己感兴趣的问题进行解答,并想一想才能怎样比较快地算出结果。

学生独立解决自己所选择的问题,教师巡视。

反馈:你解决了哪些问题?是怎样计算的?(着重交流是怎样运用加法或乘法的运算律使计算简便的)。

板书:12+15+1812×3×5。

12+18+1512×5×3。

比较:观察上面的两组算式,你想到了什么?

3.揭示课题。

谈话:看来,我们在解决问题时,经常要运用加法、乘法的运算律,使计算简便。今天这节课我们就一起来复习加法和乘法的运算律。(板书课题:运算律复习)。

提问:我们已经学过哪些加法和乘法的运算律?你想怎样复习?通过复习达到什么要求?

二、合作交流,知识梳理。

谈话:下面就请同学们回忆一下本学期学过的运算律,用自己喜欢的方法整理出来,并在小组内交流你整理的结果。

学生独立完成整理,教师巡视。

学生中可能出现的整理方法有:举例,文字描述,字母表示等。

小组活动:同学们都用自己的方法整理了已经学过的运算律,请把你整理的结果和小组里的同学一起分享,并讨论一下,能把你们小组同学的各种方法整理在一张表格里吗?试一试。

组织交流,由小组选派代表,交流整理的方法和完成的表格。

根据学生的整理结果,完成下面的表格:

举例。

文字描述。

字母表示。

交换律。

结合律。

交换律。

结合律。

三、巩固练习,加深理解。

1.填一填。

出示题目:

下面的计算分别应用了什么运算律?在括号里填一填。

86+35=35+86()。

72+57+43=72+(57+43)()。

76×40×25=76×(40×25)()。

125×67×8=125×8×67()。

学生独立完成,全班交流。

2.辨一辨。

出示题目:

先在括号填上适当的数,再连一连。

81+()=0+81乘法交换律。

16×4×25=16×()加法交换律。

184+168+32=184+()乘法结合律。

a×56×b=()×56加法结合律。

学生独立完成后,组织交流。

3.比一比。

下面每组题的计算结果相同吗?为什么?

(1)88+(24+12)(2)28×15。

(88+12)+247×(4×15)。

(3)856-(656+120)(4)540÷45。

要求:比较每组的两道题,它们的计算结果相同吗?各是应用了什么运算律或运算性质?

4.算一算。

出示题目:

你能分别算出三角形、正方形中几个数的和,圆中几个数的积吗?

学生独立完成后,全班交流算法,并说一说怎样算比较快。

四、灵活应用,解决问题。

1.下面是某校学生生活区今年上半年用电情况,根据相关信息,解决下列问题。

以小组为单位进行比赛,求出一共用电多少千瓦时,看哪一组算得又对又快。

分组汇报怎样算比较快。

提问:解决了上面的问题,你有什么想对大家说的吗?

2.下面是四(2)班马小平同学阅读三本课外书的情况统计。

提问:根据表中数据,你能提出数学问题吗?

提问:怎样分别求出每本课外书一共有多少页呢?怎样算比较快?自己先想一想,再独立解决。

学生独立列式计算后,指名介绍自己的算法。

师生共同评价各种算法,并总结应用运算律使计算简便的方法。

五、全课总结,质疑问难。

提问:今天的这节课,我们复习了哪些内容?你有哪些收获?还有哪些不理解的问题吗?

学生交流,并评价自己与同伴的表现。

六、课后延伸,挑战自我。

用简便方法计算下面各题。

995+996+997+998+999125×(17×8)×4。

1+2+3+4+5+95+96+97+98+99。

25×32×125。

六年级数的运算教学设计篇二

人教版六年级上册第八单元总复习第2课时《百分数的整理与复习》。“百分数”这一单元主要包括百分数的意义和写法,百分数和分数、小数的互化以及用百分数解决问题等内容,是在学生学习了整数,小数,特别是分数概念和用分数解决实际问题的基础上进行教学的,同分数有着密切的关系。在总复习时,应将复习重点放在百分数的应用方面,同时要注重与分数乘除法问题的对比,分析百分数问题与分数乘除法解决问题在解题思路上的一致性,加强知识间的联系,深化学生对知识之间内在联系的理解,促进学生原有认知结构的优化。通过总复习,既可以帮助学生构建合理的知识体系,也可借助解决生活中的实际问题培养学生应用数学的意识。

【设计理念】

百分数在实际生活中有着广泛的应用,如发芽率、合格率等。所以同学们必须熟练掌握本单元的基础知识,才能轻松地运用这些知识来解决生活中的问题。让学生亲身体验自主探索、合作交流基础上,经历体验问题的形成和解决过程,引发学生对百分数问题的结构特征,解题策略和规律的深层次思考,克服学生消极接受的惰性,培养学生发现问题,解决问题的意识和能力,促进学生主动构建自身知识体系。

【教学策略】

本节课通过获取信息,提出数学问题,解决问题,集体交流,小结方法等环节,引导学生自己对百分数应用题进行整理和复习,深化了学生对知识之间内在联系的理解,促进了学生原有认知结构的优化。数学教学不应局限于知识的传授,应重视培养学生从生活中收集数据、获取数学信息,并从中选取有用的信息解决简单实际问题的能力,使“生活化”、“数学化”得到和谐统一。

【教学目标】

知识与技能:

1、通过对百分数单元知识的归纳和整理,巩固所学的知识,加深对百分数意义的理解,感受百分数在生活中的应用,并运用所学知识解决百分数问题。

2、在百分数知识的迁移与综合运用中使学生经历一个整理信息、利用信息的过程,培养学生分析、综合、比较、抽象、概括等初步逻辑思维能力。使学生体会到数学的价值。

3、在百分数单元复习的过程提升数学思考。发展学生思维,激发起进一步学习的兴趣。

4、使学生形成积极的学习情感,养成良好的学习习惯。

过程与方法:

