六年级数学人教版教案(热门24篇)

格式:DOC 上传日期:2023-12-05 13:43:14
六年级数学人教版教案(热门24篇)
时间:2023-12-05 13:43:14     小编:琴心月

教案是教师进行教学设计和组织教学活动的重要工具。教案要与学校教学大纲和课程标准相适应,确保教学质量的达标。掌握好教案的编写方法可以提高教学效果,我们一起来看看吧。

六年级数学人教版教案篇一

(1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。

(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心o)。

(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)。

(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)。

六年级数学人教版教案篇二

教学内容:

教学目标:

1.通过学习,使学生初步认识扇形统计图的特点和作用,知道扇形统计图可以清楚地表示出各部分数量和总量之间的关系。

2.能看懂扇形统计图,并能从图中获取所需要的信息,进行简单的分析,进一步增强学生的统计意识,感受统计的价值。

教学重点:

看懂扇形统计图,知道扇形统计图的特征,并能从统计图中读出必要的信息。

教学难点:

根据统计图进行简单的数据分析。

教学准备:

课前统计本班学生喜欢的体育项目,课前统计学生自己一天的作息时间安排,课件。

教学过程:

一、创设情境,谈话激趣。

1.出示教材第96页情境图,说说同学们正在干什么?

2.在这些体育项目中,你喜欢什么活动?出示统计表,进行统计。(可在课前进行调查统计,利用excel自动生成扇形统计图)。

喜欢的项目。

乒乓球足球跳绳踢毽其他人数。

【设计意图】联系学生生活实际,统计自己喜欢的体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。

二、整理数据,引入新课。

1.通过这张统计表,我们可以得到什么信息?

预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。

2.如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较?

3.如何计算喜欢各种运动项目的人数占全班人数的百分之多少呢?

4.学生进行口算或笔算,完成统计表,并进行校对。

喜欢的项目。

乒乓、球足球、跳绳、踢毽、其他。

人数。

128569。

百分比。

30%20%12.5%15%22.5%。

【设计意图】先让学生根据统计表得到数量之间的关系,再让学生计算出百分比并补充表格,可以让学生体会到百分比不仅可以表示出喜欢各项运动的人数的多少,还可以体现出喜欢各项运动的人数与全班总人数之间的关系,加深百分比与绝对人数之间的联系和区别。

三、合作交流,探究新知。

1.认识扇形统计图。

(2)乒乓球的30%又表示什么?

预设:把全班人数看作单位“1”,喜欢乒乓球的人数占全班人数的30%;把一个圆平均分成100份,喜欢乒乓球的占其中的30份。

(3)你能根据我们刚才计算的,把这张图补充完整吗?(教师可以逐项出示,并可以让学生根据扇形的大小来判断一下这块扇形可能表示的是哪个运动项目。)。

(4)根据学生回答完成扇形统计图。

(5)揭题:像这样的统计图,我们把它叫做扇形统计图。(板书课题)。

(6)想想各个扇形的大小与什么有关系?

(7)小结:扇形的大小和项目所占总人数的百分比有关。我们可以根据扇形的大小来判断数量的大小。

2.理解扇形统计图的特征。

(1)看图说说,在这幅统计图中你还可以知道哪些信息?

预设:量的多少:如谁多谁少,谁和谁一样多;部分和总量的关系:如喜欢乒乓球和足球的人数占了总人数的一半,喜欢踢毽和跳绳以及其他项目的人数占了总人数的一半。

(2)说说这样的统计图有什么优势?

预设:可以根据扇形的大小清楚直观地看到量的相对大小;可以看到各部分和整体之间的关系。

(3)小结:在这样的统计图上,我们不仅可以直观地比较各个扇形的相对大小,还能清楚地看出各部分与整体之间的关系。

【设计意图】通过计算、选择、补充,让学生经历扇形统计图制作的过程,使学生对扇形统计图有一个较为完整、全面的认识,同时通过对信息的整理和对扇形统计图的优势分析,明确扇形统计图的特点。

3.尝试练习。

出示教材第97页“做一做”的内容。

(1)你能看懂这张扇形统计图吗?统计的是什么?你是怎么知知道的?(可以根据旁边的图例来知道各个扇形代表的项目。)。

(2)说说从图上你得到了哪些信息?

(3)如果每天喝一袋250g的牛奶,能补充每种营养成分各多少克?引导学生用百分数的意义理解各百分数和250g的关系,进而算出各种营养成分多少克。

六年级数学人教版教案篇三

1、加深对圆锥体积计算公式的理解,能应用有关知识解决生活实际问题。

2、进一步理解等底等高的圆柱和圆锥之间的关系。

3、进一步培养学生的思维能力和综合应用所学知识解决实际问题的能力。

教学重难点:综合应用所学知识解决实际问题。

六年级数学人教版教案篇四

教学内容:

比较正数和负数的大小。

教学目的:

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

教学重、难点:负数与负数的比较。

教学过程:

一、复习:

1、读数,指出哪些是正数,哪些是负数?

-85.6+0.9-+0-82。

2、如果+20%表示增加20%,那么-6%表示。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

a、从0起往右依次是?从0起往左依次是?你发现什么规律?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习。

1、练习一第4、5题。

2、练习一第6题。

3、某日傍晚,黄山的气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是摄氏度。

四、全课总结。

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

第二课教学反思:

许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

例3――两个不同层面的拓展:

1、在数轴上表示数要求的拓展。

数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出―1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和―1.5绝对值相等。

同时,还应补充在数轴上表示分数,如―1/3、―3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

2、渗透负数加减法。

教材中所呈现的数轴可以充分加以应用,如可补充提问:在“―2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“―2”的位置要走到“―4”,应该如何运动?如果他想从“―2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决―2―1;2+1;―4―(―2);3―(―2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

例4――薄书读厚、厚书读薄。

薄书读厚――负数大小比较的三种类型(正数和负数、0和负数、负数和负数)。

例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。

将厚书读薄――无论哪种类型,比较方法万变不离其宗。

六年级数学人教版教案篇五

1.根据方向和距离可以确定物体在平面图上的位置。

2.在平面图上标出物体位置的方法:

先用量角器确定方向,再以选定的单位长度为基准用直尺确定图上距离,最后找出物体的具体位置,并标上名称。

3.描述路线图时,要先按行走路线确定每一个参照点,然后以每一个参照点建立方向标,描述到下一个目标所行走的方向和路程,即每一步都要说清是从哪儿走,向什么方向走了多远到哪儿。

4.绘制路线图的方法:

(1)确定方向标和单位长度。

(2)确定起点的位置。

(3)根据描述,从起点出发,找好方向和距离,一段一段地画。除第一段(以起点为参照点)外,其余每一段都要以前一段的终点为参照点。

(4)以谁为参照点,就以谁为中心画出“十”字方向标,然后判断下一地点的方向和距离。

1、利用生活中的数学体现,激发孩子内在的学习动机。

数学贯穿与日常生活,家长可在与孩子的日常生活接触中观察孩子的喜好,融入数学思维引导孩子主动学习。并有意识地进行思考、猜想、讨论与动手动脑等,利用孩子感兴趣喜欢的元素作为数学思维的承担载体,激发孩子内在的学习动机,使孩子感受到相互学的重要和有趣,使他们对数学学习更加主动积极。

2、抓住数学敏感期,循序渐进,发展数学思维。

研究证明,儿童在4岁前后会出现一个“数学敏感期”。他们会对数字概念,比如数、数字、数量关系、排列顺序、数运算、形体特征等突然发生极大兴趣,对它们的种种变化有着强烈的求知欲,这标志着孩子的数学敏感期到来了。错过了这个“数学敏感期”,有的人一生都害怕数学,一提数学就头疼。

而在面对“数学”这种纯抽象概念的知识时,让孩子觉得容易的学习方法,也只有以具体、简单的实物为起始。由感官的训练,从“量”的实际体验,到“数”的抽象认识。自少到多,进入加、减、乘、除的计算,逐渐培养孩子的数学心智和分析整合的逻辑概念。让孩子在亲自动手中,先由对实物的多与少、大和小,求得了解,在自然而然地联想具体与抽象间的关系。

3、讨论合作,共同发散数学思维。

每个孩子都有其独特的天马行空的思维能力,在学校学习中,就可以借助这种思维的差异性,让孩子参与到团队合作中来,共同堆一座积木或进行折纸游戏,共同探讨知识交流合作,利用空间思维与多彩丰富的具象结合,在互助交流中动手动脑、发散思维的同时建构自己的经验和知识,参与到团队合作中来,有助于语言能力的增强,形成自己的认知结构和思维系统。

孩子在小时候以形象思维为主,喜欢把一切抽象问题都形象化,但这不利于抽象思维的培养,那么培养孩子良好的思维习惯就很重要,具体到数学思维,就是要培养孩子及时总结分析问题和解决问题的方法,按步思维,有意识的逐步培养孩子的抽象思维能力和思维品质,加强训练。

六年级数学人教版教案篇六

通过《比例尺》一课的学习,理解比例尺的意义,能正确说明比例尺所表示的具体意义。以下为您带来冀教版数学六年级上《比例尺》教案,欢迎浏览!

