通过总结,我们可以发现自己的不足,进而提升自我,追求更好的未来。总结要具有启发性和指导性,给读者以一些有益的思考和行动建议。以下是一些学习方法总结,供大家参考和应用到自己的学习中。
的倍数特征教学设计篇一
1、学生经历2、5倍数的特征的探索过程,掌握2、5倍数的特征,会正确判断一个数是不是2、5的倍数。
2、在观察、猜想、验证和讨论的过程中,提高探究问题和合作学习的能力。
过程与方法。
在合作学习中培养学生观察、分析、判断的能力,使学生逐渐形成合作意识和初步的探索精神。
情感、态度和价值观。
培养学生学习习惯的养成,培养学生自主学习的策略,养成良好品质。
一、游戏引入。
1、数学王国里的5部落和2部落要召回散落在外的人马了,召回条件:5部落只召回5的倍数,2部落只找回2的倍数。
同学们有这么多的问题,下面我们就带着这些问题开启今天的探索之旅,一起探究2、5的倍数的特征。
二、自主探究。
1、拿出尝试研究单,完成第一题。
读要求,自主找到1—100中2的所有倍数和5的所有倍数。
三、小组讨论交流。
1、仔细观察5的倍数和2的倍数,看看你有什么发现?把你的想法和小组同学进行交流,共同完成尝试研究单的第二题。
四、汇报交流。
(1)哪个小组来汇报5的倍数有什么特征?
(2)谁能举个更大一些的数来进行验证?
(1)哪个小组来汇报2的倍数有什么特征?
(2)谁能举个更大一些的数来进行验证?
(3)小结:2的倍数的特征是:个位上是2、4、6、8、0。
(1)观察最后一列,你有什么发现?
(2)一个数既是2的倍数,又是5的倍数,有什么特征?
五、教师点拨。
我们通过观察、比较、猜想、验证知道了5的倍数的特征和2的倍数的特征,以后我们再来判断一个数是不是5的倍数和2的倍数可以只看个位就行了。
六、挑战自我。
1、将下面的数填写在合适的圈里。
18、24、30、31、45、56、60、72、75、80、95、100。
七、总结收获。
这节课你有什么收获?
1、让学生经历2和5的倍数特征的探索过程,理解并掌握2和5的倍数的特征,会运用这些特征判断一个数是不是2和5的倍数;知道偶数和奇数的意义,会判断一个自然数是偶数还是奇数。
2、在学习活动中培养学生的观察、分析、比较、概括能力和合情推理能力,增强学生的探索意识,进一步感受数学的奇妙。
的倍数特征教学设计篇二
教学目标:
知识与技能。
1、学生经历2、5倍数的特征的探索过程,掌握2、5倍数的特征,会正确判断一个数是不是2、5的倍数。
2、在观察、猜想、验证和讨论的过程中,提高探究问题和合作学习的能力。
过程与方法。
在合作学习中培养学生观察、分析、判断的能力,使学生逐渐形成合作意识和初步的探索精神。
情感、态度和价值观。
培养学生学习习惯的养成,培养学生自主学习的策略,养成良好品质。
教学过程:
一、游戏引入。
1、数学王国里的5部落和2部落要召回散落在外的人马了,召回条件:5部落只召回5的倍数,2部落只找回2的倍数。
同学们有这么多的问题,下面我们就带着这些问题开启今天的探索之旅,一起探究2、5的倍数的特征。
二、自主探究。
1、拿出尝试研究单,完成第一题。
读要求,自主找到1—100中2的所有倍数和5的所有倍数。
三、小组讨论交流。
1、仔细观察5的倍数和2的倍数,看看你有什么发现?把你的想法和小组同学进行交流,共同完成尝试研究单的第二题。
2、小组讨论。
四、汇报交流。
(1)哪个小组来汇报5的倍数有什么特征?
(2)谁能举个更大一些的数来进行验证?
(1)哪个小组来汇报2的倍数有什么特征?
(2)谁能举个更大一些的数来进行验证?
(3)小结:2的倍数的特征是:个位上是2、4、6、8、0。
(1)观察最后一列,你有什么发现?
(2)一个数既是2的倍数,又是5的倍数,有什么特征?
五、教师点拨。
我们通过观察、比较、猜想、验证知道了5的倍数的特征和2的倍数的特征,以后我们再来判断一个数是不是5的倍数和2的倍数可以只看个位就行了。
六、挑战自我。
1、将下面的数填写在合适的圈里。
18、24、30、31、45、56、60、72、75、80、95、100。
七、总结收获。
这节课你有什么收获?
