做好总结,能够让我们迅速从失败中恢复过来,继续前进。在总结中,要突出重点,简洁明了。总结的价值不仅仅在于总结本身,更在于思考和改进的过程。
摸球问题教学设计篇一
教学目标:
1、通过教学,引导学生认识“相遇问题(求相遇时间)”的特征,理解数量关系,并能解答求相遇时间问题应用题。
2、通过组织学生分组讨论,培养学生合作与交流的意识。
3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。
教学重点:
“求相遇时间问题”的特征和解题方法。
教学难点:
“求相遇时间问题”的特征和解题方法。
教学用具:
多媒体课件一套。
教学过程:
一、激趣引入,复习旧知。
1、小明家离学校1500米,小明每分钟行100米。从家到学校要用多少分钟?
2、口头列式1500/100=15分钟。
3、复习“速度”、“时间”、“路程”三者之的数量关系。
(板书:时间=路程/速度)。
二、学习新课。
读题分析。
思考:这里的460米是几个人走的?
两人是怎样走的.?
一份钟两人一共行了多少米?
(第三问时:用课件演示帮助,学生理解)。
学生尝试练习。
评讲板演,理清解题思路,概括解题方法。
教师板书:60+55=115米。
460/115=4分钟。
综合算式:460/(60+55)。
=460/115。
=4分钟。
质凝:求相遇的时间应先求什么,再求什么?
你知道吗?相遇时他们各行了多少米?
揭示课题:求相遇时间。
2、试试。
三、变式深化。
1、对比练习。
比一比你能找到两题之间的联系吗?
2、变式应用。
四、小结。
今天这节课主要学习了什么内容?你获得什么本领?
五、课堂作业。
练一练的第2——5题。
板书设计:
60+55=115米。
460/115=4分钟。
综合算式:460/(60+55)。
=460/115。
=4分钟。
摸球问题教学设计篇二
1、 结合具体事例,经历自主解决打折问题的过程。
2、知道打折的含义,能解决有关打折的实际问题。
3、体验分数乘法在生活中的广泛应用,了解许多生活中的问题都可以用数学的方法来解决。
知道打折的含义,能解决有关打折的实际问题。
(1)一袋大米24千克,二分之一袋大米是多少千克?
(2)五(2)班有学生58人,其中女生占六分之四,女生有多少人?
1、揭示课题
学生自由谈论。
教师:那么打折是什么意思?今天,我们学习关于打折的知识。(板书课题)
2、你对于“打折”有哪些了解?
学生自由交流。
学生可能会说:1、打折会比原来便宜。2、比如原来卖10元,5折就卖5元。3、打折对于买家来说,比较合适。4、打折就是降价。5、打折就是处理等。
教师随意出几个几折出售,让学生说明含义。
3、打折问题。
师:大头蛙为我们带来了一个好消息,一个衣服店季节性降价,服装一律六折出售。(出示羽绒服原价)(板书:6折)
提问:280元是这件羽绒服的什么价钱?6折出售后,现价是多少元?你能试着计算吗?
学生计算。交流。交流时让学生说一说是怎样想的。
接着出示其余三件商品的原价,让学生自己算出打折后的价钱。交流。
4、试一试。
出示试一试
学生试着算出打折后的现价。交流后,提出大头蛙的问题:便宜了多少元?让学生试着计算。指名板演。
学生可能出现的情况:1、2100—2100× 2、2100×(1—)交流时让学生说一说是怎么想的。
1、争做优秀售货员。
同学们,我们来分小组做个游戏,争做优秀的售货员。老师为大家带来了几件商品,它们一律八折出售。现在,我们1、3、5组做售货员,2、4、6组做顾客,看哪组“售货员”能用数据打动“顾客”,让“顾客”心甘情愿地买你们组的商品。
学生分组做游戏。如果学生只算出现价,而没有算出便宜多少,引导学生算出来。
2、做题我最棒。
学生读题,让学生找出不懂的词语,解释“让利”,然后让学生计算,交流。
3、我是精明“小顾客”。
同一种冰箱在不同的商场有不同的价格和优惠方式。
商场a:原价是3280元,八折销售。
学生试做,交流。
同学们,通过这节课的学习,对你的生活有哪些帮助?
摸球问题教学设计篇三
1.学生通过观察、猜测、实验等活动,能找出最简单事物的搭配与组合。
2.学生通过自己动手摆一摆、拼一拼的活动,能够养成有序、全面地思考问题的意识和习惯。
3.学生感受数学与生活密切相连,在解决问题的过程中体验成功的乐趣,激发学生学习数学的兴趣。
多媒体课件、数字卡片、衣服卡片。
初步感受搭配的方法,体会有序思考的价值。
能够有序的进行搭配,用适当方式表达出搭配的过程与结果。
(一)创设情境,激发兴趣。
(二)问题探究,感悟有序。
1.(0,1,3,5能组成多少个没有重复数字的两位数?)。
小结:1.组成两位数时,0不能在十位。2.这样按顺序写,就可以不丢不漏不重复。
2.延伸巩固(0、2、4、6能组成多少个没有重复数字的两位数?)。
(三)衣服搭配,体会符号的简洁。
师:老师想送给王国的小朋友几件衣服,但是不知道怎样搭配,你们快来帮帮忙吧。
(四)巩固练习,应用方法,再次体会有序。
师:为了感谢同学们的帮忙,我为大家准备了早餐,看看都有什么?饮料和点心只能选一种。
(五)课下讨论:5个人,每2个人通一次电话,一共可以通几次电话?