经历百分数的回顾和应用过程,体验归纳整理、构建知识体系的方法。

情感、态度、价值观:

体验数学知识间的相互联系,感受数学知识在生产、生活中的应用价值,培养学生应用数学的意识及乐学的情感。

【教学重点难点】

重点:1、掌握百分数的意义,以及与分数、小数之间的联系。

2、理解百分数应用题的解题思路,找准量和率之间的对应关系是教学中的重点。

难点:税后利息的计算。

【教学准备】

多媒体课件。

【教学过程】

(一)复习百分数的意义。

教师谈话:我们上段时间学习的哪些知识?这节课,我们就一起来复习百分数的相关知识。 (板书:百分数的整理与复习)

1、复习百分数的意义。

(表示一个数是另一个数的百分之几的数,叫做百分数,百分数也叫百分比或百分率。)

2、判断:“4/5=80%,4/5米=80%米。请同学们说明理由。(分数既可以表示一个数,也可以表示两个数的比;百分数只能表示两个数的比,后面不能带单位名称。)

3、复习分数、小数、百分数之间的互相转化的方法以及注意事项。

小数化成百分数:先把小数点向右移动两位,同时添上百分号。

百分数化成小数:先把百分号去掉,同时把小数点向左移动两位。

分数化成百分数:先把分数化成小数,再化成百分数。

百分数化成分数:先把百分数写成分母是100的分数,再化简。

(二)根据信息,请同学们提出相关的百分数问题。

(小组讨论、交流)

老师今年36岁,丁俊同学今年12岁。

问题:1、老师的岁数是丁俊同学的百分之几?

2、丁俊同学的岁数是老师的百分之几?

3、老师的岁数比丁俊同学的大百分之几?

4、丁俊同学的岁数比老师的少百分之几?

(三)复习稍复杂的百分数应用。

我校男生人数比女生少10%。

问:1、男生人数是女生人数的百分之几?

(指名回答)

2、已知女生人数有500人,求男生有多少人?

(单位“1”是已知的)

3、已知男生人数有450人,求女生有多少人?

(单位“1”是未知的)

(四)复习百分数在生活中的应用:折扣、纳税、利息。

1、商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就表示十分之几,也就是百分之几。

问:什么等于折扣?

2、缴纳的税款叫做应纳税额。应纳税额与各种收入的比率叫做税率。

问:应纳税额等于什么?

3、存入银行的钱叫做本金;取款时银行多支付的钱叫做利息;利息与本金之间的比值叫做利率。

问:什么是利息?如何计算利息?在计算利息时要注意什么?

(五)综合练习:

2、昨天我们班有2人请假了,大家能计算出昨天我们的出勤率吗?

问:出勤率等于什么?

(六)课堂小结:

今天我们复习了什么内容?你有哪些收获?

我们今后要用99%的努力+1%的灵感去创造100%的成功。

【板书设计】

百分数的整理与复习

意义 互化 应用 找准单位“1”

单位“1”是已知(用乘法计算)

单位“1”是未知(用除法或方程计算)

六年级数的运算教学设计篇三

1、了解储蓄的有关知识,能综合应用相关知识合理存款。

2、经历调查、解决问题的过程,体验合作探究的学习方法。

3、体会数学知识在日常生活中的广泛应用,培养学生的理财意识。

了解各种存款方式的利率和相关规定,设计合理的存款方案。

能综合应用条件灵活解决问题。

综合实践《合理存款》

问题分析:根据自学导案,归纳要解决的问题:怎样存款收益最大。明确本活动中存款的本金、可存期限以及这笔存款的用途。明确需要收集与该问题相关的信息。(通过对问题的简单分析让学生初步了解存款的三种方式,为下一步学生收集信息做基础)

课外调查:学生以小组合作学习的方式去银行调查不同的存款方式的利率等信息,学生可以利用网络,或者直接到银行到银行调查存款的方式和相关信息,并做好记录。

设计意图:这节课中教材主题图中所提供的存款利率是以前的利率,和现在的利率是不同的;国债利率也未明确给出。因此,通过课外调查让学生明确当前的存款利率等信息,并且,学生到银行调查是一次有价值的实践活动,是一个学习、体验的过程,可以有意识地体会数学与生活经验、社会现实和其他学科知识的联系。有了这样一个过程使这一实践活动更具有现实意义和实效性。

根据学生调查的信息设计存款方案。

学生以小组合作学习的方式共同设计方案,填写下表。

定期储蓄存款的方案可填在第第一张表格中。其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中。每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。

六年级数的运算教学设计篇四

本单元教学加法交换律、结合律,乘法交换律、结合律。在学生掌握了四则计算和混合运算顺序的基础上,进一步教学运算律,有利于学生更好地理解运算,掌握运算技巧,提高计算能力。

教材的安排是先教学加法的运算律,再教学乘法的运算律;先教学交换律,再教学结合律;先教学运算律的含义,再教学运算律的应用。这样安排有三个好处:首先是由易到难,便于教学。交换律的内容比结合律简单,学生对交换律的感性认识比结合律丰富,先教学比较容易的交换律,有利于引起学生探索的兴趣。其次是能提高教学效率。交换律的教学方法和学习活动可以迁移到结合律,加法运算律的教学方法和学习活动可以迁移到乘法运算律,迁移能促进学生主动学习。再次是符合认识规律。先理解运算律的含义,再应用运算律使一些计算简便,体现了发现规律是为了掌握和利用规律。