的倍数特征教学设计篇三
理解并熟记3的倍数的特征,能正确判断一个数是不是3的倍数,培养理解力和应用知识的能力。
2、过程与方法。
经历自主实践、合作交流探究3的倍数的特征的过程,培养的探究能力和合作意识。
3、情感态度与价值观。
感受数学知识探究的条理性,培养严谨的学习态度,体验合作的乐趣。
教学重难点。
【教学重点】。
【教学难点】。
教学过程。
一、以旧引新,竞赛导入。
2、下面各数哪些是2的倍数,哪些是5的倍数,哪些既是2的倍数又是5的倍数?
35***644122。
既是2的倍数又是5的倍数的数有什么特征?
3、你能说出几个3的倍数吗?上面这些数中,哪些是3的倍数。你能迅速判断出来吗?
4、比一比。请学生任意报数,学生用计算器算,老师用口算,判断它是不是3的倍数。看谁的数度快!
5、设疑导入:你们想知道其中的奥秘吗?这节课就来学习3的倍数的特征。我相信:通过这节课的探索大家也一定能准确迅速地判断出一个数是不是3的倍数。(揭示课题)。
二、猜想探索,归纳验证。
1、大胆猜想:猜一猜3的倍数有什么特征?
(1)交流猜想。(有的说个位上是3、6、9的数是3的倍数,有的同学举出反例加以否定)。
2、观察探索:出示第10页表格。
(1)圈一圈。上表中哪些是3的倍数,把它们圈起来。
(2)议一议。观察3的倍数,你有什么发现?把你的发现与同桌交流一下。(学生交流)。
(4)问题启发:
大家再仔细看一看,3的倍数在表中排列有什么规律?
从上往下看,每条斜线上的数有什么规律?(个位数字依次减1,十位数字依次加1)。
个位数字减1,十位数字加1组成的数与原来的数有什么相同的地方?(和相等)。
每条斜线的数,各位上数字之和分别是多少,它们有什么共同特征?(各位上数字之和都是3的倍数。)。
3、归纳概括:现在你能自己的话概括3的倍数有什么特征吗?
3的倍数的特征:一个数各位上的数的和是3的倍数,这个数就是3的倍数。
4、验证结论。
大家真了不起!自主探索发现了3的倍数的特征。但如果是三位数或更大的数,你们的发现还成立吗?请大家写几个更大的数试试看。
(1)尝试验证。(生写数,然后判断、交流、得出结论。)。
(2)集体交流。
教师说一个数。如342,学生先用特征判断,再用计算器检验。
一个更大的数。4870599,学生先用特征判断,再用计算器检验。
5、巩固提高。
的倍数特征教学设计篇四
建构主义认为,学习是学生建构自己知识的过程,而学生的自主建构离不开教师的有效引领。教师能否适时采用适宜的方法引导学生探索,决定学生自主构建的效果。因此,教师不仅要为学生提供自主建构的机会,也要认识到自身对学生建构的促进意义,并采用行之有效的方法及时给学生提供积极的引导。作为知识载体的学习材料是学生获得感性经验的基础和前提,材料的选择、加工和使用,在学生自主建构新知过程中有着重要意义,更是教师开展有效引领的关键点。有时,呈现材料方式的调整和变化会成为有效引领的“金钥匙”,帮助学生走出认知的困顿和迷途,实现新知的自主建构。
如“3的倍数的特征”,学生自主建构的难度较大。其原因,一是容易产生定势。受先前。
2、5倍数的特征复杂、需要关注的范围更广。研究3的倍数特征,不仅要看每一个数位上的数以及各个数位上数的和,还要分析和与3之间的关系。三是没有现成的经验可用。由个位数的特点确定倍数的特征,学生有这方面的经验,但是从各位数的和上把握倍数特征的经验缺乏,所以学生自主探索,发现特征的可能性较小。
2、5倍数的特征猜想3的倍数的特征,并通过质疑引导学生举例否定猜想,排除只看个位数的判定办法。但是就后两个问题则很难找到有效的引领对策。
【教学片断一】。
(随即交换各个数位上数的位置,写下1。
32、213、2。
31、312、321等数,引导学生逐个判断。)。
师:奇怪了,这些数怎么都是3的倍数呢?观察这些数,你发现了什么?生:都是由。
1、2、3这3个数组成的。生:„„。
师:为了便于我们观察和发现,咱们请计数器帮忙,看看能不能有新的发现。师:在计数器上拨出上面各数,会不会?各需要用几颗珠子?(依次出数,逐个鉴定珠子总数)师:数拨完了,你有没有什么发现?生:用到的珠子总数相同,都是6颗。
师:我们发现当所需的珠子总颗数是6时,是3的倍数。那么,珠子总数还可以是几呢?想一个珠子总数,任意组一个数,并判断它是不是3的倍数。(学生自主活动)。
师:发现了什么?