(六)总结:同学们,今天我们帮趣味王国的小朋友解决了一些关于搭配的问题,最重要的是按一定的顺序,其实按顺序做事情,在生活中有很多好处,比如下课站队,出入校门,如果我们按一定的顺序,就不会拥挤不会出现踩踏件,对我们的学习和生活都非常有用。
摸球问题教学设计篇四
作为一名人民教师,时常需要准备好教学设计,借助教学设计可以提高教学质量,收到预期的教学效果。写教学设计需要注意哪些格式呢?下面是小编精心整理的《纳税问题》教学设计范文,欢迎大家分享。
本框是高一必修1《经济生活》第三单元第八课《财政与税收》中的第二框《征税与纳税》一框内容。主要介绍税收的含义、特征、种类及作为纳税人要依法纳税的相关知识,它是对财政内容的进一步深化和拓展。因为税收是组织财政收入的基本形式。
(一)知识目标。
1、识记税收、税收的基本特点、增值税、个人所得税。
2、理解税收基本特征之间的关系。
(二)能力目标。
通过对各种具体税种的学习,提高学生辨别比较能力、观察分析实际问题的能力。
(三)情感、态度与价值观目标。
通过本框学习,增强学生国家观念,教育学生懂得依法纳税是公民的基本义务,是爱国的具体表现,偷税等行为是违法的,可耻的。
1、税收的含义。
2、税收的基本特征及其关系。
3、依法纳税的重要性。
从学生的生活体验入手,创设情境呈现问题,使学生在自主探索、合作交流的过程中,发现问题、分析问题、解决问题,在问题的分析与解决中构建知识。
1、问题探究法。引导学生以问题带动知识,以学生为主体,培养学生的自学能力、思维能力。
2、集体讨论法。针对教材提出的问题,组织学生进行集体讨论,促使学生在学习中解决问题,培养学生的团结协作的精神。
3、直观演示法:利用多媒体等手段进行直观演示,激发学生的学习兴趣,活跃课堂气氛,促进学生对知识的掌握。
1、学生收集资料,预习阅读征税和纳税的内容;认识税收的种类。
2、教师收集有关征税和纳税的时政材料;课前预习熟悉本节学案。
1课时。
(一)预习检查、总结疑惑。
检查学生的预习情况并了解学生的疑惑,使教学具有针对性。
(二)情景导入、展示目标。
教师:请大家回忆财政收入的组成,说明财政收入由哪四部分组成,其中最主要的来源是什么。(财政收入由税、利、债、费四部分组成,其中,税收是财政收入的主要。
教师引导:税收是财政收入的主要组成部分,可见税收对国家财政的重要性。下面我们就来学习税收的有关知识。
(三)合作探究、精讲点拨。
摸球问题教学设计篇五
1、通过观察、思考、动手操作、合作交流等情境活动,在具体的生活情境中,使学生初步掌握合理有序的搭配方法和策略。
2、结合生活实际,培养学生有序思考问题的能力,使学生养成不重复、不遗漏的全面思考问题的习惯,培养学生解决生活中数学问题的意识。
通过合作学习来解决问题,并且感知:要做到既不重复,也不遗漏,就必须按照一定的顺序去进行观察与操作。
训练学生有序的思考能力和全面思考习惯。
(一)、创设情境、引入新知。
1、这节课我们一起来研究一个有趣的数学问题——搭配中的学问。
2、什么是搭配呢?搭配中又有什么学问和奥妙呢?认真学完了这节课,你们就明白了!
3、“营养配餐中心”的王师傅,交给我们三(5)班的同学一个任务,板书:配菜。
王师傅想在你们当中聘请一名优秀配菜师和两名优秀服务员,你们愿意参加应聘吗?
(二)、搭配菜谱、探究规律。
活动1:给星期一的菜谱配菜。
1、王师傅考大家来了,请看:
课件出示:星期一的菜谱。
荤菜。
肉丸子。
素菜。
白菜。
冬瓜。
2、星期一的菜谱里都有些什么菜啊?你们知道什么是荤菜,什么是素菜吗?
3、王师傅有个要求,请看:一个盒饭中含一个荤菜和一个素菜,你打算怎样配菜呢?
4、学生思考并与同座交流自己的想法。
5、还有别的搭配方法吗?你觉得这样一荤一素搭配好吗?
6、通过刚才的配菜,大家可以看出来,一个荤菜和一个素菜可以有几种搭配方法呢?在学生独立思考与交流的基础上,老师要注意有意识的引导学生学会用图例和方案这两种方法来表示出搭配的过程,但不必特别强求和硬性规定,让学生自由的选择,如果学生有其他有创新的方法,就推荐给大家。
活动2:给星期三的菜谱配菜。
1、星期一大家总结出有2种配菜方法,那么星期三呢,请看:
课件出示星期三的菜谱。
荤菜。
牛排。
鱼
素菜。
豆腐。
油菜。
2、如果你能用一荤一素的方法搭配好所有的菜,我王师傅将聘请你为本店的服务员。
(1)请同学在小组内试着配菜,并且把你的想法在小组上交流。
(2)哪个小组愿意把你们的配菜方法说给大家听。
(3)怎样搭配,才不会重复,又不会遗漏呢?
(4)怎样按着一定顺序搭配呢?有几种方法?
(6)其它同学也能按一定的次序进行配菜吗?把你的配菜方法说给同桌听一听。
(7)这两种搭配方法有什么相同和不同的地方?在教学过程中可以将这种配菜现象抽象为数学知识,以荤菜为准,每种荤菜和一种素菜都有2种搭配方法,有两种荤菜就有2乘2等于4(种)方法.
这次的活动都是2种要注意要回答这个问题时,要让学生发现如果你倒过来写这也只能算是一种方法,要注意学生理解成有4种搭配方法,这种错误的想法。
活动3:给星期五的菜谱配菜。
课件出示星期五菜谱。
荤菜。
肉丸子。
虾
素菜。
白菜。
豆腐。
冬瓜。
2、谁能第一个配出所有的菜,王师傅将聘他为我店配菜部的经理。
3、请同学们试着配菜,然后说给大家听。引导学生以一种菜为准与另一种菜搭配.
思考:通过刚才的配菜,同学们发现了什么规律?
让学生自由发现,然后小结:可以用荤菜的数量×素菜的数量=几种配菜方法。
板书:1荤×2素=2种。
2荤×2素=4种。
2荤×3素=6种。
(三)、实践应用、解决问题。
活动1:搭配路线。
2、说说:一共有几条路可以走呢?
(1)你能用字母表示出几条路线吗?
(2)哪一条最近呢?你能帮小淘气选一条吗?
(3)回来时有几条路线呢?你能用字母把路线表示出来?
活动2:搭配服装。
其实,不仅菜要搭配,生活中还有许多需要搭配的地方,笑笑要去外婆家做客,那衣柜里有这样几件衣服:两件是上衣,叫上装,两条裤子和一条裙子叫下装,一件上装和一件下装,要配成一套衣服可以怎样搭配呢?一共有几种搭配方法呢?在配菜的过程中,先让让用序号来表示衣服和裤子,便于叙述.
2、请你和同桌一起试着配一配。
3、那么今天下午笑笑穿哪套衣服去做客合适呢?为什么?谁来帮忙选一选。
4、看来穿衣服也需要搭配,搭配适当,会使我们生活更美好,更加丰富多彩。
活动3:握手中的学问。
(四)、联系生活、课后延伸。
这节课有什么收获?你想利用今天所学的知识设计一些有关搭配的其它问题吗?