教学内容:

教学目标:

1、理解比例尺的意义,能正确说明比例尺所表示的具体意义。

2、认识数值比例尺和线段比例尺,能将二者进行互化。

3、会求一幅图的比例尺。

教学重点:

比例尺的意义。

教学难点:

将线段比例尺改写成数值比例尺。

教具准备:

多媒体课件或小黑板。

教学方法:

先学后教,当堂训练,目标教学法和小组合作学习融合。

学习过程:

一、板书课题。

同学们,今天我们来学习“比例尺”(板书课题)一起来看学习目标。

二、出示学习目标。

本节课我们的目标是。

1、理解比例尺的意义,能正确说明比例尺所表示的具体意义。

2、认识数值比例尺和线段比例尺,能将二者进行互化。

3、会求一幅图的比例尺。

同学们,有信心完成本节课的学习目标吗?为了能更好的完成学习目标,请看学习指导。

三、自研共探。

1、看一看(自学探究)。

认真看课本第48和第49页的内容,看图,看文字,重点看各色方框里的内容并思考。

(1)什么是比例尺?求比例尺的方法是什么?

(2)看课本48页右图下面的线段比例尺,想:怎样把它转化成数值比例尺?

(3)比例尺一般写成什么形式?

师:生认真看书自学,师巡视,督促人人认真看书。

2、议一议(合作交流)。

主要交流自学探究中的问题,先对子之间互说,最后小组内交流,统一答案或记录下没有解决的问题,以备下一步的展示。

3、说一说(汇报展示)。

以小组为单位进行自学成果的汇报。针对自学探究中的.问题,可以口答、板演、或提出问题。组间可以补充或质疑,教师尽可能的引导或解疑。

4、小结归纳。

图上距离和实际距离的比叫做比例尺。

图上距离︰实际距离=比例尺。

比例尺实际距离。

图上距离。

求比例尺时,需要注意单位的统一,同时,比例尺是一个比,不能带单位名称。为了计算方便,通常把比例尺写成前项或后项是1的比。

师:通过刚才的展示,老师发现各个小组的自学效果的确很好。到底同学们运用知识解决实际问题的能力怎么样呢?下面请看检测题,比一比谁发言最积极,谁解决问题的能力最强!

四、巩固提升。

要求。

1、独立完成,对子讨论。

学法指导:先自己独立完成题目,然后举手示意对子,待对子完成后小声讨论。

2、组内交流,整合答案。

学法指导:待组内成员全部完成后交流各自答案和理由,最终形成统一答案。

3、分工合作,板演展示。

学法指导:由组长分工:板演、检查、预展(讲解者)。

4、汇报讲解,补充评价。

学法指导:各个小组按抽签顺序讲解展示,讲解时可以组内补充,也可其他组补充或质疑。展示后,其他组或教师给予评价。

操作指导:教师在预展时巡视各小组,指导并帮助小组快速分工,让每个学生尽快参与其中,没有得到展示机会的小组安排课后自改或小组对改。

五、全课总结。

同学们,今天我们学习了比例尺,求比例尺的方法是什么呢?

首先根据比例尺的意义确定比的前项和后项,写出比,图上距离和实际距离位置不要写错;接着把两项化成相同的单位;最后化简比,变成前项或后项是1的比。

下面我们就用今天所学的知识来做作业,比谁的课堂作业做得又对又快,字体又工整。

六、当堂训练。

1、必做题:课本练习八的1、2、3题。

板书设计:

比例尺。

图上距离和实际距离的比叫做比例尺。

图上距离︰实际距离=比例尺。

比例尺实际距离。

图上距离。

六年级数学人教版教案篇七

教学内容:

教学目标:

1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。

2、过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。

3、养学生的自主探索意识,激发学生强烈的求知欲望。

教学重点:

掌握圆锥的特征。

教学难点:

正确理解圆锥的组成。

教具准备:

每人一个圆锥,师准备一个大的圆锥模型。

教学过程:

一、复习。

1、圆柱体积的计算公式是什么?

2、圆柱的特征是什么?

二、新课。

1、圆锥的认识(直观感受观察讨论汇报)。

(1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。

(2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心o)。

(3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面)。

(4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高)。

2、小结。

圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高.

3、测量圆锥的高(组织学生分组进行测量)。

由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。

(1)先把圆锥的底面放平;。

(2)用一块平板水平地放在圆锥的顶点上面;。

(3)竖直地量出平板和底面之间的距离。

4、教学圆锥侧面的展开图。

(1)学生猜想圆锥的侧面展开后会是什么图形呢?

(2)实验来得出圆锥的侧面展开后是一个扇形。

三、课堂练习。

1、做第24页做一做的题目。

让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。

2、练习四的第1题。

(1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。

(2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。

3.完成练习四的第2题。

补充习题。

1出示一组图形,辨认指出哪些是圆锥。

2出示一组图形,指出哪个是圆锥的高。

3出示一组组合图形,指出是由哪些图形组成的。

四、总结。

关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗?

教学反思:

观察、感知中认识并掌握圆锥的特点,经历探究测量圆锥高的方法的过程,加深了对圆锥高的认识。在旋转,对比圆柱和圆锥的过程中,加深对圆锥特点的认识,发展学生的思维。

六年级数学人教版教案篇八

教学目标:

1.知识目标:了解储蓄的意义,理解本金、利率、利息的含义。

2.能力目标:注重学生观察、对比、总结能力的培养,并让学生感受数学在生活中的作用,提高应用意识和实践的能力。

3.情感目标:懂得存款利国利民,并从教育储蓄中感悟国家对少年儿童的殷切希望,树立努力学习的志向。

重点难点:

理解本金、利率、利息的含义,会正确计算利息。理解税后利息的含义,会根据实际情况使用公式。

教学流程:

一、知识扩充。

(师出示中国五大银行行标。生根据生活经验,理解银行的业务范围及银行的分类。)。

师:(出示一组信息)2001年12月,中国银行给工业发放贷款18636亿元,给商业发放贷款8563亿元,给建筑业发放贷款2099亿元,给农业发放贷款5711亿元。

(让生思考,从信息中想到了什么?)。

设计意图:让学生了解储蓄的意义,感受存款不但利国而且利民。

效果预测:学生可以从信息中感悟到国家用集资上来的存款繁荣经济、建设国家、援助农业,加强储蓄的意识。

二、创设情境。

师:老师积攒了1000元钱,把它放在什么地方最安全合理呢?

生:放在银行里,不但安全还可以使自己的用钱更有计划。

师:听从大家的意见,现在老师就想去银行存款,谁想和我一起去?

(生走入老师创设的情境,感受存款的乐趣。)。

(生独立完成填存单的任务,遇到问题随时提出,师生共同解决。)。

设计意图:给予学生一个想像的空间,让学生身临其境地感悟生活中的数学,把知识、能力、人格有机地融合,让学生的各种因素碰撞后的灵感在实践中得以体现。

效果预测:经过师生互动、生生互补,学生可以掌握存款单的填写方法,并在老师的点拨中,掌握存款的种类、本金等数学概念。

三、合作学习。

师:(出示信息)小丽学会存款后,把100元存入银行,整存整取1年,年利率2.25%,到期时可取出人民币102.5元。

(生找出本金、存款种类后,再谈一谈自己有什么新发现。)。

出示表格。

(生合作学习从表格中发现利息的多少与本金、利率、时间有关,并总结出公式:利息=本金×时间×利率。)。

生:1000×3.6%×5=180元。

师:取款时的情况和我们预想的一样吗?和老师一起跳跃时间,来到2012年。(出示利息清单。)。

利息清单。

生总结:税后利息=本金×利率×时间×(1-20%)。

设计意图:为学生营造自我发现、自我总结的空间,让学生从实践中概括公式,在合作中分享自己与他人思考的成果,体会成功的快乐。

效果预测:学生在兴趣的驱使下,主动参与小组合作,在合作中积极思考,得出利息及税后利息的公式,并因为经历了概念的形成过程,为知识的应用做了良好的铺垫。

四、深化练习。

1.奉献。

2.理财。

3.帮助。

4.介绍小知识。(教育储蓄)。

设计意图:数学来源于生活,服务于生活,为学生设计的三组生活习题,其目的在于让学生感悟数学在生活中的价值,增强应用意识,同时培养了学生乐于助人、勤俭节约的优良品质。