1让学生在观察、实验、归纳、类比等学习活动中主动认识运算律。

数学教学不仅要使学生获得数学知识,还要发挥教学内容的育人功能,使学生在多方面有所发展。教材希望学生在本单元的教学中认识运算律并发展初步的推理能力。为此,教材设计了一条鲜明的教学线索,在发现运算律、总结运算律的时候,都给学生留出自主探索的空间,为学生安排了丰富、多样、有效的学习活动。教材安排了“引出一个实例进行类似的实验在众多案例中概括用符号表达”的教学过程,引导学生充分地观察、实验、归纳、类比,获得正确的结论。

(1)引出一个实例。

第56页例题求跳绳的人数,学生分别列出算式28+17=45和17+28=45。由于得数相同,这两道算式可以组成等式28+17=17+28,这是教学加法交换律引出的第一个实例。如果求参加活动的一共有多少人,学生会列式(28+17)+23或28+(17+23),这两道算式的得数相同,也可以组成等式(28+17)+23=28+(17+23),这是教学加法结合律引出的第一个实例。同样,在教学乘法交换律和结合律时,教材也都先引出一个实例。

各个实例的要点是等式中的数学内容,在28+17=17+28这个等式中,等号左右两边的加数调换了位置。在(28+17)+23=28+(17+23)这个等式中,等号左右两边的运算顺序不同,分别是先把前两个数相加,再加第三个数和先把后两个数相加,再与第一个数相加。要组织学生仔细观察第一个实例,了解其中的数学内容,明白当前的学习任务,产生进一步探索的积极性。

教学第一个实例要注意两点:一是教师参与列算式活动。第57页求参加活动的一共有多少人,学生可以列出许多算式,但不一定列出研究加法结合律需要的算式。这时,需要教师与学生平等地一起列算式,避免在列算式这个环节上的不必要纠缠。二是挖掘等式里的数学内容很重要,要把学生的学习心向引导到对运算律的研究上去。但挖掘要紧密联系算式,不要抽象概括,更不能由此就得出运算律。

(2)进行类似的实验。

在第一个实例中看到的数学现象是不是普遍性的规律,这需要在类似的情况中验证。在教学加法结合律时,教材安排分别算一算(45+25)+13和45+(25+13)、(36+18)+22和36+(18+22),看看每组的两道算式中间能填上等号吗?让学生通过实验发现第一个实例中的数学现象在类似的情况中同样存在。教学的时候,不能让学生未经计算就在每组的两道算式之间写上等号。教学时还可以鼓励学生自己写出几组类似的算式,进行更多的验证,体验现象的普遍性。

(3)在众多案例中概括。

教学加法的两条运算定律时,教材都让学生从这些等式中说说“有什么发现”,在教学乘法运算律时,教材要求学生“在小组里说说,有什么发现”,这些问题都引导学生对众多案例进行概括,把同类型案例的共同特征提取出来。

与过去教材不同的是新教材没有用文字语言讲述各条运算律的内容,这并不是不需要概括性的表述,而是把概括运算律的活动留给学生进行,以避免机械接受、死记硬背。学生经过自己的观察、验证,再用自己的语言讲述运算律的内容,才是他们对运算律的实实在在的理解。教学时要十分重视这个环节,给学生提供充分的思考、交流的时间,这是锻炼思维的极好时机。对学生的口头表述不要提过高的要求,基本正确、能讲清楚就可以了。

概括交换律比较容易,概括结合律比较难,特别是加法结合律。要引导学生应用运算顺序的知识和混合运算的经验,以分别讲述等号两边算式的计算步骤为载体进行概括。如(28+17)+23、(45+25)+13、(36+18)+22都是先把前两个数相加,再与第三个数相加;28+(17+23)、45+(25+13)、36+(18+22)都是先把后两个数相加,再与第一个数相加。概括要联系等式,在教学的各个环节经常进行,逐步提高要求。

(4)用符号表示运算律。

教材让学生用图形和字母组成的等式表示运算律,这是过去数学教材里没有的。图形和字母能直观、简洁地显现运算律的本质内容。学生用图形、字母表示运算律时,能充分体会这种表达方式的优越性,从而既加强对运算律的理解,又培养符号意识,发展符号感。

还要指出的是,教学四条运算律的线索基本相同,在具体落实时仍各有不同。首先是学生对交换律的已有感性认识的积累比结合律多,因此教学加法交换律时,教材在引出第一个实例后紧接着问学生“你能再写出几个这样的等式吗?”教学加法结合律时,教材在引出第一个实例后还继续提供感知材料,安排两组算式,让学生经过计算得出同组的两道算式可以组成等式的结论。其次是把加法运算律的学习方式和学习活动向乘法运算律的教学迁移,在教学乘法运算律时给学生更大的主动学习空间。如乘法交换律的第一个实例的等式的'出现比加法交换律快,而且让学生填写完整。又如乘法结合律教学中的类似验证比加法结合律放得开。再次,用符号表示运算律的过程也不相同。加法运算律先用图形表示,再用字母表示。因为图形比字母生动、有趣,学生容易接受,也喜欢使用。乘法运算律则直接用字母表示,跳过了图形表示这个活动,这是考虑到学生已经具有用字母表示运算律的能力和体验。

2让学生在体验中主动应用运算律。

应用运算律能使有些计算简便,简便运算应该是学生的主动追求和自觉行为。教材只编排一道例题作为引导,在“试一试”和“想想做做”里为学生创设了多次体验的机会,让他们主动进行简便运算。