摸球问题教学设计篇六
“植树问题”在实际生活中应用比较广泛,它通常是指沿着必须的路线植树,这条路线的总长度被平均分成若干个间隔,由于路线的不同以及植树要求不同,路线被分成的间隔数和植树的棵数之间的关系就不同。本节课就是要渗透有关植树问题的一些思想方法,透过学生的动手操作、自主探究来发现现实生活中它们的规律,,抽取出其中的数学模型,然后再用规律解决植树中的相关问题。教学目标:
1.使学生理解并掌握“植树问题”的基本解题方法,并能解决一些实际生活中存在的与“植树”有关的问题。
2.掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。
教学重难点:
掌握“植树问题”中三种状况:两端都要种,两端都不种,只种一端的解题方法。
教具学具:
绳子、挂图、泡沫、小树、题卡
教学过程:
1.小游戏:
点名学生动手操作,给绳子打3个结并观察:给绳子打3个结,会把绳子分成几个间隔?(有三种状况:4个、3个、2个)(解释“间隔”的意思)
透过刚才的游戏,你得出了什么结论?(强调结数和间隔数的三种关系)点评:透过游戏激趣,引出“间隔”、“间隔数”的概念教学,由于有绳子打结作铺垫,抽象概念得到了具体化,同时间接渗透了间隔与间隔数两者之间的关系,为探究新知打下良好的基础。
2.导入新课:这天这节课我们就来学习和间隔有关的植树问题(板书课题:植树问题)
点评:所选例题具有很强的开放性,同时以“海南国际旅游岛建设”引入例题,体现了数学与生活紧密联系,让学生在简单愉快的生活化的课堂环境中学习数学。
2.分组动手操作(分八小组,每组6人),在泡沫上“植树”,
要求:(1)计算一共需要准备多少棵树苗
(2)思考棵数与间隔数的关系。
点评:学生亲自动手操作,并透过仔细观察、交流讨论,有效促进学生思维活动的体验以及情感的体验过程,提高了学生分析问题和解决问题的潜力,把感性认识上升为理性认识。
3.汇报结果:
(1)两端都种:50÷5+1=11(棵)结论:棵数=间隔数+1
(2)只种一端:50÷5=10(棵)结论:棵数=间隔数
(3)两端都不种:50÷5-1=9(棵)结论:棵数=间隔数-1
4、总结(学生汇报教师书写):
(1)两端都种:棵数=间隔数+1
(2)只种一端:棵数=间隔数
(3)两端都不种:棵数=间隔数-1
点评:孔子说:“吾听吾忘,吾见吾记,吾做吾捂!”学生在动手操作的过程中,仔细观察,用心思考,在操作的过程中充分体验,充分交流,加深对植树问题三种状况的理解。结论的得出也就水到渠成了。
1、做一做:
2、数学竞技场:分组竞赛,每组派代表选题,解答对得相应的分值,解答错则机会让给其他表现好的小组,总分最高的小组获胜。
(1)挂灯笼(20分):要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)
(2)插彩旗(20分):校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)
(6)街道上(50分):在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)
这节课我们学习了什么资料?你还有什么疑问?(植树问题的三种状况)
植树问题
两端都种:棵数=间隔数+1
只种一端:棵数=间隔数
两端都不种:棵数=间隔数-1
例题:寰岛小学决定美化校园,要在长50米的塑胶跑道的
一侧每隔5米植一棵树,一共需要准备多少棵树苗?
两端都种:50÷5+1=11(棵)
只种一端:50÷5=10(棵)
两端都不种:50÷5-1=9(棵)
(1)挂灯笼:要在长90米的教学楼上每隔5米挂一个灯笼,需要准备多少个灯笼?(两端都不挂)
(2)插彩旗:校园要在长12米的国旗台前每隔2米插一面彩旗,一共需要多少面彩旗?(两端都插)
(6)街道上:在一条全长2000米的街道两旁每隔50米安装一盏路灯,一共需要几盏灯?(两端都安装)
教学后记:
本节课旨在透过学生的学习活动让学生发现数学规律,建立植树问题的数学模型,理解“棵数”与“间隔数”的关系,从而发展学生的数学应用意识,培养学生主动探究和合作学习的精神,最终掌握植树相关问题的解决办法。总的来说,本节课学生参与面广,用心性和主动性得到充分发挥,课堂效率也高,较好地展示了动手操作、合作学习的优势,主要体现了以下几点:
本节课,学生以小组为单位,利用手中的学具设计不同的植树方案,有利于学生发挥小组交流合作的优势,学生在相互的表达和倾听中促使思路的清晰化,促进知识结构的构成,提高了学生的思维水平,完善了学生的认知结构。
本节课的教学我既注重教学过程,也注重教学效果。在练习环节中,我设计了有梯度的练习,体现了分参次教学。同时我还从不同的角度引导学生运用所学知识解决一些生活中常见的植树相关问题,有效实现了生活问题数学化、数学问题生活化的目的。由于练习的解答采取竞赛的方式,充分调动了学生学习的用心性,优化了课堂教学效果,大大提高了课堂教学效率。(数学竞技场的练习题学生大约能够做5道题,其余的题可留到第二课时再完成。)
本节课,我透过引导学生动手操作(模拟植树)------交流讨论(植树方案)------得出结论(三种植树问题的解决方法)-----应用结论(解决生活中植树的相关问题),充分体现学生的主体作用,教师只是做了适时的点拨。
摸球问题教学设计篇七
数学广角中的《烙饼问题》, 其教学目标主要是使学生通过简单的实例,初步体会运筹思想在解决实际问题中的应用,认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识,培养学生解决问题的能力。
“烙饼”是一节渗透统筹优化思想的数学课,它通过简单的优化问题渗透简单的优化思想。在教学设计和教学过程中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕“怎样烙饼,才能尽快吃上饼?”展开教学,设计了烙1张、2张、3张----单张,双张饼的探究过程。以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中小圆片代替饼,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程。感觉效果不错。
重点:优化的思想——“同时”“节省时间”
小学生关于“烙饼”并无过多的生活经验,大多数都局限于“一张一张地烙”。因此,在教学中我借助所给的条件“一口平底锅内可以放两张饼”,让学生进行比较,明白“同时烙两张”会“节省时间”,从而渗透“优化的思想”。同时也为后面探究“三张饼”“四张饼”……的“最优方案”打好基础,使学生“保证每次都能烙两张饼”。
难点:规律的得出——“饼的张数×烙一张饼的时间=烙饼所需最少的时间”
突破这个难点时,我把“力气” 都使在“烙三张饼”的问题上。确实,在让学生认识到“同时烙两张饼可以节省时间”后,三张饼的问题是教学难点的“突破口”。在此,我给学生提供充分的时间和空间,鼓励学生借助手中学具试一试,探究“烙三张饼最少用多长时间”。之后组织学生交流汇报,教师相机引导,使学生认识到“保证锅内每次都能烙两张饼”才是最优方案,所用时间“9分钟”才最少。
“两张饼”“三张饼”的问题做为重点,让学生弄清楚后,在后面的探究中,学生自然会认识到“张数为双时,两张两张的烙”“张数为单时,先两张两张烙,剩下的三张同时烙”,那么烙再多张数的饼学生也不再会有问题。同时,根据烙2、3、4……张饼所用的时间,学生很快会得出“饼的张数×烙一张饼的时间=烙饼所需最少的时间”的规律,所有的问题迎刃而解。
数学广角给学生提供了一个亲近生活的机会,一个体验生活的平台。但因为大多数学生缺少生活经验,所以学起来比较难。我们老师应发掘更多的生活数学问题让学生在实际生活中去解决。
四年级数学下册《烙饼问题》教学设计
人教版四年级上册数学第105页例2。
1、通过操作学具模拟烙饼过程,让学生感悟统筹思想,初步了解统筹的含义,掌握烙饼问题的统筹方法,并能实际应用。
2、在问题探究中,动手模拟、交流争辩等学习活动中,提高学生探究能力和解决问题的能力。在规律探寻中,培养学生的观察能力与独立思考能力,发展学生的思维。
3、使学生理解优化的思想,形成从多种方案中寻找最优化方案的意识,提高学生解决问题的能力。
重点:能够用优化思想解决生活中的问题。
难点:在烙饼优化的过程中三张饼的烙法。
多媒体课件、圆形纸片若干。
一、直奔主题
同学们,今天我们一起来研究一个有趣的数学问题。
二、探究新知
1、出示情境图(条件中只出示:每次最多只能烙2张饼,两面都要烙,每面3分钟)。师问:“从中你获取了什么信息?”学生口答。
2、研究烙一张饼需要的时间。
师问“烙一张饼需要多长时间?”学生口答说想法。
3、研究烙两张饼需要的时间。
师问:“烙两张饼需要多长时间?”学生口答说想法。
4、对比烙一张饼和烙两张饼需要的时间。
师问:“为什么烙两张饼和烙一张饼所需要的时间相同呢?”