效果预测:学生喜欢智慧的挑战,对学以致用有很强的能动性,所以他们一定会用智慧的眼光解决习题中的生活问题,同时在教育储蓄的感召下,进一步感悟党和人民的期望,树立终身学习的愿望。

六年级数学人教版教案篇九

1、理解分数乘、除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。

2、理解倒数的意义,掌握求倒数的方法。

3、理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题。

4、掌握圆的特征,会用圆规画圆;探索并掌握圆的周长和面积公式,能正确计算圆的周长和面积。

5、知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。

6、能在方格纸上用数对表示位置,初步体会坐标的思想。

7、理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分数的简单实际问题。

8、认识扇形统计图,能根据需要选择合适的统计图表示数据。

9、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在。

日常生活中的作用,初步形成综合运用数学知识解决问题的能力。

10、体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理能力。

11、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。

12、养成认真作业、书写整洁的良好习惯。

三、教学内容分析。

单元。

序号。

单元。

名称。

单元。

篇目。

单元教材简析。

(教学目标、重点、难点)。

教学。

时数。

位置。

分数乘法。

分数除法。

圆的认识。

百分数。

统计。

数学广角。

用数对确定物体的位置。

1、分数乘法。

2、解决问题。

3、倒数的认识。

4、整理和复习。

1、分数除法。

2、解决问题。

3、比和比例的应用。

4、整理和复习.

1、认识圆、

2、圆的周长。

3、圆的面积。

1、百分数的意义和写法;

2、百分数和分数、小数的互化;

3、用百分数解决问题等内容。

扇形统计图。

合理存款。

鸡兔同笼问题。

教学目标:

1.在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。

2.使学生能在方格纸上用数对确定位置。

重难点:

运用两个数据准确表示物体位置。

关键。

利用方格纸正确表示列与行。

教学目标:

1.理解分数乘法的意义,掌握分数乘法的计算方法,会进行分数乘法计算。

2.理解乘法运算定律对于分数乘法同样适用,并会应用这些运算定律进行一些简便计算。

3.理解倒数的意义,掌握求倒数的方法。

4.会运用分数乘法解决一些简单的实际问题,体会数学与日常生活的联系。

重点。

1.分数乘法的计算方法。

2.求一个数的几分之几是多少的问题。

难点:

分数乘分数的计算方法。

关键。

理解“一个数乘分数的意义,就是求一个数的几分之几是多少”的道理。

教学目标:

1.理解分数除法的意义,掌握分数除法的计算方法,会进行分数除法计算。

2.会用方程或算术方法解答已知一个数的几分之几是多少求这个数的实际问题。

3.理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。

4.能运用比的知识解决有关的实际问题。

重点:

1、分数除法的计算;

2、分数除法问题的解答;

3、比的意义和基本性质的理解与运用。

难点:

理解分数除法计算法则的算理;比的应用.

教学目标:

1.认识圆,掌握圆的基本特征,理解直径与半径的相互关系;学会用圆规画圆。

2.理解圆周率的意义,掌握圆周率的近似值,理解和掌握圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

教学重点:

1、学生认识圆,知道圆的各部分名称.。

2、掌握圆的特征及在同一个圆里半径和直径的关系.。

3、初步学会用圆规画圆,培养学生的作图能力.。

4、亲历动手操作、实验观察等方法,探索圆的周长、面积的计算方法,并能运用计算方法解决生活中的一些实际问题。

教学目标:

1.使学生理解百分数的意义,了解它在实际中的应用,会正确地读、写百分数。

2.使学生能够进行小数、分数和百分数的互化。

3.理解折扣、纳税、利息的含义,知道它们在生活中的简单应用,会进行这方面的简单计算。

4.使学生在理解、分析数量关系的基础上,能正确地解答有关百分数的问题。

重点:

百分数的意义和写法,百分数和分数、小数的互化,百分数的应用。

难点:

百分数的应用。

教学目标:

通过实例,认识扇形统计图的特点,知道扇形统计图可以直观地反映部分数量占总数的百分比,能从扇形统计图读出必要的信息。

重点。

认识扇形统计图,理解扇形统计图的特点。

难点:

综合应用所学的知识解决日常生活中相关的问题。

教学目标。

1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。

2、尝试用不同的方法解决“鸡兔同笼”问题,并使学生体会代数方法的一般性。

3、在解决问题的过程中培养学生的逻辑推理能力。

重难点。

尝试用不同的方法解决“鸡兔同笼”问题。

关键。

在解决问题的过程中培养学生的逻辑推理能力。

2

12。

14。

12。

10。

2

2

将本文的word文档下载到电脑,方便收藏和打印。

六年级数学人教版教案篇十

综合应用“合理存款”是在完成了第六单元“百分数”的教学之后安排的,旨在让学生巩固对储蓄存款的认识,了解教育储蓄以及国债利率的有关知识,并综合运用这些相关知识解决实际问题。通过这个活动,一方面可以使学生更多地接触实际生活中的百分数,认识到数学应用的广泛性;另一方面可以促使学生了解教育储蓄、国债等相关知识,培养学生的投资意识。

“合理存款”活动共由以下四个部分组成。

1.明确问题。

本活动主要围绕:“妈妈要存款一万元,供儿子六年后上大学用,怎样存款收益?”这一问题展开的。该问题中蕴含着几个很关键的信息:本金、可存款年限以及资金用途。

2.收集信息。

3.设计方案。

根据上述收集到的信息,让学生设计具体的储蓄存款方案。定期储蓄存款的方案可填在第111页第一张表格中。其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中。每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。

4.选择方案。

从上述各种可行的方案中选取收益,即化的方案进行合理存款,并计算出到期后总共的收入。

教学建议。

1.这部分内容可用1课时进行教学。

2.本活动涉及的调查与收集信息工作,老师可要求学生在课前完成。学生可以通过网络、电话以及银行咨询等多种渠道获得人民币储蓄、教育储蓄以及国债的利率和相关规定。

3.课堂教学时,老师可结合要解决的问题帮助学生进一步明确本活动中存款的本金、可存期限以及这笔存款的用途。这可以促使学生整理信息时更有针对性,特别是为设计教育储蓄存款方案提供合理的理由。

4.在明确学生已经收集到必需的信息之后,可让学生以小组合作学习的方式共同设计方案。教材第一张表格中给定期储蓄存款方案预留了三行,实际上学生在具体设计时可能不仅仅只有三种,如一年期存6次,二年期存3次,三年期存2次,先存五年期再存一年期……多种方案。老师对学生设计的不同方案要恰当的给予鼓励,不能不加指导让学生盲目地停留在对定期储蓄存款方案的罗列中。

5.在对教育储蓄和国债方案的设计之前,建议老师先引导学生充分了解和明确收集来的关于教育储蓄和国债的相关信息与规定。例如:(1)2006年发行的凭证式一期国债,三年期利率为3.14%,五年期利率为3.49%。(2)一年期、三年期教育储蓄按开户日同期整存整取定期储蓄存款利率计息,六年期按五年期整存整取定期储蓄存款利率计息;教育储蓄储户凭存折和学校提供的正在接受非义务教育的学生身份证明(以下简称“证明”)一次支取本金和利息,每份“证明”只享受一次优惠。

6.教师启发学生通过讨论逐步认识到,由于教育储蓄和国债都免征利息税,所以相对同期的定期存款,它们的收益会相对较高。但由于国债和教育储蓄对存期和提取具有一定地限制,所以为了实现本笔存款收益化,可能的方案主要有以下几种:(1)教育储蓄存六年。(2)先买三年期国债,到期后再买三年期国债。(3)先买三年期国债,到期后再存三年期教育储蓄。(4)先买五年期国债,到期后再存一年期教育储蓄。在连续存款的方案中,连续存款时仍然只存本金一万元,不包括已经获得的利息(具体见下表)。

1.教师请各组同学选派代表,交流本小组选择的收益的方案,并具体算出到期的收入。这里需要说明的是,本活动在设计方案时国债利率均以2006年发行的凭证式一期国债的年限和利率为准,教育储蓄也以当前的规定和利率为准。实际上,国债以及教育储蓄的利率在不同时期可能会有所调整,但无论利率如何变化,方案设计的思路是一致的。教学时老师可根据当时的情况进行具体的调整。