生:珠子总数是3的倍数,这个数就是3的倍数。生:各位数的和是3的倍数,这个数就是3的倍数。从以上教学过程看,采用拨珠的办法对发现特征有一定的作用。学生通过观察珠子总数不仅联想到了各位数的和,还能根据和形成各位数的和是3的倍数的猜想。但是仔细分析后,很容易发现这种引导方式的存在很大的缺陷。学生对各位数和的替代物——珠子总数的关注并不是自发的,而是教师直接告知的,这就极大地削弱了学生建构的成分。换句话说,这样的教学方式只是从表面上解决了自主建构的问题,却并没有触及本质,因而不是真正意义上的自主建构。
那么,除了拨珠的方法还有没有其他的引导方式呢?众所周知,采用对百数表中各个3的倍数特征的观察、分析,进而发现共同特征的策略,虽然符合研究特征的一般规律,但由于各个对象过于分散,而且各个数位上数的和不尽相同,不利于学生聚焦,进而发现各数的共同的本质特点。因此,常常会把百数表的研究作为感知材料,而不作深入探究。然而,如果对百数表内各数作进一步观察、思考和梳理,就会发现根据不同的和可以将3的倍数分成具有相同特质的几组:
3、12、21、30;
感知组合律表明,空间上接近、时间上连续的事物,易于构成一个整体为人们所清晰地感知。如果改变这些学习材料的呈现方式,使之符合组合律提出的空间和时间的要求,那么就能实现有效引领。在教学时,我设计了如下的呈现方式。
【教学片断二】。
师:3的倍数究竟有怎样的特征呢?你们说该怎么研究?生:找一些3的倍数观察。
师:3的倍数有很多,我们就列举40以内的数吧。生:
912。
1821。
2730。
39师:发现了什么?
生:我发现第一列各位上数的和都是3,第二列是6,第三列是9,第4列是12。生:各位上数的和是3的倍数。
生:一个数是3的倍数,它各位上数的和是3的倍数。
以上案例中,在学习材料呈现时做了三个方面调整和变化。首先,只出示3的倍数,不出示非3的倍数,使学生排除非3倍数特征的干扰,集中注意力研究3的倍数特征。其次,去掉百数表的外框,使各数重新组合成为可能。再次,改变从左往右的顺序,将数按固定的结构分组,并依次按从上至下的顺序排列,使得各位数和具有相同特点的自然上下对应,构成一个纵向观察的整体。同样的学习材料,不一样的呈现方式,带来了不一样的引领作用。没有改动之前的学习材料不能为学生提供任何的探究和发现特征的线索,而改动后的学习材料有着明确的导向,使学生主动发现3的倍数与各位数的和的特征有关,从而主动建构倍数特征。
以上教学实践表明,引导学生自主建构3的倍数的特征并,关键是要进行有效的引领。要实现有效引领,途径有很多,其中学习材料的选用不容忽视。根据心理学研究成果,深度挖掘学习材料的价值,打破原有的思维定势,适当改变材料的呈现形式是提高引导针对性和有效性的有力举措,能为学生自主探索新知扫除障碍,使学生走出建构受阻的困境,进而推动新知的自主建构进程。
的倍数特征教学设计篇五
目标预设:
1.让学生经历探索2、5倍数特征的过程,理解2、5倍数的特征,能熟练判断一个数是不是2或5的倍数。
2.知道奇数与偶数的含义,能熟练判断一个数是奇数或偶数。
3.在观察、猜测过程中提高探究问题的能力。
教学重点、难点:
教学过程。
一、复习导入。
1.到目前,你认识了哪些数?请举例说明。
2.怎样能迅速找出一个数的倍数?你能很快说出下列各数的倍数吗?
二、探索新知。
(1)5的倍数有什么特点?请你在教科书第4页的数表中用自己喜欢的方式做上记号,找出5的倍数。
(2)观察、思考。
刚才画出来的数都有什么特点?