生口答可能有:烙1张饼时,锅里空出1个位置,烙两张饼时,锅里没有空位置。
5、研究烙三张饼所需要的时间
师问:“烙三张饼需要多长时间呢?请同学们用手中的三个圆片代替三张饼来烙一烙,想一想。”
学生借助手中的圆片摆、思考、小组交流、汇报,可能有:先同时烙两张需6分钟,再烙1张需6分,6+6=12分。师对此启发引导:“第二次烙1张饼时锅里有空位置,这样会浪费时间,怎样才能做到每次都烙两个面,不让锅闲着?”学生再次摆、思考、交流,得到最节省时间的烙法。
学生先演示,师再示范摆。
小结并强调:每次总烙两张饼,别让锅闲着,这样最节省时间。
6、研究烙四——七张饼所需要的时间。
教师依次提出问题,生或口算或演示。
7、寻找规律
师:认真观察上面的表格,你能发现什么?
学生可能有:除了一张饼,无论饼的个数是双数还是单数,所需的时间都等于烙饼的张数*烙一面饼所需的时间。
8、点明课题
师:这就是我们这节课要研究的烙饼问题(板书课题)
在学生解释图意的基础上用投影整理出以下三条:
生1:每次最多只能同时放两张饼。师:什么意思?
生2:一个饼的两面都要烙,烙一面需要花3分钟。
2.思考烙2个饼
这时,来了一位顾客,他要买3张饼。怎样才能尽快把3张饼都交给顾客呢?今天,我们就一起来研究有关烙饼的问题。(板题:烙饼问题)
二、合作实践,探究新知
实践活动(一):探究烙3个饼(13分钟)
(1)小组合作,摆一摆。
师:同学们,请你来当大厨,你想怎样烙?
先独立思考,然后4人小组讨论交流,说说你是怎样安排的,你的方案一共需要多长时间烙完,可以拿出烙饼卡,把书本当平底锅烙一烙。开始。(师巡视)
1.一张一张烙。(板书用时)
2.先烙两张,再烙一张。
(最优方法没有出现)
师;我想采访一下大家:对这两种方法,你有什么看法?为什么第二种比第一种省时间?
生:第一次放两张饼,更好的利用了锅的空位。 师:那烙第三张饼的时候呢?引导发现有一个空位没利用起来,这里可能浪费了时间。
师:想一想,会不会还有更好的方法呢?
启发学生发现:让锅里每次都烙2张饼。
同桌合作探究最优烙法,汇报(交替烙)。
1.一张一张烙。(板书用时)
2.先烙两张,再烙一张。
3.用三张饼的最优方法烙。(交替烙)
师:谁还能再说一次这种烙法?(课件演示)
你们有好几种烙饼的方法,真是爱思考的孩子,这说明解决问题的方式可以是多种多样的。(板书:方法多样)
但是我想采访一下大家:对这三种方法,你有什么看法?
师小结:看来,充分利用锅的空间,不留空位,就能节省时间。
其他同学也能像这样用9分钟烙好3张饼吗?
同桌两人合作,用这种方法再试一试。师巡视
理解并掌握烙3张饼的最优方法。
小结:同学们通过思考、操作,不但想出了多种解决问题的方法,还会通过比较,找出最优的方法,真是爱动脑、会动手的好孩子!你们让我想起了一句话:条条大路通罗马。我想给它接下半句——可能有条路最近。最节省空间、时间的路,就是最近、最优的路。(板书:寻求最优)
实践活动(二):探究烙4、5张饼(6分钟)
这时又来了两位顾客,分别要买4张、5张饼,怎样尽快把饼给他们呢?小组合作,讨论一下怎样安排,需要的时候也可以用卡片摆一摆,把相关的内容填入表格中。
1.请同学上台,展示烙4张饼的过程。还有没有别的方法?(板书用时)
师小结:4张饼,能两张、两张的同时烙就不交替,是最方便的方法。
2. 说说怎样烙5张饼,(板书用时)引导明确:先同时烙两张再交替烙三张,即分成2+3,最方便最省时间。
师:刚才我们边活动边把学习成果整理成了一个表格,同学们,相信你们已经找到了解决烙饼问题的钥匙。 (课件出示)
实践活动(三):算出烙6、7、8、9、10张饼的时间(6分钟)
1.填表。接下来,烙6、7、8、9、10张饼的最短时间,能与小组成员合作直接填在这张表中,并说说怎么烙吗?汇报最短用时,并说烙法。
2.优化。我要向你们请教一下,为什么你们填得这么快?你们发现了什么?
那现在,谁能快速地说出烙15张饼最少需要多长时间?怎么烙?20张饼最少需
要多长时间?怎么烙?真是反应迅速的小机灵!
三、结合生活,知识拓展。(2分钟)
刚刚我们找到了3张饼的最优烙法,可有人觉得把饼拿来拿去太麻烦,还想出了更好的办法,知道是什么吗?当当当当,就是它——电饼铛。上下两面可以同时加热,实现了1个饼只需烙3分钟。对工具进行改造,也能更好的利用空间,节省时间。希望你们将来也能创造出节省时间的新发明,那我会很高兴的!
四、课堂总结(4分钟)
师:同学们,这节课你有什么体会和收获?
小结:在生活中,我们经常会碰到类似的问题,例如出门旅行要考虑选择怎样的路线和交通工具,才能使旅行花钱更少或者花的时间最短;在各行各业,选择最优的方法也能大大提高效率。这种想法是我国数学家华罗庚爷爷提出来的,有兴趣的同学可以在课后继续去了解和研究。
希望大家在今后的学习和生活中,也能用自己的慧眼多发现问题,解决问题,更好的利用时间。下课!