2.教师在与全班同学共同反馈结果后,还可让学生充分讨论,如果自己有钱,想怎样投资,理由是什么,培养学生的投资意识。

六年级数学人教版教案篇十一

【教学内容】《义务教育课程标准实验教科书・数学》六年级下册第91页例4及练习十八第1~3题。【教学目标】1.通过学生观察、探索,使学生掌握数线段的方法。2.渗透“化难为易”的数学思想方法,能运用一定规律解决较复杂的数学问题。3.培养学生归纳推理探索规律的能力。【教学重、难点】引导学生发现规律,找到数线段的方法。【教具、学具准备】多媒体课件【教学过程】一、游戏设疑,激趣导入。1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔在纸上任意点上8个点,并将它们每两点连成一条线,再数一数,看看连成了多少条线段。(课件出现下图,之后学生操作)2.师:同学们,有结果了吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。(板书课题)【评析】巧设连线游戏,紧扣教材例题,同时又让数学课饶有生趣。任意点8个点,再将每两点连成一条线,看似简单,连线时却很容易出错。这样在课前制造一个悬疑,不仅激发了学生学习欲望,同时又为探究“化难为简”的数学方法埋下伏笔。二、逐层探究,发现规律。1.从简到繁,动态演示,经历连线过程。师:同学们,用8个点来连线,我们觉得很困难,如果把点减少一些,是不是会容易一些呢?下面我们就先从2个点开始,逐步增加点数,找找其中的规律。师:2个点可以连1条线段。为了方便表述我们把这两个点设为点a和点b。(同步演示课件,动态连出ab,之后缩小放至表格内,并出现相应数据,如下图)师:如果增加1个点,我们用点c表示,现在有几个点呢?(生:3个点)如果每2个点连1条线段,这样会增加几条线段?(生:2条线段,课件动态连线ac和bc)那么3个点就连了几条线段?(生:3条线段)师:你说得很好!为了便于观察,我们把这次连线情况也记录在表格里。(课件动态演示,如下图)师:如果再增加1个点,用点d表示(课件出现点d)现在有几个点?又会增加几条线段呢?根据学生回答课件动态演示连线过程)那么4个点可以连出几条线段?(生:4个点可以连出6条线段。课件动态演示,如下图)师:大家接着想想5个点可以连出多少条线段?为什么?(引导学生明白:4个点连了6条线段,再增加1个点后,又会增加4条线段,所以5个点时可以连出10条线段。课件根据学生回答同步演示,如下图)师:现在大家再想想,6个点可以连多少条线段呢?就请同学们翻到书第91页,请看到表格的第6列,自己动手连一连,再把相应的数据填写好。(学生动手操作,之后指名一生展示作品并介绍连线情况,课件演示:完整表格中6个点的.图与数据)【评析】让学生从2个点开始连线,逐步经历连线过程,随着点数的增多,得出每次增加的线段数和总线段数,初步感知点数、增加的线段数和总线段数之间的联系。2.观察对比,发现增加线段与点数的关系。师:仔细观察这张表格,在这张表格里有哪些信息呢?(引导学生明确:2个点时总条数是1,3个点时就增加2条线段,总条数是3;4个点时增加了3条线段,总条数是6;5个点时增加了4条线段,总条数是10;到6个点时增加了5条线段,总条数是15。)

六年级数学人教版教案篇十二

2.在这些体育项目中,你喜欢什么活动?出示统计表,进行统计。(可在课前进行调查统计,利用excel自动生成扇形统计图)。

喜欢的项目。

乒乓球足球跳绳踢毽其他人数。

设计意图】联系学生生活实际,统计自己喜欢的体育项目,为引出有关统计数据提供了现实背景。同时,采用真实的数据进行教学,可以引发学生学习的兴趣,也可以让他们经历数据收集、整理的全过程,进一步体会到统计的意义和价值。

二、整理数据,引入新课。

1.通过这张统计表,我们可以得到什么信息?

预设:数量的多少对比:如喜欢乒乓球人数最多,喜欢足球的比喜欢踢毽的多2人等;数量求和:如喜欢乒乓球的和喜欢足球的一共有20人等。

2.如果要比较喜欢每种运动的人数占全班人数的多少,可以怎样比较?

3.如何计算喜欢各种运动项目的人数占全班人数的百分之多少呢?

4.学生进行口算或笔算,完成统计表,并进行校对。

喜欢的项目。

乒乓、球足球、跳绳、踢毽、其他。

人数。

128569。

百分比。

30%20%12.5%15%22.5%。

设计意图】先让学生根据统计表得到数量之间的关系,再让学生计算出百分比并补充表格,可以让学生体会到百分比不仅可以表示出喜欢各项运动的人数的多少,还可以体现出喜欢各项运动的人数与全班总人数之间的关系,加深百分比与绝对人数之间的联系和区别。

三、合作交流,探究新知。

1.认识扇形统计图。

(2)乒乓球的30%又表示什么?

预设:把全班人数看作单位“1”,喜欢乒乓球的人数占全班人数的30%;把一个圆平均分成100份,喜欢乒乓球的占其中的30份。

(3)你能根据我们刚才计算的,把这张图补充完整吗?(教师可以逐项出示,并可以让学生根据扇形的大小来判断一下这块扇形可能表示的是哪个运动项目。)。

(4)根据学生回答完成扇形统计图。

(5)揭题:像这样的统计图,我们把它叫做扇形统计图。(板书课题)。

(6)想想各个扇形的大小与什么有关系?

(7)小结:扇形的大小和项目所占总人数的百分比有关。我们可以根据扇形的大小来判断数量的大小。

2.理解扇形统计图的特征。

(1)看图说说,在这幅统计图中你还可以知道哪些信息?

预设:量的多少:如谁多谁少,谁和谁一样多;部分和总量的关系:如喜欢乒乓球和足球的人数占了总人数的一半,喜欢踢毽和跳绳以及其他项目的人数占了总人数的一半。

(2)说说这样的统计图有什么优势?

预设:可以根据扇形的大小清楚直观地看到量的相对大小;可以看到各部分和整体之间的关系。

(3)小结:在这样的统计图上,我们不仅可以直观地比较各个扇形的相对大小,还能清楚地看出各部分与整体之间的关系。

设计意图】通过计算、选择、补充,让学生经历扇形统计图制作的过程,使学生对扇形统计图有一个较为完整、全面的认识,同时通过对信息的整理和对扇形统计图的优势分析,明确扇形统计图的特点。

3.尝试练习。

出示教材第97页“做一做”的内容。

(1)你能看懂这张扇形统计图吗?统计的.是什么?你是怎么知知道的?(可以根据旁边的图例来知道各个扇形代表的项目。)。

(2)说说从图上你得到了哪些信息?

(3)如果每天喝一袋250g的牛奶,能补充每种营养成分各多少克?引导学生用百分数的意义理解各百分数和250g的关系,进而算出各种营养成分多少克。

六年级数学人教版教案篇十三

整理与复习学到的知识,试一试第1题。

学情分析。

学生知识的整理和归类。

学习目标。

1、进一步理解和掌握以前学过的'知识和计算方法。

2、对所学知识进行巩固和复习。

导学策略。

练习法。

教学准备。

小黑板、投影仪、投影片。

导学流程设计:

教师预设。

学生活动。

一.引入。

1.问:以前几个单元我们一起学习了哪些知识?指名回答。

2.师生一起归纳、整理几个单元所学内容。

3.揭示课题。

4.请学生把知识进行简单的整理。并写下来。

5.与同学进行交流。

二.展开(要多设计一些学生生活实际的题目,让题目靠近学生生活。)。

1.根据学到的知识,请学生提问题。

2.学生自己尝试解决。

3.与同学进行交流。

注意学生的参与性和积极性。

三.综合应用。

投影出示p66练一练第1题。

先4人小组中讨论,并解答,然后在全班同学面前汇报,特别要说清思考过程,最后,教师讲解。

三.总结。

四.作业。

学生指名回答。以前几个单元我们一起学习了哪些知识?

学生把知识进行简单的整理。并写下来。

与同学进行交流。

根据学到的知识,请学生提问题。

学生自己尝试解决。

与同学进行交流。

先4人小组中讨论,并解答,然后在全班同学面前汇报,特别要说清思考过程。

教学反思。

达标情况分析:很好。

教学心得体会:多给学生一些思考的空间,学生更喜欢。

六年级数学人教版教案篇十四

从知识角度分析为什么难。

打折销售与学生的日常生活息息相关,学生并不感到陌生,但在促销活动中选择最佳消费方式,要运用所学的百分数知识解决问题有一定的难度。

从学生角度分析为什么难。

学生在解题的过程中,要懂得“满100元减50元”的促销方式,对于消费者来说不如打五折实惠;如果总价是整百元的,那两种促销的方式优惠的结果是一样的,但要得出这种结论,对于学生来说有一定难度,需要运用所学的百分数知识去分析、交流、比较才能解决。

在教学时,先让学生结合自己的生活经历去理解“满100元减50元”的含义,然后根据实际情况进行表述,再引导学生体会这种促销方式的计算方法,接下来要由学生独立完成两种购买方式所要支付的钱,并通过比较来解决题目中的问题。

一、复习旧知,引入新课。

1、提问“一件物品打九折出售”表示什么意思?