(1)体验简便,选择简便。

第58页第4题和第62页第2题都可以先算一算,再比较每组中的两道算式。通过算和比,学生一要看到同组的两道算式的得数相同;二要感到两道算式的运算顺序不同;三要感到同组的两道算式中,一道计算比较简便,另一道比较麻烦;四要知道同组的两道算式可以利用运算律相互改写。如果学生有了上面四点收获,那么就为教学简便运算作了有益的铺垫。

第59页的例题求三个年级参加跳绳比赛的总人数,通过“哪种方法简便?为什么”这一系列问题引导学生思考,再次体验三个数连加时,如果应用加法结合律把能凑成整百的两个数先加,运算比较简便。另外,在第59页“想想做做”第1题、第62页“想想做做”第3题,创设了简便算法的氛围,引导学生把例题里获得的体验转化成进行简便运算的内在动力,使简便运算成为学生的自我需要和自觉要求。

(2)体验灵活,适应变化。

第60页第2题和第62页第4题中,应用加法结合律,有些题先进行后两个数的计算比较简便,有些题先进行前两个数的计算比较简便,有些题要同时应用加法交换律和结合律才能使计算简便。教材设计这些题的目的是让学生体会应用运算律进行简便运算时,要从实际出发,灵活处理各种具体情况,不要生搬硬套。

第60页第3题是两个三位数相加,其中一个加数接近整百数。如果把这个接近整百数的三位数分解成“几百加几”,原题就从两个数相加变成三个数相加,而且可以利用加法结合律简便运算。类似的还有两个两位数相乘,如果把其中某一个乘数分解成两个一位数相乘,就可以应用乘法结合律使原来不容易口算的题变成容易口算的题。这些技巧都是灵活应用运算律的表现,也是学生充分体验的结果。

教材里还安排了一些实际问题,如第60页第4、5两题、第63页第10题等,这些题都可以应用运算律进行简便运算。设计这些题的目的是让学生体验简便运算不只是数学技能,也能简便地解决实际问题。

体验是学习者的心理行为,外界只能为学习者提供体验的条件,不能代替学习者进行体验。体验既能对数学内容有更深刻的理解,还能产生情感表现。让学生在体验中主动应用运算律是教材的编写理念,教材为学生预留了许多体验的机会,教学时要充分利用这些机会,把学生的体验落到实处,让体验产生效果。

六年级数的运算教学设计篇五

1、两个数相加,交换加数的,结果不变,这叫做。用字母表示为。

2、三个数相加,先把相加,再和相加;或者先把相加,再和相加,它们的结果不变,这叫做。用字母表示为。

3、两个数相乘,交换乘数的,结果不变,这叫做。用字母表示为。

4、三个数相乘,先把相乘,再和相乘;或者先把相乘,再和相乘,它们的'结果不变,这叫做。用字母表示为。

5、在内填上数,在内填上运算符号,在横线上填上运用的运算定律。

29+37+171=37+()。

42×5×8=42×()。

47+=28。

427+39+73=(427)。

35×21×2=21×()。

45×16=45×177+304=177=。

六年级数的运算教学设计篇六

上第一节课时,从课堂教学流程上看,学生写出了很多,也交流了不少,论据可谓充分。可在课后交流评析时,科组长的一句追问:“学生真算了吗?”使我如梦初醒,当时我只设想到只要学生能列举的等式两边相等就算理解了。学生所举的大量实例都只是在机械地模仿,举的例子也是漫无目的,不知道是否真正理解了教师的本意是让他们通过计算来验证,而不是简单地依葫芦画瓢!如此“验证”,徒具其形,未具其神。如此“验证”,所谓的渗透数学思想方法,提升学生的思维水平的目标实现也只能是纸上谈兵罢了。教学的失败使我陷入了深刻的思考。教学流程虽致力于让学生经历“猜想—验证”的过程,也意识到“枚举归纳”是小学阶段重要的验证方法,但是对于“枚举归纳法”都缺乏深层次的认识。于是我们对相关理论进行了再学习,明白了所谓枚举归纳是“根据一类事物中部分对象具有某种属性并且没有遇到反例,从而推出该类所有对象都具有这种属性的归纳推理。”

第二课时有了第一课的基础,学生学得够“饱”。但是课后,当有的学生说到:“交换了再结合还没我列竖式算得快!”我才醒悟到课堂上也应该指出我们现在探究的是计算方法的简便,不计书写和麻烦。

第三课时,通过加法运算律的学习方式和学习活动向乘法运算律的教学迁移,在教学乘法运算律时给学生更大的主动学习空间,教师只是进行适当的点拨,整个探索过程主要通过学生来完成。新课改提出:教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。当学生的学习兴趣被激起,强着发表自己的意见时,我提出让学生通过小组合作,去验证自己的猜测,这是符合学生的内心需要的,他们需要动笔计算证实自己的想法,需要同伴合作及时解决问题,需要通过事实来证明自己是对的。合作不是盲目的.,由于合作前的充分酝酿,学生都积极投入到小组学习中。而且在合作前,我给学生提出要分工合作,使学生的活动能够有序进行。合作是成功的,先是紧张的举例验证,然后是有效的总结交流。规律的得出顺理成章,同学们体验到了探究的乐趣,体尝到了成功的快乐。我也体会到了教学的乐趣。对于简便计算,是让学生在体验中主动应用运算律,在教学中体现两个方面的内容:一是体验简便,选择简便;二是体验灵活,适应变化。

学生的知识的理解莫过于能加以运用。第四节课是一节运算律的复习课。班上学生已经基本掌握了简便计算中运用方法进行简算的能力。再进行简算的练习无非是浪费时间或是造就“熟练工”而已。

针对上节课出现的问题,在复习这一环节,我们重点训练了25×4=100、25×8=200、125×8=1000,35×2等这样常见的也是常用的简便计算的算式。在学习新课:35×1816时,学生心中有了简便计算的关键的一步:35×2、25×4,就自然而然地从已知的数中去寻找,很快地就有了答案。在训练过程中,有许多新的情况出现,部分学生有些措手不及,看来这方面的练习还得多做,所谓熟能生巧还是需要,让学生在大量不同类型的题目中感悟方法的巧妙和解题的技巧。

六年级数的运算教学设计篇七

教学目标:

1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

2、发展学生思维,侧重培养学生分析问题的能力。

教学重点:

理解数量关系。

教学难点:

根据多几分之几或少几分之几找出所求量是多少。

教具准备:

多媒体课件。

教学过程:

一、旧知铺垫(课件出示)。

1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?