摸球问题教学设计篇八
在三年级的学习中,学生已经认识了可能性的大小,在四年级的学习中,他们又认识了等可能性,而本学期所学的概率知识主要是用分数表示可能性的大小,所以说,本学期所学的内容是在前两个年级的基础上的一个延伸与发展。教材在呈现本专题的内容时分为三个部分:首先呈现了提供给学生开展试验活动的材料,通过学生的试验进一步体会摸出一个球颜色的可能性的大小;其次呈现了“想一想”的内容,通过讨论第1盒与第2盒摸球的结果,将描述可能性的语言“不可能”与“一定能”转化为数据表示,即客观事件中“不可能”出现的现象用数据表示为“可能性是0”,客观事件中“一定能”出现的现象用数据表示为“可能性是1”,通过这种描述语言转化为数据表示的过程,为学生后续用分数表示可能性作了铺垫;再次呈现了“说一说”的内容。由于学生已有前面的基础,在“说一说”的过程中,将重点讨论第3盒与第4盒摸球结果的表述方法,即用分数的形式,具体地表述可能性大小的结果。
在教学活动中,根据教材呈现的内容及学生的实际情况拟安排以下教学的程序。
一是在实验操作中,复习可能性大小的认识,同时通过这个实验操作起到激发学生学习兴趣及导入课题的作用。在三、四年级,学生已经有了可能性大小的认识,所以在导入新授的阶段,教师组织学生进行“摸球比赛”活动。本活动按“摸球比赛——猜想——验证——导入”的活动过程,让学生可从活动中体验出可能性是有大有小的,从而导入课题。并以此活动为后续教学埋下伏笔,当然还起到一个激发学生学习热情的作用。
二是探究如何将“不可能”、“一定能”、“可能”等描述性语言转化为数据表示。学生通过自己的探究及全班同学的合理筛选后,得出像第1盒这种不可能摸出白球的,可以表示为摸出白球的可能性是0,而像第3盒这种一定能摸出白球的,可以表示为摸出白球的可能性是1。接着,教师可趁热打铁,让学生用“可能性是0”和“可能性是1”来说明生活中的不可能事件和必然事件。之后,教师把重点放在探究第2盒这种可能摸出白球的情况,可用什么数据来表示合适?这是本课的重点也是难点。最后让学生在思辨中得出可用分数来表示可能性的大小。
三是通过一定的练习让学习会用数来表示事件发生的可能性大小。这个练习重点放在不确定事件的发生的可能性大小上,且练习的要求是逐层提高,以让不同的学生能有不同层次的发展。
1、通过试验操作活动,进一步认识客观事件发生的可能性大小。
2、能用适当的数表示事件发生的可能性大小。
重点:会用数表示可能性的大小。
难点:会用数表示可能性的大小。
1、1、3个箱子,里面分别装着5黄球、1白球4黄球、5白球。3个放球盆。
2、8个放球盆,里面放1白球2黄球。
3、每生2张表格。多媒体课件一套。
[片断一]游戏激趣,导出课题。
1、游戏激趣:教师提供三个箱子,里面分别放有5个黄球,1个白球4个黄球,5个白球,让学生分组进行摸球比赛,看哪个组摸到的白球最多为胜。
(请3个学生参加,每人代表一组。每次只摸出1个球,摸出后要先把球先放去才能再摸,每人摸6次)。
2、引疑揭题:由不公平的比赛让学生产生疑问,再从摸出的结果中导出“不可能、可能、一定能”,并从“可能”中引出可能性有大有小,同时引导学生质疑,难道只能用以前学过的这些文字来表示可能性的大小吗?进而由此引出课题。(教师板书课题)。
[片断二]动手操作,自主探究。
1、引导学生独立思考,自主探究:要分别用什么数表示这三个箱子摸到白球的可能性的大小。让学生把数填在表格上,同时课件出示如下表格。
[片断三]质疑筛选,形成新知。
1、先引导质疑:是不是几位同学所举的这些数可以用来分别表示上述三种摸球的结果呢?接着让学生先探究“不可能”和“一定能”的两种情况分别用什么数表示比较合适。
引导学生从“不可能发生的”的几种方法中,找出合适的表示方法(可能性是“0”——用“0”表示简单明了)。再用同样方法找出“一定能发生”的现象——用可能性是“1”来表示。
2、适时解释应用:让学生例举生活中上述两种现象的例子,并用语言进行相应的表达。
3、再组织学生通过对2号箱摸到白球的可能性大小及同学所写的不同数的分析中,确定可以用分数“1/5”来表示比较恰当。
(1)启发引导:为什么可以用1/5来表示呢?
教师:(拿出2号箱的1个黄球)这个球有可能被摸到吗?这就是一种可能;(再拿出另1个黄球)这个球有可能被摸到吗?现在有几种可能?(指着箱中所有的球)这个箱子中的5个球都有可能被摸到吗?总共有几种可能?其中摸到白球的可能有几种?所以,摸到白球的可能性大小用数来表示应该是多少?从而让学生理解用分数表示可能性大小的意义。
(2)适时练习:教师通过往2号箱中先加入1个黄球,再加入1个白球,再加入1个白球,让学生分别说出能摸到白球、黄球的可能性的大小,来巩固新知。
(2)适时练习:教师通过往2号箱中先加入1个黄球,再加入1个白球,再加入1个白球,让学生分别说出能摸到白球、黄球的可能性的大小,来巩固新知。
[片断四]归纳总结,提升认识,发展思维。
1、归纳总结:
师:以前我们只会用文字来表示可能性的大小,通过今天的学习,我们又懂得了用数来表示可能性的大小,会更加准确明了。
2.提升认识,发展思维:
借助线段图。
让学生知道,可能性的大小还可以通过线段上的点来表示。在教学时,注意引导学生观察某一点从线段的左端到右端,从线段的右端到左端的位置移动引起可能性大小的变化情况,直观描述可能性的变化趋势。
[片断五]应用数学,活用数学。
(一)基本性练习。
1、填空:
(1)抛掷一个骰子,出现3点朝上的可能性是()。
(2)某单位有73名员工举行抽奖活动,总共有73张奖票,每个员工都能中奖。设有一等奖3名,二等奖10名,三等奖60名,第一个抽奖者能抽中一等奖的可能性是()。
(3)如右图,转动转盘,指针指向阴影部分。
的可能性是()。
2、判断:
(1)据推测,今天本地降雨的可能性是4/5,意思是今天本地一定有雨。()。
(2)抛掷一枚硬币,正面朝上的可能性是1/2,也就是说,抛20次就一定有10次正面朝上。()。
(二)拓展延伸:
师根据学生的回答板书出1/3、1/2、2/3。
合作,交流:学生先认真观察,然后再在小组内交流:用哪个数表示才对?教师巡视。
学生汇报,争辩。针对学生不同意见,教师作如下引导:
1、化抽象为形象。
请1男2女3个同学上台,分别代表1白球和2黄球。
问:把其中不同的两个球(同学)配成一对,总共有几种结果?(几种可能)?(生:3种)而拿到2个都是黄球的可能有几种?(1种)所以可能性是?(生:1/3)。
2、化形象为抽象。