2、生活中,是不是所有的优惠都是以“几折”来表示的呢?

3、购物中优惠的形式有很多种,我们要做一个精明的小买家。今天,我们就来研究购物中的折扣问题。(板书:购物中的折扣问题)。

二、教学新知。

(一)出示例5:某品牌的裙子搞促销活动,在a商场打五折销售,在b商场按“满100元减50元”的方式销售。妈妈要买一条标价230元的这种品牌的裙子。

1、根据这些信息,学生提问题。

教师板书:

(1)在a、b两个商场买,各应付多少钱?

(2)哪个商场省钱?

2、分析问题,理解题意。

(1)结合题目给出的数学信息,哪些是关键的?

(2)怎样理解“满100元减50元”?

(3)不足100元的部分呢?怎么办?

3、独立思考,尝试解决。

师:请同学们独立思考,看能否解决黑板上的这两个问题?

4、交流并汇报方法。

师:谁来说说自己的解决方法?

学生展示自己的算式,并解释。

5、启发思考,辨析原因。

(1)满100元减50元,少了50元,也是打五折啊,怎么优惠的结果却不一样呢?

(2)什么情況下两种优惠是一样的呢?

6、小结:在今天的折扣问题中,我们知道了优惠的形式有很多种,解决这些问题时要注意的是“满100元减50元”和打五折的区别:

(1)“满100减50”,就是够100才能减50,不够则不减。

(2)打五折实际售价都是原价的50%,不满100元的也能按50%计算。

(3)售价刚好是整百元的时候,两种优惠结果才是一样的。

三、练习巩固,提高能力。

1、做一做。

某品牌的旅游鞋搞促销活动,在a商场“每满100元减40元”的方式销售,在b商场打六折销售,妈妈准备给小丽买一双标价120元的这种品牌的旅游鞋。

(1)在a、b两个商场买,各应付多少钱?

(2)选择哪个商场更省钱?

同学们,在今天学习的折扣问题中,我们知道了不同形式的优惠有很多种,在解决这些问题时要注意的是“满100元减50元”和打五折的区别。

六年级数学人教版教案篇十五

教学内容:

教学目标:

1.知识与技能:使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。

2.过程与方法:使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3.情感、态度与价值观:使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点:

使学生掌握用“替换”的策略解决一些简单问题的方法。

教学难点:

使学生能感受到“替换”策略对于解决特定问题的价值。

教学过程:

一、复习导入。

1.说说图中两个量的关系可以怎样表示?

追问:还可以怎么说?

指出:两个量的关系,换一个角度,还可以有另外一种表示方法。

2.从图中你可以知道些什么?

(多媒体出示:天平的左边放上一个菠萝,右边放上四个香蕉,天平平衡。)

指出:从这题中,我们可以看出,能把一个物体换成与之相等的另外一个物体。

3.口答准备题:

(2)小明把720毫升果汁倒入3个相同的大杯,正好都倒满,每个大杯的容量是多少毫升?指出:这两题我们都是用果汁总量去除以杯子总数,就能得出所要求的问题。

二、新授

(一)教学例1

1.读题

2.分析探索

提问:也同样是720毫升的果汁要倒入到杯子里,这题与刚才的两题相比较,有何不同之处?小结:刚才两题是把果汁倒入到一种杯子里,而这题是把果汁倒入到两种不同的杯子里。提问:那么还能像刚才一样用果汁总量去除以杯子总数,用720÷(6+1),可以这样计算吗?追问:那该怎么办?同桌先相互说说自己的想法。

3.交流

谈话:我们一起来交流一下,该怎么办?

追问:还可以怎么办?

小结:两位同学都是把两种不同的杯子换成相同的一种杯子,这样就可以解决问题啦!同学们可真了不起啊,刚才大家的做法中已经蕴涵了一种新的数学思想方法――替换。(板书:替换)

4.列式计算

a:把大杯换成小杯

提问:把一个大杯换成三个小杯(板书),这样做的依据是什么?

追问:如果把720毫升果汁全部倒入小杯,一共需要几个小杯?(板书)能求出每个小杯的容量吗?每个大杯呢?(板书)

小结:在用这种方法解的时候,我们是把它们都看成了小杯,所以先求出来的也是每个小杯的容量,然后求出每个大杯的容量。

b:把小杯换成大杯

谈话:那反过来,把小杯换成大杯呢?(板书)

提问:如果把720毫升果汁全部倒入大杯,又需要几个大杯呢?你又是怎么知道的?

指出:把三个小杯换成一个大杯,再把三个小杯换成一个大杯。

提问:这样做的依据又是什么?

指出:如果把720毫升果汁全部倒入大杯,就需要3个大杯。(板书)

提问:能求出每个大杯的容量吗?每个小杯呢?(板书)

5.检验

谈话:求出的结果是否正确,我们还要对它进行检验。想一想可以怎么检验?

指出:哦!把6个小杯的容量和1个大杯的容量加起来,看它等不等于720毫升。(板书)除此之外,我们还要检验大杯的容量是不是小杯容量的3倍。(板书)总之,检验时要看求出来的结果是否符合题目中的两个已知条件。

6.小结

指出:解这题的关键就是把两种杯子看成一种杯子。

(二)练习十七第1题

谈话:把这道题目,做在自己的草稿本上。(指名板演)

提问:把你的做法讲给同学们听。

追问:计算的结果是否正确,还要对它进行检验。就请你口答一下检验的过程吧!

(三)教学“练一练”

1.出示题目

谈话:自己先在下面读一遍题目。

2.分析比较

提问:这题与刚才的例1相比较有何不同之处?

指出:哦!例1中小杯和大杯的关系是用分数来表示的,而这题已知的是一个量比另一个量多多少的差数关系。

提问:那么这题中的大盒还能把它换成若干个小盒吗?那该怎么换?谈话:现在你能做了吗?把它做在草稿本上。

3.学生试做

4.评讲

谈话:说说你是怎么做的?

指出:在大盒中取出8个球,就可以换成小盒;另外一个大盒也是这样。

提问:现在这7个小盒中,一共装了多少个球?还是100个吗?几个?指出:算式是100-8×2,所以84÷7算出来的是每个小盒装球的个数。

指出:算式是100+8×5,所以140÷7算出来的是每个大盒装球的个数。

谈话:把大盒换成小盒算出结果的请举手!把小盒换成大盒算出结果的也请举手!看来同学们还是喜欢把大盒换成小盒来计算。

5.检验

谈话:同桌相互检验一下刚才计算的结果是否正确。

6.小结

提问:解这题时你觉得哪一步是关键?

指出:哦!还是把两种不同的盒子换成一种相同的盒子,然后再解题。

三、全课总结

谈话:今天这节课老师和同学们一起学习了解决问题的策略中用替换的方法解决问题。(板书完整课题)

提问:那你觉得在什么情况下我们可以用替换的方法来解题,能给大家来举一个例子说说吗?指出:哦!当把一个量同时分配给了两种物体时,而且这两种物体是有一定关系的时候,我们就能用替换的方法来解题。

追问:那解题时该怎么替换呢?(那在用替换的方法来解题时,关键是什么?怎么来替换?)指出:把两种物体看成同一种物体,(板书)求出一种物体的数量后,也就能求出另一种物体的.数量。

四、巩固练习

3.练习十七2(机动)

――替换

把两种物体看成同一种物体

1.把大杯替换成小杯共需要9个小杯

720÷(6+3)=80(毫升)验算:240+6×80=720(毫升)

80×3=240(毫升)240÷80=3(倍)

2.把小杯替换成大杯共需要3个大杯

720÷(1+2)=240(毫升)

240÷3=80(毫升)

课后反思:

由于课前对教材进行了深入的研究和学习,所以教学时做到了心中有数,因而今天这节数学课的教学效果是不错的,超出了我的预期目标。学生们对于用替换这种策略来解决生活中一些常见的实际问题都很感兴趣,课堂上学生们思维活跃,发言积极,包括很多平时学习数学困难较大的学生也掌握了这一策略。

一、培养学生运用所学知识解决实际问题的能力。首先,解决实际问题的教学能培养学生根据需要探索和提取有用信息的能力。其次,它促使学生将过去已掌握的静态的知识和方法转化成可操作的动态程序。这个过程本身就是一个将知识转化成能力的过程。再次,它能使学生将已有的数学知识迁移到他们不熟悉的情景中去,这既是一种迁移能力的培养,同时又是一种主动运用原有的知识解决问题能力的培养。

二、培养学生的数学意识。首先,它能使学生认识到所学数学知识的重要作用。其次,它能培养学生用数学的眼光去观察身边的事物,用数学的思维方法去分析日常生活中的现象。再次,它能使学生感受到用数学知识解决问题后的成功体验,增强学好数学的自信心。

不仅使学生获得初步的创新能力,同时还可以让学生从小养成创新的意识和创新的思维习惯,为今后实现更高层次的创新奠定良好的基础。

六年级数学人教版教案篇十六

第87页例1、例2,88页课堂活动第1、2题,练习二十二第1~4题。

1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。

2.会正确地读、写正、负数,知道0既不是正数,也不是负数。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。

负数的意义和负数的读法与写法。

理解0既不是正数,也不是负数。

多媒体课件。

教师讲授、合作交流。

一、复习导入。

提出问题:举例说明我们学过了哪些数?