(3)合作交流。
先在小组内把自己的想法与同伴交流,语言不要做统一要求。
(1)验证。
(2)引导学生说出几个较大数,对观察、发现的结果进行检验,看是否正确。
(1)独立学习。
(3)验证。
3.揭示奇数和偶数。
三、巩固应用,拓展提高。
1.猜数游戏。
规则:同桌两人一组,一名同学说一个数,另一个同学说出是否为2或5的倍数还是奇数、偶数。
2.是2的倍数又是5的倍数这个数具备什么条件?
3.用0、5、8组成三位数。
这个三位数有因数2。
这个三位数有因数5。
这个三位数有因数2又有因数5。
四、全课小结。
一、作业。
课本相关练习。
板书:
是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
的倍数特征教学设计篇六
教学内容:
苏教版义务教育教科书《数学》五年级下册第33~34页例5、“练一练”和“你知道吗”,第36页练习五第8~10题。
教学目标:
1.使学生认识和掌握3的倍数的特点,能判断或写出3的倍数,并能说明判断理由。
2.使学生经历探索和发现3的倍数的特征的过程,培养观察、比较和分析、概括等思维能力,积累数学活动的经验,提高归纳推理的能力,进一步发展数感。
3.使学生主动参与探索、发现规律的活动,获得探索数学结论的成功感受;体验数学充满规律,体会数学的奇妙,增强学习数学的积极情感。
教学重点:
教学难点:
教学准备:
准备计数器教具和学具。
教学过程:
一、激活经验。
1.复习回顾。
回顾一下,我们是怎样发现2和5的倍数的特征的?(板书:找出倍数——观察比较——发现特征)。
2.引入课题。
谈话:我们上节课通过找2和5的倍数,对找出的倍数进行观察、比较,分别发现了2和5的倍数的特征。今天,我们就按照这样的过程,探索、寻找3的倍数的特征。(板书课题)。
二、学习新知。
1.提出猜想,引导质疑。
引导:我们知道2的倍数,个位上是0.2.4.6.8;5的倍数,个位上是5或o.那你能猜想一下3的倍数会有什么特征吗?为什么这样想?说说你的想法。(按思维惯性,可能许多学生会猜测个位上是3的倍数)。
许多同学认为,3的倍数可能是个位上是3.6.9的数。(板书:3的倍数,个位上是3、6、9)。
质疑:利用以前的经验学习新内容,是不错的学习方法。今天大家联系2和5的倍数的特征这样猜想,想法是很好的,数学学习经常可以这样类推。那这一次的猜想还对不对呢?大家来看几个数:13是3的倍数吗?26和49呢?(根据回答擦去板书内容后半部分)。
2.利用经验,组织探究。
(1)找3的倍数。
(2)探索特征。
3.学生归纳,强化认识。
追问:现在你能告诉大家,经过找出倍数、观察比较,我们发现3的倍数有什么特征吗?
让学生读一读板书的结论。
强调:同学们通过自己的思考、探索,发现了一个数各个数位上数字的和是3的倍数,这个数就是3的倍数;反之,一个数各个数位上数字的和不是3的倍数,这个数就一定不是3的倍数。
4.阅读“你知道吗”。
谈话:是的,数学很神奇、神秘,3的倍数居然和它各个数位上数字的和有这样密切的关系!数学有许多神奇、有趣的规律,只要我们具有一定基础,认真探究,这一条条神奇的秘密和规律就会被发现和应用。下面请大家阅读课本第34页的“你知道吗”,看看会有什么神奇的规律告诉你。
三、练习巩固。
1.做“练一练”第1题。
2.做“练一练”第2题。
3.做练习五第8题。
4.做练习五第9题。
5.做练习五第10题。
四、课堂总结。
提问:今天的学习你又有什么收获和体会?
判断3的倍数的方法,和判断2、5的倍数不同在哪里?
的倍数特征教学设计篇七
1、经历和体验“3的倍数的特征”的规律的探索过程,初步感知3的倍数特征的原理。
2、理解和掌握3的倍数的特征,并能正确、较迅速地判断什么样的数是3的倍数。
3、初步体会到初等数论的抽象性、严密性和逻辑性,感受到数学的魅力所在。
一、复习引入。
1、复习。
把24、35、75、120、345、780、276、434填入相应的集合圈中。
为什么2、5的倍数只要看个位数字就可以了?