师:(课件)把这三个球排成一排,并分别标上字母a、b、c;
摸球问题教学设计篇九
教学目标:
1、在摸一摸、摆一摆、想一想、说一说等实践活动中发现间隔数与植树棵数之间的关系。
2、在亲身体验、交流中,进一步理解间隔数与棵数之间规律,并解决生活中的植树问题。
3、在学习活动中,体会数学与生活的密切联系,锻炼数学思维能力,体验数学思想方法在解决问题上的应用,感受日常生活中处处有数学,进一步激发学生学习和探索的兴趣。
教学重点:
理解“植树问题(两端要种)”的特征,应用规律解决问题。
教学难点:
让学生发现植树的棵数和间隔数之间的关系。应用规律解决问题。
教学准备:
课件。
教学过程:
一、初步感知间隔的含义。
1、肢体体验:同学们都有一双灵巧的小手,它不但会写字、画画、干活,在它里面还蕴藏着有趣的数学知识,你想了解它吗?请举起你的右手,并将五指伸直、张开、用左手摸摸右手,数一数,五个手指有几个空格?(4个空格),师:在数学上,我们把这个空格叫“间隔”。也就是说,大小拇指在一只手的两端:5个手指之间有几个间隔?(4个间隔)。弯弯你的大拇指看:4个手指之间有几个间隔?(4个间隔);把大、小拇指一齐弯弯看:3个手指之间有几个间隔?(4个间隔),那么,将5个手指换成小树,5棵小树之间有几个间隔(4个)。
师:生活中的“间隔”到处可见,你知道生活中还有哪些间隔吗?(两棵树之间、两个同学之间、楼梯、锯木头、敲钟…都有间隔。)。
2、引入课题:师:树可以美化环境,清新空气,我们要多植树。在一条直线上种树,每两棵树之间相等的段数叫做间隔数,每个间隔的长度叫间距,也叫株距。间隔数与棵数的关系,数学里统称植树问题,这就是我们今天要探究的内容——在一条不封闭的直路上的“植树问题”。(揭题,板书:植树问题)。
二、探究规律,解决问题。
1、找出两端都种树的规律。
植树问题情景1,师出示:例1.同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?师:请同学们默读题目,谁来分析一下这道题的条件、问题、关键词和单位?要求一共需多少棵树苗?先要知道两端都栽树,棵数与间隔数有什么关系?要解决这个问题,实践是检验真理的唯一标准,但是100米这个数字有点大,不好验证,在遇到比较复杂的问题时,我们可以先用比较简单的例子来验证。
师:现在我们用研究出的两端都栽树,棵数等于间隔数加1的规律来解决例1中的问题,在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?生:100÷5=20(个间隔)20+1=21(棵)。利用两端都栽树,棵数=间隔数+1”这个规律解决了两端都植树的问题。
三、应用规律,走进生活。
走进生活:
(一)目标检测:
1.排列在同一条直线上的16棵树之间有()个间隔。2.从第1棵树到最后1棵树之间有30个间隔,一共有()棵树。
(二)闯关题。
2、广场上的大钟5时敲响5下,8秒敲完。12时敲12下,需要多长时间?
3、5路公共汽车行驶路线全长12千米,相邻两站的距离是1千米。一共有几个车站?
4、小明从1楼到3楼需走36级台阶,小明从1楼到6楼需走多少级台阶?
5、15个军人站成一列,每两个军人间距离为1米,这列队伍有多长?
四、总结:通过这节课的学习,你们有什么收获?
五、作业设计。
实地考察。
两端要栽:棵数=间隔数+1;
摸球问题教学设计篇十
1.通过“猜测―实践―验证”,经历事件发生的可能性大小的探索过程,初步感受生活中有些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。
2.在活动交流中培养合作学习的意识和能力,获得良好的情感体验培养学生进行合理推断的能力。
本节课是三年级上册第八单元的第一课时,本单元主要是让学生在活动中感受并知道事件发生的可能性。教材创设了摸球的情境,让学生经历猜测―实践―验证的过程,从而感受到某些事件发生的可能性是不确定的,事件发生的可能性是有大有小的。并把学到的知识应用于实际,培养了学生的应用意识。
本节设计思路如下。
1.创设情境。
在教学中结合实际生活为学生提供有趣的、丰富的情境,让学生在实际操作中获得良好的体验,从而体会学习数学的乐趣和价值;同时让学生在情境中发现矛盾,引起思考,激发学生用数学知识去解决发现的问题。
2.学习新知。
从学生已有经验出发,让学生经历从实际问题抽象出数学模型的过程。在这一过程中,以“自主探索”为核心,将“合作交流”贯穿整个教学过程。充分利用学生的生活经验,设计生动有趣、直观形象的数学教学活动。
3.应用拓展。
多层次多样式的练习,使学生体会到“生活中处处有数学,数学来源于生活,应用于生活”。利用学到的知识解决实际问题,体会数学在生活中作用以及学习数学的必要性。
(一)联系生活,谈话导入。
这节课,我们就一同来研究可能性。(板书课题)。
(取材于学生生活实际的素材将生活场景展示出来,唤起学生记忆,让学生真真切切地体验和感受到了生活中处处有数学。)。
(二)操作、探索、实践、感受。
(1),这个盒子里有9个白球和1个黄球。(板书9白1黄)。
现在老师来摸球,猜猜,摸到的球可能是什么球,摸到什么球的可能性大?为什么?
学生猜测。
现在,老师来摸一个球……看,你们猜对了吗?
(2)你们喜欢玩这个游戏吗?现在请你们拿出准备好的盒子,四人一组进行摸球,要求:轮流摸球,把每次摸得的结果记录在书的表格里。
(3)填完表格后,说说你们发现了什么?为什么?
(4)师小结:由此可见,可能性有大、有小,这与不同颜色球的数量有关,白色球多,摸到的可能性就大,黄色球少,摸到的可能性就小。
数量。
多
少
可能性。
多
少
(通过摸球数学活动,让学生在游戏活动中通过亲自操作,来体验事情发生的可能性是不确定的,事件发生的可能性有大有小。体验到生活中处处有数学,数学就在我们身边,从而增强学习的动力,产生积极的数学情感。)。
2.再次摸球。
(1)刚才我们做了摸球游戏,现在老师把盒子里的球做了变动,盒子里有14个球,分别是8个白球,4个黄球和2个红球,如果老师随意摸出一个球,你们想想可能出现哪些结果?列举出来,小组讨论交流一下。
(2)师小结:可见,可能性不仅有大有小,还具有不确定性。
(从学生情感体验看,他们仍对小组合作的摸球游戏意犹未尽,再次摸球,极大地满足了他们的心理需求。再次经历“猜想——实践——验证”的探索过程,加深体会出事情发生的可能性有大有小,及不确定性。)。
3.转盘游戏。
这个游戏好玩吗?咱们再来玩个游戏好吗?