教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。

提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?

二、创设情境、学习新知。

1.教学例1。

(1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”

为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?

这里有零下6℃、零上6℃,都记作6℃行吗?

你有什么简洁的方法来表示他们的不同呢?

教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。

(2)巩固练习。

同学们,你能用刚才我们学过的'知识,用恰当的数来表示温度吗?试试看。

学生独立完成第87页下图的练习。

教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。

2.自主学习例2。(进一步认识正数和负数)。

教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

引导学生交流:珠穆朗玛峰比海平面高8844.43米。

引导学生交流:吐鲁番盆地比海平面低155米。

学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)。

教师追问:你是怎么想到用这种方法来记录的呢?

最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。

教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。

(2)巩固练习:教科书第88页试一试。

3.小组讨论,归纳正数和负数。

提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。

小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)。

通常正号可以省略不写。负号可以省略不写吗?为什么?

最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)。

三、运用新知,课堂作业。

1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。

2.课堂活动第2题。同桌先讨论,然后反馈。

四、小结。

同学们,今天我们认识了负数。你有什么收获?

五、课堂作业。

练习二十二第1、4题。

家庭作业:练习二十二第2、3题。

板书设计:

负数的初步认识。

正数:20、22、14、+8844.43…。

0:既不是正数也不是负数。

负数:-2、-30、-10、-15、-155…。

六年级数学人教版教案篇十七

1、让学生通过活动,经历分类的过程,学会按一定标准进行分类的方法,初步养成有条理地整理事物的习惯。

2、通过分类活动,让学生进一步体会分类的`含义,感受分类在生活中的用途。

3、教师可以适时地向学生渗透爱劳动、爱家庭的教育。

教学重点:学会按一定的标准进行分类的方法,养成有条理地整理事物的习惯。

教学难点:学会按一定的标准进行分类的方法。

一、导入

同学们,你们逛过超市吗?里面的物品是怎么摆放的?

为什么要这样摆放呢?

分类摆放后顾客去买东西更方便。你们想不想学习怎样分类呢?

那么今天这节课就来学习分类。

二、授新课

1、活动一:整理房间

(1)有个叫亮亮的小朋友很想去公园玩,可是他的妈妈有要求:要他先把自已的房间整理好.

(2)课件出示:同学们看了亮亮的房间,你们想对亮亮说什么?

你们愿意帮帮他吗?那么你们认为该怎样整理房间呢?(小组交流,说说自己的想法)

小组汇报

你能说说为什么要这样整理吗?(强调同一类的要放在一起)

课件演示整理过程

提问:你还知道哪些学习用品?

六年级数学人教版教案篇十八

教科书第55页例2,课堂活动第2题,练习十五第4~7题。

1.进一步掌握按比例分配解决问题的方法,能合理、灵活地解决3个数连比的按比例分配的问题。

2.经历解决三个数连比的按比例分配解决问题的过程,总结出按比例分配问题的解决方法,提高解决问题的能力。

3.通过小组交流合作,共同寻找解决问题的方法,使学生的个性得到了张扬,获得了积极的情感体验。

4.在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

5.在按比例分配的过程中,感受分配方案的简洁美、理性美。

6.经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

重点:把两个数比的问题的解题方法推广到三个数连比的问题。

难点:理解三个数连比的问题的解题方法。

学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。

导入新课

1.填空。(多媒体出示题目)

(1)小明家养了35只鸡,公鸡和母鸡只数比是3∶4,公鸡( )只,母鸡( )只。

(2)丹顶鹤是国家一级保护动物。我国与其他国家拥有丹顶鹤只数的比是1∶3,20xx年全世界大约有20xx只丹顶鹤,我国有( )只。其他国家有( )只。

学生回答反馈,说说怎样思考,集体评价。

2.引入谈话:怎样解决按比例分配的问题?

在实际生活中还有哪些问题可以用按比例分配的'方法解决?生举例。(组织学生分组讨论.

反馈.

交流后,老师及时做出评价)

在建筑业中很多地方也用到按比例分配的方法来解决实际问题,今天我们继续研究这方面的问题。

独立思考再交流方法和结果,集体评价。

举例,分组讨论、反馈、交流。

1.课件出示例2:从题中你获取了什么信息?(学生交流获取的信息)

2.教师组织学生讨论:这道题与前面所做的题有什么区别?怎样解答?

生1:前面所做的题都是两个量的比,这道题是三个量的比。

生2:可以仿照上节所学的按比例分配方法去解。

3.学生尝试解答,教师巡视。

4.展示学生解法,说出解题思路。

方法1:220÷(2+3+6)=20(吨)

需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20×3=60(吨)需要石子的吨数:20×6=120(吨)

答:需要水泥40吨,需要沙子60吨,需要石子120吨。

方法2:总份数:2+3+6=11

需要水泥的吨数:220x2/11=40(吨)

需要沙子的吨数:220x3/11=60(吨)

需要石子的吨数:220×6/11=120(吨)

方法3:根据已有知识,用方程解。先求出每份是多少吨,再分别求出沙子、石子、水泥应需的吨数。

解:设每份是x吨.

2x+3x+6x=220

11x=220

x=20

需要水泥的吨数:20×2=40(吨)需要沙子的吨数:20× 3=60(吨),需要石子的吨数:20×6=120(吨)

5.议一议:怎样解决按比例分配的问题?

学生先独立思考,再在小组内交流,最后师生共同总结出解决按比例分配问题的一般方法:要先求出总份数,求出每一份的量,再求出各部分的量;或者求出总份数后再看各部分量占总数量的几分之几,最后求各部分量;或者设每1份的量为未知数,列方程来解答。

学生交流获取的信息。

讨论交流异同。

尝试解答,再展示交流解题思路。

独立思考,再小组交流、小结解决按比例分配问题的一般方法。

在配置混泥土的过程中,感受数学与生活的联系,培养学生的合作意识,引导学生大胆探索创造。

在按比例分配的过程中,感受分配方案的简洁美、理性美。

1.课堂活动第2题。

根据给出的这三种蛋的连比,组织学生讨论后尝试独立解题,交流解题方法。

教师组织学生讨论:这道题与前面所做的题有什么区别?

引导学生得出,这个问题中虽然没有给出沙子、石子、水泥的连比,但已给出了一个配料方法,根据给出的数值,可以求出这三种料的连比。

学生讨论后尝试独立解题。完成后交流解决问题的方法。

再次组织学生讨论,交流得出:先求出现场测量的三种配料的比3:2:5,然后与要求的配料的比比较,得出:这堆混凝土不符合要求。

学好按比例分配,不但能解决生活中的实际问题,还能帮助我们更全面地分析问题。

学生讨论找到方法。

独立解题,再交流解题方法。

讨论交流得出结论。

经历按比例分配解决问题的过程,感受数学的价值,体验解决问题的快乐,培养学生热爱数学的情感。

想一想,今天学习的知识与昨天有什么不同?又有什么相同?

谈收获。

练习十五第4―7题。

独立完成。

六年级数学人教版教案篇十九

1、通过练习,进一步巩固复式条形统计图与复式折线统计图的知识。

2、从统计图中获取尽可能多的信息,体会数据的作用。3、进一步学习制作复试折线统计图,培养学生动手操作能力,分析能力和合作能力。教学重点:从统计表里收集信息,并能用这些信息分析问题。

如何根据信息绘制统计图。

一、基础练习,全班交流。

1、练功房。

基础练习,了解统计图的种类。分辨什么数据用什么统计图描述更清楚更直观。

2、智慧树。

(1)这是什么统计图?

(2)分析图中的`数据,回答问题。

(3)第3题,你能知道哪些信息?

3、实践大本营。

提高练习。

让学生选择一题来绘制统计图。

(1)绘制统计图需要哪些数据?

(2)绘制统计图你需要注意什么?