2、猜想特征。
(1)个位上是3、6、9的数。
(2)各个数位上的数的.和是3的倍数。
3、导入新课。
1、圈一圈,想一想。
2、交流。
(二)拓展与验证。
(三)得出结论。
一个数各位上的数的和是3的倍数,这个数就是3的倍数。
四、练习拓展。
1、把复习题8个数中3的倍数填在相应的圈内。
2、判断各数是否是3的倍数?
332666876264111222。
3、判断各数是否是3的倍数?你是怎么想的?
96332、24153、56093。
4、综合应用。
(1)一个数,同时是2、3、5的倍数,这个数最小是几?
(2)一个三位数,同时是2、3、5的倍数,最小又是多少?
的倍数特征教学设计篇八
生1:个位上是3.6.9的数是3的倍数。
生2:不对,个位上是3.6.9的数不一定是3的倍数,如13,16,19都不是3的倍数。
生3:另外,像60,12,24,63,27,18等个位上不是3.6.9的数但都是3的倍数。
师:看来只通过观察个位是无法确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们将共同来学。(揭示课题:“3的倍数的特征”)。
师:请同学们在老师出示的表中找出3的倍数,并做上记号。(教师出示100以内数表,组织学生交流,并呈现出学生已圈出的3的倍数的百以内数表)。
师:刚才同学们已经在表中圈出了3的倍数,现在我们分组讨论一下3的倍数有什么特征。
2.引导观察,小组交流。
教学这部分内容时,要求学生认真观察图表,让学生把观察到的内容在小组说说,然后全班交流,教师巡视,认真倾听学生有什么发现,有什么不懂的地方。从交流中学生可能发现了3的倍数个位上的数1,2,3,4,5,6,7,8,9,0都有,没有什么特别规律,十位上数字也没有什么规律。
3.教师引领。
(1)你在观察中发现了什么?
一个数各个数位上的数字之和如果是3的倍数,那么这个数一定是3的倍数。否则这个数就不是3的倍数。
5.检验结论。
(2)利用100以内数表来验证。
(4)学生自己写数并验证,然后小组讨论,观察得出结论是否相同。
1下列数中3的倍数有()。
14354510033287674881045。
2.既是2和5的倍数,又是3的倍数的最小三位数是多少?
3.教材第20页第4题。
师:这节课你有什么收获?
生:略。
教学内容:人教版义务教育课程标准实验教科书,五年级下册第19页。
教学目标:1.让学生通过观察.猜测.操作.验证.交流等活动,认识3的倍数特征,会判断一个数是否是3的倍数。
2.培养学生的`猜测验证,观察分析,逻辑思维等能力,形成一定的数学思想和方法。
3.使学生在探究活动中获得积极的情感,体验,激发学生学数学的兴趣,增强学信心。
教学重点:探索3的倍数特征,初步掌握研究问题的一般方法。
教学难点:探索3的倍数特征,对探索方法的理性认识。
的倍数特征教学设计篇九
知识目标:
1、在解决具体问题的过程中,探索2、5倍数的特征,能找出100以内的2,5的倍数,能迅速判断一个数是否是2、5的倍数。
2、初步理解奇数、偶数的概念。
能力目标:
1、经历探究2,5倍数的特征的过程,能举出生活中的数,再判断是奇数还是偶数。
3、在探索活动中,发现观察、分析和归纳概括能力,培养类推能力及主动获取知识的能力。
情感目标:通过探索活动,感受数学思考过程的条理性,发展初步的归纳、推理能力,激发探索规律的兴趣。
教学难点:1、掌握既是2的倍数,又是5的倍数的特征。
2、利用所学知识解决生活中的数学问题。
教学方法:引导探究法、练习法、讨论法、讲解法。
教学过程。
(一)情境导入。
预设:跳交谊舞的一共有多少人?圆圈舞和叠罗汉的一共有多少人参加。
师:那么跳交谊舞的选多少人参加合适呢?你大胆猜一猜。
预设:“参加交谊舞表演的人数应该是2的倍数。”接着再让学生说一说圆圈舞的人数应该是多少人?用一句话概括一下,板书5的倍数。
观察,2的倍数,5的倍数,它们都有什么特征?是不是所有的2的倍数都有这样的特征呢?这节课我们就来研究2,5的倍数特征。
(二)探究学习。
1、探究2的倍数。
2、交流:说明要求,先说你是用什么方法找到2的倍数的,再说说2的倍数由什么特征。
预设:我用百数表来找到了2的倍数,我发现……。
师:谁也是用百数表来找的举手?说说你们的发现。
预设:都是双数。
师:是双数吗?是一个个算的,还是一眼就看出来的。
能说说是怎么一眼看出来的吗?