(1)一块布做衣服用去。

(2)用去一部分钱后,还剩下。

(3)一条路,已修了。

(4)水结成冰,体积膨胀。

(5)甲数比乙数少。

2、口头列式:

(1)32的是多少?

(2)120页的是多少?

3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。

六年级数的运算教学设计篇八

人教版六年级上册第八单元总复习第2课时《百分数的整理与复习》。“百分数”这一单元主要包括百分数的意义和写法,百分数和分数、小数的互化以及用百分数解决问题等内容,是在学生学习了整数,小数,特别是分数概念和用分数解决实际问题的基础上进行教学的,同分数有着密切的关系。在总复习时,应将复习重点放在百分数的应用方面,同时要注重与分数乘除法问题的对比,分析百分数问题与分数乘除法解决问题在解题思路上的一致性,加强知识间的联系,深化学生对知识之间内在联系的理解,促进学生原有认知结构的优化。通过总复习,既可以帮助学生构建合理的知识体系,也可借助解决生活中的实际问题培养学生应用数学的意识。

【设计理念】。

百分数在实际生活中有着广泛的应用,如发芽率、合格率等。所以同学们必须熟练掌握本单元的基础知识,才能轻松地运用这些知识来解决生活中的问题。让学生亲身体验自主探索、合作交流基础上,经历体验问题的形成和解决过程,引发学生对百分数问题的结构特征,解题策略和规律的深层次思考,克服学生消极接受的惰性,培养学生发现问题,解决问题的意识和能力,促进学生主动构建自身知识体系。

【教学策略】。

本节课通过获取信息,提出数学问题,解决问题,集体交流,小结方法等环节,引导学生自己对百分数应用题进行整理和复习,深化了学生对知识之间内在联系的理解,促进了学生原有认知结构的优化。数学教学不应局限于知识的传授,应重视培养学生从生活中收集数据、获取数学信息,并从中选取有用的信息解决简单实际问题的能力,使“生活化”、“数学化”得到和谐统一。

【教学目标】。

知识与技能:

1、通过对百分数单元知识的归纳和整理,巩固所学的知识,加深对百分数意义的理解,感受百分数在生活中的应用,并运用所学知识解决百分数问题。

2、在百分数知识的迁移与综合运用中使学生经历一个整理信息、利用信息的过程,培养学生分析、综合、比较、抽象、概括等初步逻辑思维能力。使学生体会到数学的价值。

3、在百分数单元复习的过程提升数学思考。发展学生思维,激发起进一步学习的兴趣。

4、使学生形成积极的学习情感,养成良好的学习习惯。

过程与方法:

经历百分数的回顾和应用过程,体验归纳整理、构建知识体系的方法。

情感、态度、价值观:

体验数学知识间的相互联系,感受数学知识在生产、生活中的应用价值,培养学生应用数学的意识及乐学的情感。

【教学重点难点】。

重点:1、掌握百分数的意义,以及与分数、小数之间的联系。

2、理解百分数应用题的解题思路,找准量和率之间的对应关系是教学中的重点。

难点:税后利息的计算。

【教学准备】。

多媒体课件。

【教学过程】。

(一)复习百分数的意义。

教师谈话:我们上段时间学习的哪些知识?这节课,我们就一起来复习百分数的相关知识。(板书:百分数的整理与复习)。

1、复习百分数的意义。

(表示一个数是另一个数的百分之几的数,叫做百分数,百分数也叫百分比或百分率。)。

2、判断:“4/5=80%,4/5米=80%米。请同学们说明理由。(分数既可以表示一个数,也可以表示两个数的比;百分数只能表示两个数的比,后面不能带单位名称。)。

3、复习分数、小数、百分数之间的互相转化的方法以及注意事项。

小数化成百分数:先把小数点向右移动两位,同时添上百分号。

百分数化成小数:先把百分号去掉,同时把小数点向左移动两位。

分数化成百分数:先把分数化成小数,再化成百分数。

百分数化成分数:先把百分数写成分母是100的分数,再化简。

(二)根据信息,请同学们提出相关的百分数问题。

(小组讨论、交流)。

老师今年36岁,丁俊同学今年12岁。

问题:1、老师的岁数是丁俊同学的百分之几?

2、丁俊同学的岁数是老师的百分之几?

3、老师的岁数比丁俊同学的大百分之几?

4、丁俊同学的岁数比老师的少百分之几?

(三)复习稍复杂的百分数应用。

我校男生人数比女生少10%。

问:1、男生人数是女生人数的百分之几?

(指名回答)。

2、已知女生人数有500人,求男生有多少人?

(单位“1”是已知的)。

3、已知男生人数有450人,求女生有多少人?

(单位“1”是未知的)。

(四)复习百分数在生活中的应用:折扣、纳税、利息。

1、商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就表示十分之几,也就是百分之几。

问:什么等于折扣?