学生独立完成后,集体订正。

二、变式练习题。

课件出示练习题。

学生看题,先集体分析题目,一起探讨数学问题。

1、这是什么统计图?

2、你能解决这些问题吗?

3、你知道了哪些信息?

4、你还有什么疑问?

教学小结:

通过这次练习,你有什么收获?通过练习,进一步巩固结复式统计图的理解与掌握。

通过自主交流与探索,让学生自主选择。

六年级数学人教版教案篇二十

教科书第2页的例3、例4,做一做中的习题和练习一的第6~11题。

使学生掌握用整十数乘的口算方法。

理解用整十数乘的算理。

用十位上的乘后,在得数的末尾填一个0。

例3、例4的教学挂图。

一、复习。

口算下面各题:

1352732304。

1541621405。

指名让学生说一说135、2304、1404的口算过程。

二、新课。

1.教学例3。

教师出示例3的乒乓球挂图,如下:

用纸盖住最右边的一袋,提问:

这里有几袋乒乓球?每袋几个?要求一共有多少个乒乓球,怎样列式计算?学生回答后,教师板书:59=45。

接着露出盖住的那袋乒乓球,提问:

刚才有9袋乒乓球,一共有45个。再增加1袋,是几袋?一共有多少个乒乓球?怎样列式计算?指名学生回答,教师板书:510=50。

谁能说一说510=50是怎么想的?(因为9个5是45,45+5=50,也就是10个5就是50。)多指几名学生说说。

2.做做一做的第1题。

让学生独立口算,指名回答口算结果和口算过程,教师板书出算式和得数。然后提问:

这些题的得数和被乘数有什么关系?使学生通过观察得出:一个数乘以10,可以在这个数的后面直接添一个0。

3.做做一做的第2题。

让学生把得数写在书上。集体订正。

4.教学例4。

教师出示例4的.皮球图。如下:

提问:

这里有20盒皮球,每盒有6个。求一共有多少个皮球,怎样列式计算?学生回答后,教师板书:620。

620怎样口算呢?

先让学生说一说自己的想法,然后教师引导学生推想620的口算过程:

从图中我们可以看出每2盒是一摞,20盒是几棵?让学生数一数回答。

求20盒皮球的个数,也就是求几橡皮球的个数?

要求10摞皮球的个数,可以先求几橡皮球的个数?

一摞皮球有多少个?怎样想的?

几乘以几?学生回答后,教师在620的右下方用红粉笔板书:62=12。

一摞是12个,10摞是几个12?是多少?

几乘以几?学生回答后,教师在62=12的下面用红粉笔板书:1210=120。

算出10摞皮球的个数,就是20盒皮球的个数,也就是620等于多少?学生回答后,教师在620后面板书:=120。

最后,教师概括出620的口算过程:620可以先求62=12,再用1210,等于120。

5.做例4下面的做一做的第1题。

让学生先做,做完后,指名说一说各题的得数和口算过程。然后提问;

这几道题和例4的被乘数都是几位数?乘数都是什么数?

一位数乘以整十数在口算时,分了几步?

最后,让学生用这个规律把这道题再口算一遍。

6.做例4下面做一做的第2题。

三、练习。

做练习一的第6~11题。

1.第6、7题,让学生独立做,做完后,指名说得数,每道题抽几个小题让学生说一说口算过程。

2.第8题先让学生填出左边一题方框中的得数,再让学生填出右边一题方框中的得数,然后集体订正。

3.第9题,让学生先自己做,做完后说一说各是怎样列式计算的,为什么用乘法计算。

4.第10题,让学生自己读题,在练习本上解答。订正时,说一说为什么用乘法计算。

5.第11题,先让学生独立做,做完后,教师把学生的不同算法板书出来:205=100520=100。提问:

这两个算式表示的意思一样吗?为什么?(不一样,205是一排一排地算的,一排有20格,5排有205格;520是一行一行地算的,一行有5格,20行有520格。)。

205是怎样口算的?520是怎样口算的?通过分析使学生体会到:无论是205还是520都是把2和5相乘得10,再在后面添写一个0,得100。

六年级数学人教版教案篇二十一

这部分内容是在学生理解并掌握分数乘法的意义以及分数乘法的计算方法基础上进行教学的。它是分数应用题中最基本的,不仅分数除法应用题以它为基础,很多复合的分数应用题也是在它的基础上扩展的。因此,使学生掌握这咎应用题的解答方法对他们今后进一步学习较复杂的分数应用题具有重要的意义。例1只涉一个数量,要求一个数量的几分之几是多少。要求的是已知数量的一部分,属于部分与整体的问题。在这里用线段图帮助学生题意,明确求我国人均耕地面积,就是求2500的是多少。从而掌握求一个数的几分之几是多少的实际问题的解答方法。

学生对单位1已经有了一定的理解和认识。已经掌握分数乘法的意义以及分数乘法的计算方法。本课让学生分清把谁看作单位1。借助线段图分析题意,学生在画线段图时会遇到一定的困难,教师要适时指导。

1、经历对实际问题的探究的过程,掌握求一个数的几分之几的问题的解答方法。并能正确地解答。

2、培养学生的分析能力与表达能力。

掌握求一个数的几分之几的问题的数量关系,并能正确地解答。

正确地确定单位1

教学过程备注

分析题意,理解数量关系。

教师引导学生理解我国人均耕地面积仅占世界人均耕地面积的是什么意思?(是把占世界人均耕地面积五光平均分成5份,我国人均耕地面积占其中的2份。)

教师然后让学生试着画一画线段图,分析题意。

全班与教师一起画线段图,借助于线段图理解题意,要求我国人均耕地面积就是求2500的是多少。

列式为:2500=

学生独立完成。

集体订正。

巩固练习。

1、教师出示做一做。

这是一道关于两个量之间的,一个量是另一个量的几分之几的问题。在解答时,教师也先让学生画线段图分析。

然后再独立解答。

2、完成练习四中的部分练习。

课堂小结。

板书:

六年级数学人教版教案篇二十二

学生已经有了对周长的认识,只是研究圆的周长需要探索圆的周长与直径的关系,那么,对于圆的周长与直径的这个倍数关系,学生通过测量、计算是能发现的,然后再根据这一倍数关系推导出周长的计算方法。教学时,关键是引导学生能发现圆的周长与直径之间的倍数关系。

1.理解圆周率的意义,推导出圆周长的计算公式,并能正确的进行简单的计算。

2.培养学生的观察、比较、分析、综合及动手操作能力。

3.领会事物之间是联系和发展的辩证唯物主义观念以及透过现象看本质的辨证思维方法。

4.结合圆周率的学习,对学生进行爱国主义教育。

推导并总结出圆周长的计算公式。

深入理解圆周率的意义。

备注:

活动一:创设情境,引起猜想:认识圆的周长

(一)激发兴趣

(二)认识圆的周长

1.回忆正方形周长:

小黄狗跑的路程实际上就是正方形的什么?什么是正方形的周长?

2.认识圆的周长:

那小灰狗所跑的路程呢?圆的周长又指的是什么意思?

每个同学的桌上都有一元硬币、茶叶筒、易拉罐等物品,从这些物体

中找出一个圆形来,互相指一指这些圆的周长。

(三)讨论正方形周长与其边长的关系

1.我们要想对这两个路程的长度进行比较,实际上需要知道什么?

2.怎样才能知道这个正方形的周长?说说你是怎么想的?

3.那也就是说,正方形的周长和它的哪部分有关系?正方形的周长总

是边长的几倍?

(四)讨论圆周长的测量方法

1.讨论方法:刚才我们已经解决了正方形周长的问题,而圆的周长呢?

2.反馈:(基本情况)

(1)滚动--把实物圆沿直尺滚动一周;

(2)缠绕--用绸带缠绕实物圆一周并打开;

(3)折叠--把圆形纸片对折几次,再进行测量和计算;

(4)初步明确运用各种方法进行测量时应该注意的问题。

3.小结各种测量方法:(板书)转化

曲直

4.创设冲突,体会测量的局限性

5.明确课题:

今天这堂课我们就一起来研究圆周长的计算方法。(板书课题)

(五)合理猜想,强化主体:

1.请同学们想一想,正方形的周长和它的边长有关系,而且总是边长的4倍,所以正方形的周长=边长4。我们能不能像求正方形周长那样找到求圆周长的一般方法呢?小组讨论并反馈。

2.正方形的周长与它的边长有关,你认为圆的周长与它的什么有关?

向大家说一说你是怎么想的。

3.正方形的周长总是边长的4倍,再看这幅图,

猜猜看,圆的周长应该是直径的倍?