预设2:个位上是0,2,4,6,8。
像这些2的倍数都是偶数,不是2的倍数的数就是奇数。
3、探究5的倍数。
师:找到5的倍数特征了吗?把你的想法在小组交流一下。
预设:我用列举法找到。
预设:我在百数表上找的。
大家同意他的看法吗?是不是所有的5的倍数个位上都是0或5呢?能举个多位数的例子来验证一下吗?再来个反例。
通过举例验证,我们得出了5的倍数特征:(板书:个位上是0,,5。
3、对比观察。
比较一下2和5的倍数特征有哪些共同点?
预设1:都要看个位。
预设2:个位上是0的数是2的倍数,也是5的倍数。
教师总结:大家自己归纳的结论,在实际应用中肯定会得心应手的。
(三)分层练习。
1、初显身手。
找2,5的倍数。
说一说你是怎么找的。
评价:对呀,掌握了2,5的倍数特征可以帮助我们很好的解决问题。
奇数偶数分类练习。
说说你是怎么分类的。(根据奇数偶数的概念。)。
评价:学以致用,很好!
说说为什么一班选择跳二人舞?
预设:因为他们班的人数是2的倍数。怎么确定是2的倍数?(2的倍数特征)。
适合跳三人舞?你是怎么判断的?能不能不计算就可以判断出一个数是不是3的倍数呢?下节课我们来研究。
苹果一共有多少个?说说你猜测的依据。
3、慎思细想。
只要符合什么条件就可以?(个位上是0,2,4,6,8)(个位上是0,5)。
师评:规律掌握很牢固。
(不是2的倍数,换句话说呢?个位上是1,3,5,7,9)(个位上是0)。
师评:活学活用,了不起!
4、猜数游戏。
说说你的想法:
这么多的知识混在一起,你还能保持思路这么清晰,大家应该送他一点掌声了。
课堂小结:
用今天学到的知识,看数字卡片说一句话。
例如:20是4的倍数;31是奇数,90既是2的倍数,也是5的倍数。
的倍数特征教学设计篇十
目标预设:
1.让学生经历探索2、5倍数特征的过程,理解2、5倍数的特征,能熟练判断一个数是不是2或5的倍数。
2.知道奇数与偶数的含义,能熟练判断一个数是奇数或偶数。
3.在观察、猜测过程中提高探究问题的能力。
教学重点、难点:掌握2、5的倍数的特征,并能迅速作出判断。
教学准备:
教学过程。
一、复习导入。
1.到目前,你认识了哪些数?请举例说明。
2.怎样能迅速找出一个数的倍数?你能很快说出下列各数的倍数吗?
二、探索新知。
(1)5的倍数有什么特点?请你在教科书第4页的数表中用自己喜欢的方式做上记号,找出5的倍数。
(2)观察、思考。
刚才画出来的数都有什么特点?
(3)合作交流。
先在小组内把自己的想法与同伴交流,语言不要做统一要求。
(1)验证。
(2)引导学生说出几个较大数,对观察、发现的结果进行检验,看是否正确。
(1)独立学习。
(3)验证。
3.揭示奇数和偶数。
三、巩固应用,拓展提高。
1.猜数游戏。
规则:同桌两人一组,一名同学说一个数,另一个同学说出是否为2或5的倍数还是奇数、偶数。
2.是2的倍数又是5的倍数这个数具备什么条件?
3.用0、5、8组成三位数。
这个三位数有因数2。
这个三位数有因数5。
这个三位数有因数2又有因数5。
四、全课小结。
一、作业。
课本相关练习。
板书:
是2的倍数的数叫偶数,不是2的倍数的数叫奇数。
的倍数特征教学设计篇十一
教学目标:
1、创设问题情境,引导学生在自主探索的过程中,归纳并掌握2和5的倍数的特征,能判断一个数是不是2或5的倍数;理解奇数、偶数的意义;能正确判断一个数的奇偶性。
2、通过探索、交流讨论、分析归纳等方法,学生自主探索2、5的倍数特征及奇偶数的意义。
3、在学习活动中,逐步培养学生的观察分析、归纳和数学抽象能力。
教学难点:灵活运用2、5的数特征及奇偶数的意义进行综合。
教学过程:
一、创设情境,引出课题。
1、谈话:同学们,“每天运动一小时,健康生活一辈子”,阳光体育运动让我们健康快乐成长,让我们一同欣赏活动中的精彩瞬间吧!