2、缴纳的税款叫做应纳税额。应纳税额与各种收入的比率叫做税率。

问:应纳税额等于什么?

3、存入银行的钱叫做本金;取款时银行多支付的钱叫做利息;利息与本金之间的比值叫做利率。

问:什么是利息?如何计算利息?在计算利息时要注意什么?

(五)综合练习:

2、昨天我们班有2人请假了,大家能计算出昨天我们的出勤率吗?

问:出勤率等于什么?

(六)课堂小结:

今天我们复习了什么内容?你有哪些收获?

我们今后要用99%的努力+1%的灵感去创造100%的成功。

【板书设计】。

百分数的整理与复习。

意义互化应用找准单位“1”

单位“1”是已知(用乘法计算)。

单位“1”是未知(用除法或方程计算)。

六年级数的运算教学设计篇九

1、通过图形直观的表征,让学生更加清晰求的都是同一个阴影部分的面积。从而让学生直观地看到了加减法算式之间的联系,越来越接近1,感悟极限思想。

2、培养学生利用图形来分析问题、解决问题的意识和能力。

3、重视利用图形来分析题意,理清思路,提高解决问题的能力。

计算出结果。

1、教学例2。

计算。

从第二个数开始,每个数是前一个数的。

我一个一个加下去看看,答案好像有点规律。加下去,等号右边的分数越来越接近于1。

可以画个图来帮助思考。用一个圆或一条线段来表示“1”。

从图上可以看出,这些分数不断加下去,总和就是1。

2、渗透极限思想。

如果不停地加下去,

1、猜一猜“和”是多少?

2、请用“形”来解释这个结果。

3、反馈:

如果不停地加下去,空白部分会怎么样?

那的结果怎么样?(无限接近1。)。

运用知识。

你能用所学知识解决下列问题吗?

我是这样想的。

所以原式的结果是1。

作业:第110页练习二十二,第3题、第4题、第5题。

六年级数的运算教学设计篇十

1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

2、联系学生的生活实际创设情境,体现解比例在生产生活中的广泛应用。

3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情度、价值观的发展。

使学生自主探索出解比例的方法,并能轻松解出比例中未知项的'解。

利用比例的基本性质来解比例。

1、什么叫做比例?

3、比例有几种表示形式?(板书:a:b=d:ca/b=d/c)。

同学们,你们知道吗?比例的基本性质有两个作用,一个就是我们刚才用来判断两个比能否组成比例,而另一个是什么呢?同学们想不想知道?这节课我们就来研究研究。

1、出示埃菲尔铁挂图。

这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道。你们能帮帮他们吗?那我们先来看看这道题。

2、出示例题。

(1)读题。

(2)从这道题里,你们获得了哪些信息?

(3)在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)。

(4)这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)。

(5)还有一个条件是什么?(埃菲尔铁塔的高是320米)。

(6)我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)。

(7)这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。

(8)根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书:x:320=1:10)。

(9)这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?

(10)不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)。

(11)指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)。

(12)为什么可以写成这样的等式呢?10x=320*1(根据比例的基本性质)。

(13)对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)。

(14)这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。

(15)我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例。)。

(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。)。

(17)解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设x——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)。

现在同学们会用解比例的方法来解决问题了吗?

2、教学例3。

(1)出示例3,问:这题与刚刚那个比例有哪些不同?

(2)解这种比例时,要注意些什么呢?(找出比例的外项、内项)。

(3)在这个比例里,哪些是外项?哪些是内项?

(4)解答(提问:你们是怎么解答的?)、检验。

(5)12/24=3/x。

3、巩固练习。

4、课堂小结。

(1)这节课主要学习了什么内容?(板课题:解比例)什么叫解比例?怎样解比例?(先依据比例的基本性质,把比例转化为方程,再解方程求解。)。

(2)现在你们知道比例的基本性质的另一个作用是什么了吗?(用来解比例)。

5、拓展延伸。

六年级数的运算教学设计篇十一

1、通过对立体图形的复习,进一步发展学生的空间观念,掌握各个立体图形的概念、特征。

2、通过复习使学生掌握立体图形表面积、侧面积、体积的计算公式。

3、培养学生运用所学知识解决实际问题的能力。

课件

一、复习引入

1、课件出示“点’,这是一个点。

师:将点移一移,所留下痕迹,你能想到什么?生:线、直线、射线、线段。评:好,联想对学数学很重要。继续想。

师:如果将线段往下移一移,你又能想到什么呢?生:长方形、正方形

师:刚才由点联想到线段再联想到面,继续想。

师:如果把这个面往后面移一移,你又能想到什么呢?

师:如果将这个长方体像这样切成若干份,你又能想到什么呢?

(板书:长方体、正方体)

师:按这样的思路,根据圆柱,你可以想到什么?它们之间有什么关系?

师:同学们,点线面体存在一定的联系,那我们就从点线面三个方面对4个立体图形的特征进行整理。

二、知识点归纳

(一)复习立体图形特征

1、(出示长方体、正方体)长方体、正方体它们各有什么特征?它们有什么相同点和不同点,谁能看着表格说一说。(指生上来汇报,拿着模型)

长方体与正方体有什么关系?

2、(出示圆柱和圆锥)圆柱、圆锥它们又各有什么特征?

沿高剪开,侧面展开图是一个长方形或正方形。当底面周长与高相等时展开是正方形,当底面周长与高不相等时,展开是一个长方形。

3、分类,建立知识网络.