师出示转盘,请同学们猜猜,转动指针后,指针最有可能指到什么颜色,为什么?同桌先说说。
(1)学生汇报。
(2)师小结:涂色面大,转到的可能性就大,涂色面小,转到的可能性就小。
(这一环节充分体现学习与实践应用相结合。前面的活动都是请学生猜、摸、试,这一活动发挥学生的自主性与合作精神,群策群力,应用所学知识设计转盘,进行逆向思考巩固知识。)。
(三)巩固强化,应用拓展。
1.我会判断。(下面的箱子,分别摸出1个小球结果是那个?)。
8白2红可能是白球10红。
一定是白球。
5白5红一定不是白球。
很可能是白球。
2白8红白球的可能性很小10白。
2.我来做参谋。
寒假到了,为了增长见识有很多家长打算带孩子出去旅游。小明的妈妈准备带他到海南、武汉、哈尔滨去,你能帮他参谋告诉他这三个地方的冬天下雪吗?请用上“一定”“很少”“不可能”说一说。
3.我来填一填。
在()里填“可能”“不可能”“也可能”“一定”等词语,使句子意思完整无误。
(1)太阳()从东面升起。
(2)从2,3,5,8,9中任意取出三个数,数的和是20是()的。
(3)明天我校()有4个或4个以上同学过生日,()没有4个同学过生日。
(4)今天上课我们表现那么好,听课的老师()表扬我们。
4.我来做判断。
(1)从一个红球,一个白球中,任意摸出一个,可能是红球,也可能是白球()。
(2)不大于6的数可能是6。()。
(3)把8个苹果放在3个盘子里,不可能有一个盘里放有6个苹果。()。
5.我来说一说。
通过“连、说、填、判”等多层次的练习,使学生进行了“有意义的学习”,获取知识的过程中,学生的创新精神和实践能力得到增强,使学生真正体验到理智的愉悦,保护了学生创造和成功的信心。整个教学过程动态生成,师生在相互交流中进行着智慧的碰撞,心灵的沟通得到了淋漓尽致的表现。
摸球问题教学设计篇十一
(一)、知识与技能:
1、通过实验操作活动,进一步认识客观事件发生的可能性大小。
2、能对实际生活中的现象,用分数表示可能性的大小。
(二)、过程与方法:在活动中,让学生经历亲身体验的过程,在观察、思考、讨论、交流中认识可能性的大小问题。
(三)、情感态度与价值观:
1、培养学生学习数学的兴趣,形成良好的合作学习的态度。
2、通过猜想与实践验证,体会事物之间的联系与相对性。
用一个数字来表示可能性的大小情况,体会数据表示的简洁性与客观性。
用分数表示可能性大小情况,并能够分析实情。
营造情境,让学生探究新知。
白球7个,黄球2个,袋子一只。
一、谈话导入。今天由陈老师来和大家一起学习,知道今天要学什么吗?(可能性的有关问题)陈老师知道我们班的同学特别爱思考,今天我带来了几个问题,想和大家一起研究研究,看看几个大组里,哪个大组给老师的惊喜是最多的。点名询问:有可能是你吗?……(每组一个)从老师的眼睛里看来,每个组同学的精神都很饱满,相信每个组给老师的惊喜是一样多的。
二、探究活动用一个数来表示可能性。
(一)、交流中复习。
1、出示问题。三白一黄的球放入袋子里。
2、问题:摸球游戏,以前有做吗?老师摸一个可能摸出什么球?为什么?结论:可能是白球,因为白球的数量比黄球多。也可能是黄球,只是他的可能性小一些。追问:摸出什么球的可能性比较大?可能性的大小与什么有关?结论:袋子里黄球和白球的数量有关,白球的数量比黄球多,摸出白球的可能性就大。
3、实践:动手来摸一摸。(请同学来,调节一下气氛)。
(二)、用“0”和“1”来表示可能性1、刚才同学们说得很好,现在老师来处理一下,看:袋子里只有两个白球。问:能否摸出我想要的黄球?(生答)2、象这样根本不可能发生的事,用一个数来表示,那可以说它发生的可能性为“?”“0”小结:发生的可能性为“0”时,表示这件事根本不可能发生。3、如果我想摸出白球,那情况又将如何?全是白球。(老师同样请你来用一个数来表示可能性为一定发生的事件,你会用什么数?)“1”
4、小结:当有些事情一定发生时,我们可以说他的可能性为“1”,当有的事不可能发生的时候,我们说他发生的可能性为“0”。那谁来说一说,生活中哪些事情发生的可能性为“1”哪些事情发生的可能性为“0”。老师出题:玻璃杯从很高的地方落在水泥地面上,那玻璃杯破碎的可能性为“?”太阳每天早晨升起的可能性为“?”公鸡下蛋的可能性为“?”一粒有1~6个数字的骰子,随便怎么投掷,出现数字“7”的可能性为“?”学生举例。汇报5、刚才举了大量生活中的例子说明些事件一定会发生,有些不可能发生,也知道用数字来表示这些可能性的情况,下面我们继续来看。
(三)、用分数表示可能性的情况(在袋子里放入一黄一白两个球)。
1、现在,老师摸到黄球的可能性是多少?(学生回答)你能用一个数字来表示摸到黄球的可能性情况吗?(1/2)为什么用1/2表示?两种球出现的机会是一样的,各占一半。
2、很好!那么,现在呢?(老师慢慢放入一个白球),摸出黄球的可能性还是1/2吗?
学生思考,同桌之间交流交流,商量商量。可能性是几,为什么?反馈:黄球的数量占总数量的1/3,所以,一般情况下,我们摸出黄球的可能性是1/3。
3、那摸出白球的可能性呢?(2/3)为什么?白球的数量占总数量的2/3,所以,一般情况下,我们摸出白球的可能性是2/3。
5、总结:现在谁来说一说,这个可能性的多少与什么有关?看有多少球,其中黄球占了多少个,这样就可以直接表示出来了。
三、巩固应用应用可能性解决问题。
1、练一练2:读题——解决问题——说明原因(红色占总数的一半,所以用二分之一表示。)。
2、练一练3:仔细审题——独立解决——小组讨论——反馈。
4、一个密码箱的密码由1、5、8组成的三位数,密码158的可能性是多少?
摸球问题教学设计篇十二
1、引导学生经历鸽巢原理的探究过程,初步了解鸽巢原理,会运用鸽巢原理解决一些简单的实际问题。
2、通过操作、观察、比较、列举、假设、推理等活动发展学生的类推能力,形成比较抽象的数学思维。
3、使学生经历将具体问题“数学化”的过程,初步形成模型思想。
经历鸽巢原理的探究过程,初步了解鸽巢原理。
理解鸽巢原理,并对一些简单的实际问题加以模型化。
1、师:同学们,你们玩过扑克牌吗?这里有一副牌,拿掉大小王后还剩52张,5位同学随意抽一张牌,猜一猜:至少有几张牌的花色是一样的?(指名回答)。
2、师:大家猜对了吗?其实这里面藏着一个非常有趣的数学问题,叫做“鸽巢问题”。今天我们就一起来研究它。
师:研究一个数学问题,我们通常从简单一点的情况开始入手研究。请看大屏幕。(生齐读题目)。
1、教学例1:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少有2支铅笔。
(1)理解“总有”、“至少”的含义。(ppt)总有:一定有至少:最少。
师:这个结论正确吗?我们要动手来验证一下。
探究之前,老师有几个要求。(一生读要求)。
(3)汇报展示方法,证明结论。(展示两张作品,其中一张是重复摆的。)。
第一张作品:谁看懂他是怎么摆的?(一生汇报,发现重复的摆法)。
第二张作品:他是怎么摆的?这4种摆法有没有重复的?还有其他的摆法吗?板书:(3,1,0)、(4,0,0)、(2,2,0)、(1,1,2)。
师:我们要证明的是总有一个笔筒里至少有2支铅笔,这4种摆法都满足要求吗?(指名汇报:第一种摆法中哪个笔筒满足要求?只要发现有一个笔筒里至少有2支铅笔就行了。)。
总结:把4支铅笔放进3个笔筒中一共只有四种情况,在每一种情况中,都一定有一个笔筒中至少有2支铅笔。看来这个结论是正确的。
师:像这样把所有情况一一列举出来的方法,数学上叫做“枚举法”。(板书)。
(4)通过比较,引出“假设法”
引导学生说出:假设先在每个笔筒里放1支,还剩下1支,这时无论放到哪个笔筒,那个笔筒里就有2支铅笔了。(ppt演示)。
(5)初步建模—平均分。
师:先在每个笔筒里放1支,这种分法实际上是怎么分的?