2、课件出示:同学们在跳校园集体舞《小白船》,两人搭配,舞姿优美;这是5人一组的绑腿跑,他们团结合作,在为到达同一目的地而共同努力;这是同学们3人一组在趣味跳绳。
4、学生说数,教师板书。
5、提问:13人行不行?为什么?看来同学们刚才说的这些人数,都是经过思考的,那你的根据是什么?谁能用一句话来概括一下,跳集体舞的人数必须是哪些数?——2的倍数!(板书:2的倍数)。
二、探究新知。
1.找2的倍数。
(2)学生自主集合2的倍数:
预设1:在练习本上用算式按顺序表示出2的倍数。例如:2的1倍是2;2的2倍是4……这样把2的倍数集合起来!
边说边板书:2×1=2。
2×2=4。
……。
预设2:在百数表上依次将2的倍数找出并用彩笔做个标记。快,选择你喜欢的方法来集合2的倍数吧。
(3)暴露资源:这是a同学列举的2的倍数,(齐读)她整理的认真、整齐、有条理!监控:除了他列举出的这些2的倍数,你还能接着写下去吗?能写完吗?看来2的倍数的个数是无限的。
这是b同学在百数表上标记出的2的倍数。有了百数表这个好帮手,看起来更清楚,一目了然!
(1)提出问题:请同学们仔细观察你列举的这些等号后面或百数表中标记出的这些2的倍数,看看能不能发现他们的共同特征?(板书:特征)。
(2)小组交流:把你的发现先跟小组里的同学说一说!看看他们是不是也有这样的发现!
(3)集体交流:【课件:百数表】谁愿意来跟大家说说你发现的2的倍数特征?
预设:双数——肯定,追问:这些数有什么特征?
偶数:
根据学生交流板书:个位上是0、2、4、6、8。
(4)质疑:我们发现了2的倍数特征,你还有什么疑问吗?
疑问一:2的倍数与十位上的数有关系吗?
小结:通过刚才的验证,我们发现无论是几位数,只要个位上的数是0、2、4、6、8的数都是2的倍数。
疑问三:为什么2的倍数的个位上的数是0.2.4.6.8呢?
3.认识偶数和奇数。
最小的偶数0,最小的奇数。
(3)师:我们在自然数范围内研究奇数、偶数。请想一想奇数、偶数与自然数有什么关系呢?请你试着把这种关系表示在纸上。
(4)集体交流。提问:谁愿意把自己的想法告诉大家。
(5)学生在展台上展示。
的倍数特征教学设计篇十二
1、让学生通过猜想、观察、比较、验证等一系列数学活动,自主探索并掌握3的倍数的特征。
2、使学生在具体的探索活动中,培养自主探索的意识,发展初步的推理能力。
1、重点:知道3的倍数的特征,能判断一个数是不是3的倍数。
2、难点:让学生通过观察讨论自主发现3的倍数的特征。
一、知识链接。
按要求填一填。
1230352401860728590。
既是2的倍数又是5的倍数()。
指生交流答案。
师:说说你是怎么做的。是呀,我们已经学习了2和5的倍数的特征,2的。
倍数的'特征是什么?5的倍数的特征呢?那么既是2的倍数又是5的倍数的数你是怎么找的?对了,只要个位上是0就可以了。
想一想,我们用什么方法来研究2和5的倍数?(列举、观察、验证的方法)这节课我们用猜想、观察、探究、验证等方法来研究3的倍数的特征,好不好?板书课题。
二、新知学习。
师:在学习新课之前,先来猜猜3的倍数的特征是什么?
生可能猜测:个位是3、6、9。
个位是1、3、6、9。
师:是不是这样?谁能举例验证?
学生分别举出正例与反例进行验证。
师小结:看来只看个位并不全面,那么3的倍数的特征跟数的个位到底有没有关系呢?
师:请同学们拿出导学案,在小组里合作用除法计算找出3的倍数,并观察讨论得出3的倍数的特征。(要求:可以分工合作,比如:一生记录,余生计算,大一点的数可以借助计算器来完成。)。
(学生小组合作完成)。
师:哪个小组来交流你们的答案,你们找的3的倍数有哪些?