你能给这四个立体图形分分类吗?(为什么)

交流:(1)长方体、正方体一组,(都有六个面、12条棱、方方的)圆柱圆锥一组。(底面都是圆)

4、观察物体,从不同侧面看到的图形是什么形状。

(二)复习表面积和体积

2、课前老师让同学们整理了这些立体图形的表面积和体积公式,谁原意来交流一下,我们先说表面积公式(教师板书公式)。

重点:圆柱的侧面积为什么是底面周长×高?

再交流体积公式(教师板书公式)。

3、出示。

师:怎样比较这三个立体图形的体积呢?谁能列出算式?

追问:如果不计算体积结果能比较三个立体图形的体积大小吗?

(观察三个图形,有什么特点?高相等,只要看什么就可能比较体积大小了?)

操作结合板书。

你能找到计算这3种立体图形体积的统一公式吗?

小结:这三个立体图形都是柱体,像这样的三棱柱、六棱柱也都是柱体,其实所有的柱体都可以用底面积乘高来计算体积。

三、巩固练习

1、测测你的判断力

(1)体积单位比面积单位大。()

(2)把一个圆柱削成一个最大的圆锥体削去部分的体积与圆锥的体积的比是2:1。()

(3)把一个长方体铁块熔铸成一个圆柱体,形状虽然变了,但它们所占空间的大小没有变。()

(4)一个圆柱的底面直径是4厘米,高是4厘米,将这个圆柱的侧面展开后一定是一个正方形()

2、填空。

(1)一个长方体的棱长总和是40厘米,其中长5厘米,宽3厘米,高是()厘米。

(2)把四个棱长是3厘米的正方体木块拼成一个长方体,拼成的这个长方体的表面积是(),体积是()。

(3)等底等高的圆柱的底面积是1.5平方分米,那么与它体积和高都相等的圆锥的底面积应是()平方分米。

(4)等底等高的圆柱和圆锥体积之和是36立方厘米,那么圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。

3、只列出综合算式,不解答

(1)一个长方体水槽,底面积是35平方分米,水深6分米,把一个不规则的石块扔进去后,水面上升了2分米,求石块的体积。

4、提高练习

五、小结

出示三个立体图形,介绍底面和侧面,你能找到求这三个图形侧面积的统一公式吗?(板书表面积、问号)

六年级数的运算教学设计篇十二

我的发现:

聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?

序号。

我的方法。

(写出过程)。

1

14:21。

2

36:15。

3

1/6:2/9。

4

2/3:3/4。

5

1.25:2。

6

5.6:4.2。

我的发现:

六年级数的运算教学设计篇十三

设计理念:

数学最终是要为生活服务的,回归生活的数学才是有用的数学。本课内容和日常生活密切联系,学了就可以学以致用,可以让学生真正体会到数学的价值。

教学目标:

1.在了解生活中有关打折优惠措施的基础上,能利用百分数的知识,根据实际情况选择最佳的方案和策略,解决实际问题,深入理解折扣的意义。

2.通过小组合作学习、分析比较,培养学生运用所学知识解决实际问题的能力、合情思考能力。

3.激发学生对数学的兴趣,使学生能够辩证、全面地思考、对待实际生活中的问题,用数学知识解决实际问题。

教学重点:

在了解生活中有关打折优惠措施的基础上,利用百分数的知识,根据不同的实际情况,通过分析比较选择最佳的方案和策略。

教学难点:

1、多种方案的计算。

2、合情推理。

教学准备:

多媒体课件一套。

教学过程:

一、创设情境,复习打折计算方法。

1.谈话导入。

2、为学生创设到快餐厅看菜单的情境,引导学生从合算的角度选择套餐。

a套餐。

原价:12.5元。

现价:10.00元。

b套餐。

原价:11.8元。

现价:10.00元。

c套餐。

原价:10.80元。

现价:10.00元。

(1)如果你去吃快餐,你选哪一种最合算?为什么?

(2)a套餐相当于打几折?

(3)b套餐也打8折,应付多少元?

二、分析比较,初用打折技能。

实际生活中的打折多种多样,要反复计算、比较,才能够选择出最好的购买方法。

1.创设情境。

现在许多餐厅可以自己带饮料消费,餐厅的饮料可挺贵,要想合算我们不妨去超市逛一逛,买一些饮料再去吃饭。

甲商场买大送小。

乙商场一律九折。

丙商场满30元一律八折。

2.了解超市的优惠政策。

师:请你举例说一说你是怎么理解这些优惠措施的?

生:买大送小就是买一瓶大的送一瓶小的,前提是必须买大瓶的饮料。

打九折就是买100元钱的饮料现在只要付90元钱。

满30元打八折就是买饮料的总价必须达到30元才能打八折,不到30元不打折。

六年级数的运算教学设计篇十四

教学内容:

义务教育课程标准北京实验版教科书六年级上册《存款方案》。

教学目标:

1、了解储蓄的有关知识,能综合应用相关知识合理存款。

2、经历调查、解决问题的过程,体验合作探究的学习方法。

3、体会数学知识在日常生活中的广泛应用,培养学生的理财意识。

教学重点:

了解各种存款方式的利率和相关规定,设计合理的存款方案。

教学难点:

能综合应用条件灵活解决问题。

综合实践《合理存款》。

一、确定问题。

问题分析:根据自学导案,归纳要解决的问题:怎样存款收益最大。明确本活动中存款的本金、可存期限以及这笔存款的用途。明确需要收集与该问题相关的信息。(通过对问题的简单分析让学生初步了解存款的三种方式,为下一步学生收集信息做基础)。