(正方形的边长和圆的直径相等,直接观察可发现,圆周长

小于直径的四倍,因为圆形套在正方形里;而且由于两点间

线段最短,所以半圆周长大于直径,即圆周长大于直径的两倍)

4.小结并继续设疑:

活动二:动手操作,探索圆的周长与直径的关系。

六年级数学人教版教案篇二十三

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

比例的基本质性。

发现并概括出比例的基本质性。

多媒体课件。

一、旧知铺垫。

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

和5:2。

1/2:1/3和6:4。

和1:4。

二、探索新知。

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书。

组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如:=60:40。

内项:6o。

外项:40。

(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

如::=60:40。

外内内外。

项项项项。

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1)学生独立探索其中的规律。

(2)与同学交流你的发现。

(3)汇报你的发现,全班交流。(师作适当的补充)。

在比例里,两个内项的积等于两个外项的积。

板书。

两个外项的积是。

两个内项的积是。

外项的积等于内项的积。

(4)举例说明,检验发现。

1

两个外项的积是。

两个内项的积是。

外项的积等于内项的积。

如果把比例改成分数形式呢?

如:=60/40。

3.。

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5)学生归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

4.填一填。

(1)1/2:1/5=1/4:1/10。

()()=()()。

六年级数学人教版教案篇二十四

第一课时长方体和正方体的认识。

教学内容:长方体和正方体的认识。

1、使学生通过观察实物、动手操作等活动认识长方体、正方体,知道长方体和正方体的面、棱、顶点以及长、宽、高(或棱长)的含义,掌握长方体和正方体的基本特征。

2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。

一、引入新课。

1、由平面图形引到立体图形。

接着电脑演示由面到体的过程,揭示课题:“长方体的认识”。

2、引导学生认识什么是立体图形。

指出它占有一定的空间,像这样占有一定空间的物体的形状就是立体图形(电脑显示若干立体实物)。

问:这些物体的形状都是什么图形呢?在这里面哪些物体的形状是长方体的呢?

3、举例。

让学生举出日常生活中见过的长方体的物体实例。

师:要知道这些物体为什么都是长方体,就要研究长方体的特征。

1、出示例1:

(1)拿一个长方体的纸盒来观察:

长方体有几个面?从不同的角度观察一个长方体,最多能同时看到几个面?

指导学生从不同的角度观察学具,回答上面的问题。

(2)抽象图形。

说明:因为我们最多只能看到长方体的3个面,所以通常这样画长方体。

(师边讲边画长方体的直观图,注意要规范。)。

让学生上去指一指,图上哪3个面是我们能直接看到的`?另外3个面在哪里?

2、认识长方体各部分的名称。

(1)教师结合直观图逐一向学生介绍棱和顶点,并及时在图中作出标注。

(2)同桌学生用手摸长方体纸盒,互相指出长方体的面、棱、顶点。

电脑分别显示面、棱、顶点这三个部分,加深印象。

3、长方体的特征。

出示:长方体有几条棱和几个顶点?它的面和棱各有什么特征?看一看,量一量,比一比,并在小组里交流。

学生四人一组讨论长方体有什么特点,讨论后自由发表自己的看法,教师引导学生总结长方体特点。

(1)面的特点。

长方体有几个面?谁能迅速的数出长方体的6个面?比较哪一种方法好?

长方体的6个面是什么形状的?还有不同看法吗?这两个面的位置是怎样的?(可结合拍手理解“相对”)。

(还可以出示预先准备好的纸盒让学生直观感受长方体的一种特殊情况,一般来说,长方体的每个面是长方形,特殊情况也可能有两个相对的面是正方形。)。

相对的面形状相同,大小一样,可以用这四个字(出示:完全相同)来代替。(电脑演示相对的面完全相同这个特点)。

(2)棱的特点。

长方体有多少条棱呢?谁能给大家介绍一种很快的数出这12条棱的方法?

如果有学生是分组来数的,可以结合长方体铁丝框架数一数。想一想:每组有几条棱?每组4条棱的位置是怎样的?相对的棱有什么特点?(长度相等)(电脑显示棱的特点)。

(3)顶点的个数。

长方体有几个顶点?你是怎样迅速数出来的?

(4)概括长方体的特征。

**让学生看着自己的长方体纸盒说说长方体的面、棱、顶点各有什么特征。

**小结:长方体是由6个长方形围成的立体图形。它有12条棱,8个顶点。一个长方体的面可以分为3对,相对的面完全相同;长方体的棱可以分为3组,每组4条,相对的棱长度相等。

4、学习长、宽、高。

(1)问:相交于同一顶点的3条棱的长度都相等吗?

指出:长方体相交于同一个顶点的这三条棱的长度,分别叫做长方体的长、宽、高。通常把水平方向的两条棱分别叫做长和宽,把竖直方向的一条棱叫做高。(师边讲边标注)。

(2)学生选择一个长方体实物,量出它的长、宽、高。

5、认识正方体的特征。

(2)学生交流后,让他们小小组去探究。

(3)全班交流。

6、讨论长方体和正方体的关系。

(1)观察比较:长方体和正方体有哪些相同点?有哪些不同点?

明确:正方体是一种特殊的长方体。由于正方体的12条棱长度都相等,所以它的棱的长度不分长、宽、高了,就叫做棱长。

(2)选择一个正方体实物,量出它的棱长。

7、小结:今天我们一起来研究了长方体和正方体的特征,请同学们打开课本看第10—11页的内容。

1、练习一第1题。

看图说出每个长方体的长、宽、高各是多少。

结合第3个图形再说说这个长方体的面的形状有什么特别之处。

2、练习一第2题。让学生说一说。

3、练习一第3题。让学生仔细观察后回答各问题,并说说怎么看出来的。

明确:这个长方体前后的两个面是正方形,其余的4个面是完全相同的长方形。

4、练习一第4题。

先让学生判断摆出的这几个几何体分别是长方体还是正方体,再让学生互相指一指每个几何体中长、宽、高(或棱长)的位置,说说它们分别是多少厘米。

5、练习一第5题。

学生独立完成后交流。

通过这节课的学习,你有什么收获?

师:这儿有一个关于长方体特征的顺口溜。大家可以轻声读读。

出示:

长方体立体形,8顶6面十二棱;

棱分长、宽、高,每组四条要记好;

6个面对着放,对应面都一样。

在家里找一个自己喜欢的长方体玩具或物体,仔细观察一下它的面、棱、顶点;或是找一些材料自己做一个长方体并涂上或画上喜欢的图案。

教学后记:

第二课时长方体与正方体的展开图。

教学内容:p3例3、“试一试”“练一练”、练习一第6—7题。

教学目标:

1、使学生通过观察实物、动手操作等活动认识长方体、正方体的展开图,进一步加深对长方体和正方体特征的认识。

2、使学生在活动中通过建立图形的表象的过程,进一步积累空间与图形的学习经验,增强空间观念。

教学资源:学生每人准备正方体、长方体纸盒各一个、剪刀。

学生按小小组分别准备教科书14页思考题中所需的若干张硬纸(每种6张)教学过程:

1、说说长方体和正方体的特征。

2、师:这节课,我们要继续研究有关长方体和正方体的知识。

1、让学生看教科书3页,像例3那样,将有关的棱用红线描出,并按照例题所示的步骤进行操作,得到正方体的展开图。

2、把展开图再复原成立体图,再进一步展开、复原,让学生从展开图中找到3组相对的面。

3、让学生独立一剪,并在小组里交流自己得到的展开图,在交流中认识不同的正方体展开图,并思考展开图中的各个面与原来各个面的关系。

4、学生独立完成“试一试”。

拿一个长方体纸盒,沿着一些棱剪开,看看它的展开图,先从自己的展开图中找出长方体的3组相对的面,然后在其他同学的不同的展开图中找。最后让学生观察相对的面在不同的展开图上的分布情况,发现其中的规律。

4、“练一练”

第1题让学生在观察展开图的基础上,先在图中标注下面、后面、和左面,并说明自己的理由。然后将展开图复原成立体图来检验。

第2题。

(1)出示各展开图,引导学生先想像把展开图复原成立体图的过程,再判断。

(2)把教科书117页的图形剪下来试着折一折从而验证自己先前的判断是否正确。

1、练习一第6题。

让学生在仔细观察展开图的基础上作出判断。对于不能围成长方体的图形要说明理由,最后再进行操作验证。

2、先让学生独立思考并进行选择,再通过交流让学生说明选择的根据。

让学生拿出准备好的硬纸,先启发学生思考:要围成一个长方体或正方体,至少要用几张硬纸片?这几张硬纸片的形状和大小有什么关系?再让学生操作。然后说说有没有找到什么规律。

通过学习,你有什么收获?想提醒大家注意什么?

【本文地址:http://www.xuefen.com.cn/zuowen/17449334.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档