生交流。
师:同意吗?找得非常准确,那你认为3的倍数的特征是什么?
生可能观察发现这些数的个位包括了0、1、2、3、4、5、6、7、8、9。
生举出反例推翻这个猜测。
生快速口算,得出这些数也是3的倍数。
生交流。
师:加起来的和是3的倍数,它就是3的倍数。是不是这样?谁能举例验证。
那么加起来的和不是3的倍数,就不是3的倍数。举例验证。
师:怎样判断是不是3的倍数,谁来总结一下。
师小结:一个数各个数位上数的和是3的倍数,这个数就是3的倍数。板书。
同桌两个人互相说说。集体说一遍。
完成导学案练一练。师:有的数是2、5、3的共同倍数,哪个数?从表格中一眼就看出来了,是90和120,看看他们有什么特征?(各位是0,其它数位的数加起来是3的倍数。)。
师:那么团体操里跳圆圈舞的,5人一组,交谊舞的2人一组,叠罗汉的三3人一组,那你说应派多少人参加团体操?生回答。
师;就是说这个数得是2、3、5共同的倍数。
三、课堂小结:
学生谈自己的收获。
三、课堂检测。
1、把下面的数填在相应的括号里。
615287520452790100。
2、他们都是3的倍数,方框里该填几?
2、他们都是3的倍数,方框里该填几?
(1)213□213□213□213□。
(2)68□4□356□0□。
的倍数特征教学设计篇十三
2.培养发展学生分析、观察、比较、操作、概括、猜测、验证、归纳的能力。3.学生通过探索与亲身参与实践活动,并能在活动中获得成功情感的体验。教学重点难点:经历3的倍数的特征的探索过程,掌握3的倍数特征。一、创设情境师:老师现在有一个新的想法,想买一些铅笔奖励咱班课上表现突出的学生,谁想得到奖品,请举手。请这两位学生站起来,老师把买的这些奖品平均分给这两个学生,买多少支铅笔才不会有剩余。生1:买的铅笔的支数可以是2、4、6、8、10……也就是说买的支数只有是2的倍数就可以。师:谁来说一说2的倍数的特征是什么?生:2的倍数的特征是个为上是0、2、4、6、8的数。师:如果把铅笔平均分给5位学生,买多少支才不会有剩余。生:买的支数可以是5、10、15、20……也就是说买的支数只要是5的倍数就可以。师:谁来说说5的倍数的特征是什么?生:5的倍数的特征是个位上是0、5的数。师:如果铅笔既能平均分给两位学生,同时又可以平均分给5位学生,买多少支铅笔才不会有剩余。生:买的支数同时是2、5的倍数就行。生:同时是2、5的倍数的数的特征是个位是0、5的数。师:如果把铅笔平均分给3位学生,买多少支才不会有剩余。生:买的支数可以是3、6、9、12……也就是说买的支数只要是3的倍数就可以。师:谁来猜一猜3的倍数的特征是什么?生:个位上的数可能是3、6、9的数。师:请举例33 36 69。师:同意他的想法吗?生:不同意他的想法,如:13 23 76 89,个位上的数是3、6、9的数。他们就不是3的倍数,还有12,21 18,81,15,51,27,72,个位上的数都不是3的倍数。这些数反而是3的倍数。师:你们说的都有道理。下面看老师这里。13 23 76 89 33 36 69。12,21 18,81,27,72,41 32 58 85观察第1行,个位上是3的倍数,这些数是3的倍数吗?否观察第2行,个位上是3的倍数,这些数是3的倍数吗?是观察第3行,个位上不是3的倍数,这些数是3的倍数吗?是观察第4行,个位上不是3的倍数,这些数是3的倍数吗?否师:看来只观察一个数的个位和十位不能确定是不是3的倍数,那么3的倍数到底有什么特征呢?今天我们共同来研究。(揭示课题)。
二、自主探究,发现特征1、操作探究:学生4人一组,将课前准备好的小棒取出,把102、45、124、233、213、82、265、84这8个数在记录表中按数位摆出,分两小组内分工合作,一人报数、一人摆小棒,一人笔算试除,看是不是3的倍数,一人根据是否是3的倍数,把摆的数填在如下两个表内:
(一)判断下面各数能否被3整除,并说明理由。
【本文地址:http://www.xuefen.com.cn/zuowen/17415512.html】