二、收集信息。

课外调查:学生以小组合作学习的方式去银行调查不同的存款方式的利率等信息,学生可以利用网络,或者直接到银行到银行调查存款的方式和相关信息,并做好记录。

设计意图:这节课中教材主题图中所提供的存款利率是以前的利率,和现在的利率是不同的;国债利率也未明确给出。因此,通过课外调查让学生明确当前的存款利率等信息,并且,学生到银行调查是一次有价值的实践活动,是一个学习、体验的过程,可以有意识地体会数学与生活经验、社会现实和其他学科知识的联系。有了这样一个过程使这一实践活动更具有现实意义和实效性。

三、方案设计。

根据学生调查的信息设计存款方案。

学生以小组合作学习的方式共同设计方案,填写下表。

定期储蓄存款的方案可填在第第一张表格中。其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中。每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。

六年级数的运算教学设计篇十五

1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。

2.初步学会用负数表示一些日常生活中的实际问题。

3.能借助数轴初步理解正数、0和负数之间的关系。

【重点难点】。

负数的意义和数轴的意义及画法。

【教学指导】。

1.通过丰富多彩的生活情境,加深学生对负数的认识。

负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。

2.把握好教学要求。

而是描述性的定。

义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。

3.培养学生多角度观察问题,解决问题的能力。

教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。

【课时安排】。

建议共分3课时:

负数的初步认识2课时在数轴上表示正数、0和负数1课时。

【知识结构】。

第1课时负数的初步认识(1)。

【教学内容】。

(1)(教材第2页例1)。

结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。

【重点难点】。

体会负数的重要性。

【教学准备】。

多媒体课件。

【情景导入】。

1.教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)。

2.引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)。

引出课题并板书:负数的初步认识(1)。

【新课讲授】。

教学教材第2页例1。

(1)教师板书关键数据:0℃。

(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

(3。

)我们来看一下课本上的图,你知道北京的气温吗?最高气。

温和最低气温都是多少呢?随机点同学回答。

(4)刚刚同学回答得很对,读法也很正确。

学生讨论合作,交流反馈。

(6)请同学们把图上其它各地的温度都写出来,并读一读。

(7)教师展示学生不同的表示方法。

(8)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。

【课堂作业】。

完成教材第4页的“做一做”第1题。

组织学生独立完成,指名回答。

答案:-18℃温度低。

【课堂小结】。

通过这节课的学习,你有什么收获?

【课后作业】。

完成练习册中本课时的练习。

第1课时负数的初步认识(1)。

0℃。

-3℃。

3℃(+3℃)。

通过温度的概念,初步学习负数,理解气温高低与温度的关系,是负数学习的第一步。

第2课时负数的初步认识(2)。

【教学内容】。

(2)(教材第3页例2)。

通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。

【重点难点】。

体会引入负数的必要性,初步理解负数的含义。

【情景导入】。

教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的?

组织学生讨论回忆上一课内容。

师:很好,大家都很棒。今天我们继续学习负数知识。

引出课题并板书:负数的初步认识(2)。

六年级数的运算教学设计篇十六

苏教版义务教育教科书《数学》六年级上册第34~35页例4~5、试一试和练一练,第37页练习六第1~5题。

1、使学生知道分数乘分数的计算法则也适用于整数和分数相乘,把分数乘法统一成一个法则。进一步巩固分数乘法的计算法则。

2、使学生经历解决问题的探索过程,进一步培养观察、比较、分析、推理的能力,体验数学学习的乐趣。

整数乘分数的计算法则。

教具:

长方形纸、水彩笔。

一、创设情境。

二、组织探究。

1、教学例4出现教材中的图形。

然后问:画斜线部分是的几分之几?又是这个长方形的几分之几?

由此明确:的是,的是。

启发学生进一步思考:求的是多少,可以怎样列式?

求的呢?

师问:你能列算式并看图填写出书中的结果吗?

打开书p34完成。

提示:根据填的结果各自想想怎样计算分数与分数相乘?

学生进行讨论得出:分数与分数相乘,分子相乘做分子,分母相乘做分母。

2、教学例5。

(1)让学生说说×和×分别表示的几分之几?

你能用前面得出的结论计算这两道题吗?

学生试做。

订正完后问:你能用什么方法来验证你的计算结果呢?

(2)验证比较。

让学生在自己准备的长方形纸上先涂色表示。

再画斜线表示的和的。

学生动手操作,教师巡视对学困生进行指导。

看看操作的结果与你计算的结果是否一致?

学生观察比较。

3、归纳总结。

比较刚才计算的每个积的分子、分母与它的因数的分子分母,讨论有什么发现?

得出分数乘分数的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

三、练习。

1、完成的试一试。

提醒学生注意:计算分数与分数相乘时,能约分的要先约分在计算。

通过交流进一步明确计算分数与分数相乘的计算方法。

四、分数与分数相乘的计算方法的推广。

同学们,下面着几道题你回计算吗?

出示:

请同学们先完成p35的填空,提醒学生把整数看作分母是1的分数来计算。

讨论:分数与分数相乘的计算方法适用于分数和整数相乘吗?为什么?

学生分组讨论。

明确:(1)整数可以看作分母是1的分数,所以分数。

与分数相乘的计算方法也适用于分数和整数相乘。

(3)也可以整数与分数直接进行约分后再计算。这样更简便。

教师进行示范如p35。

2、练习。

完成p35的练一练。

引导学生用直接约分的方法进行计算。

五、综合练习。

1、做练习六的第1题。

先在图中画一画再列式计算。

2、做练习六的第3题。

说出错的原因。

3、做练习六的第4题。

看谁算的最快。

六、全课小结。

通过这节课的学习,你有什么收获?还有什么疑惑?

七、作业。

练习六的第2、5题。

【本文地址:http://www.xuefen.com.cn/zuowen/17452033.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档