生:平均分(师板书)。
师:为什么要去平均分呢?平均分有什么好处?
生:平均分可以保证每个笔筒里的笔数量一样,尽可能的少。这样多出来的1支不管放进哪个笔筒里,总有一个笔筒里至少有2支铅笔。(如果不平均分,随便放,比如把4支铅笔都放到一个笔筒里,这样就不能保证一下子找到最少的情况了)。
师:这种先平均分的方法叫做“假设法”。怎么用算式表示这种方法呢?
板书:4÷3=1……11+1=2。
师:现在我们把题目改一改,结果会怎样呢?
ppt出示:把5支笔放进4个笔筒里,不管怎么放,总有一个笔筒里至少有几支笔?(引导学生说清楚理由)。
师:为什么大家都选择用假设法来分析?(假设法更直接、简单)。
通过这些问题,你有什么发现?
交流总结:只要笔的数量比笔筒数量多1,总有一个笔筒里至少放进2支笔。
过渡语:师:如果多出来的数量不是1,结果会怎样呢?
2、出示:5只鸽子飞进了3个鸽笼,总有一个鸽笼里至少飞进了几只鸽子呢?
(1)同桌讨论交流、指名汇报。
先让一生说出5÷3=1……21+2=3的结果,再问:有不同的意见吗?
再让一生说出5÷3=1……21+1=2。
师:你们同意哪种想法?
(2)师:余下的2只怎样飞才更符合“至少”的要求呢?为什么要再次平均分?
(3)明确:再次平均分,才能保证“至少”的情况。
(1)师:我们刚才研究的把笔放入笔筒、鸽子飞进鸽笼这样的问题就叫做“鸽巢问题”,也叫“抽屉问题”。它最早是由德国数学家狄利克雷发现并提出的,当他发现这个问题之后决定继续深入研究下去。出示例2。
(2)独立思考后指名汇报。
师板书:7÷3=2……12+1=3。
(3)如果有8本书会怎样?10本书呢?
指名回答,师相机板书:8÷3=2……22+1=3。
师:剩下的2本怎么放才更符合“至少”的要求?
为什么不能用商+2?
10÷3=3……13+1=4。
(4)观察发现、总结规律。
归纳总结:总有一个抽屉里至少可以放“商+1”本书。(板书:商+1)。
师:利用鸽巢问题中这个原理可以解释生活中很多有趣的问题。
1、做一做第1、2题。
2、用抽屉原理解释“扑克表演”。
说清楚把4种花色看作抽屉,5张牌看作要放进的书。
通过这节课的学习,你有什么收获或感想?
摸球问题教学设计篇十三
1.经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,会用“鸽巢问题”解决简单的实际问题。
2.通过操作发展学生的类推能力,形成比较抽象的数学思维。
3.通过“鸽巢问题”的灵活应用感受数学的魅力。
重点:经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”。难点:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”。
多媒体课件。
纸杯。
吸管。
一、课前游戏引入。
生:想。
师:我这里有一副扑克牌,我找五位同学每人抽一张。老师猜。(至少有两张花色一样)。
二、通过操作,探究新知。
(一)探究例1。
1、研究3根小棒放进2个纸杯里。
(1)要把3枝小棒放进2个纸杯里,有几种放法?请同学们想一想,摆一摆,写一写,再把你的想法在小组内交流。
(2)反馈:两种放法:(3,0)和(2,1)。(教师板书)(3)从两种放法,同学们会有什么发现呢?(总有一个文具盒至少放进2枝铅笔)你是怎么发现的?(说得真有道理)。
(4)“总有”什么意思?(一定有)。
(5)“至少”有2枝什么意思?(不少于2枝)。
小结:在研究3根小棒放进2个纸杯时,同学们表现得很积极,发现了“不管怎么放,总有一个纸杯里放进2根小棒)。
2、研究4根小棒放进3个纸杯里。
(1)要把4根小棒放进3个纸杯里,有几种放法?请同学们动手摆一摆,再把你的想法在小组内交流。
(2)反馈:四种放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。(3)从四种放法,同学们会有什么发现呢?(总有一个纸杯里至少有2根小棒)。
(4)你是怎么发现的?
(5)大家通过枚举出四种放法,能清楚地发现“总有一个纸杯里放进2根小棒”。
师:大家看,全放到一个杯子里,就有四个了。太多了。那怎么样让每个杯子里都尽可能少,你觉得应该要怎样放?(小组合作,讨论交流)(每个纸杯里都先放进一枝,还剩一枝不管放进哪个纸杯,总会有一个纸杯里至少有2根小棒)(你真是一个善于思想的孩子。)。
(6)这位同学运用了假设法来说明问题,你是假设先在每个纸杯里里放1根小棒,这种放法其实也就是怎样分?(平均分)那剩下的1枝怎么处理?(放入任意一个文具盒,那么这个文具盒就有2枝铅笔了)。
(8)在探究4枝铅笔放进3个文具盒的问题,同学们的方法有两种,一是。
3、类推:把5枝小棒放进4个纸杯,总有一个纸杯里至少有几根小棒?为什么?
把6枝小棒放进5个纸杯,总有一个纸杯里至少有几根小棒?为什么?
把7枝小棒放进6个纸杯,是不是总有一个纸杯里至少有几根小棒?为什么?
把100枝小棒放进99个纸杯,是不是总有一个纸杯里至少有几根小棒?为什么?
4、从刚才我们的探究活动中,你有什么发现?(只要放的小棒比纸杯的数量多1,总有一个纸杯里至少放进2根小棒。)。
5、小结:刚才我们分析了把小棒放进纸杯的情况,只要小棒数量多于纸杯数量时,总有一个纸杯里至少放进2根小棒。
这就是今天我们要学习的鸽巢问题,也叫抽屉原理。既然叫“抽屉原理”是不是应该和抽屉有联系吧?小棒相当于我们要准备放进抽屉的物体,那么纸杯就相当于抽屉了。如果物体数多于抽屉数,我们就能得出结论“总有一个抽屉里放进了2个物体。
小练习:
1、任意13人中,至少有几人的出生月份相同?
2、任意367名学生中,至少有几名学生,他们在同一天过生日?为什么?
3、任意13人中,至少有几人的属相相同?”
6、刚才我们研究的是小棒数比纸杯多1的情况,如果小棒比纸杯数多2呢?多3呢?是不是也能得到结论:“总有一个纸杯里至少有2根小棒。”
摸球问题教学设计篇十四
让学生在具体情境中学会解决问题,发展学生的数感。在解决问题的过程中,培养学生解决问题策略的多样性,提高学生解决问题的能力。
让学生在解决问题“能穿几串”中理解几十里面有几个十。
一、创设情境,导入新课。
大家玩过串珠游戏吗?
出示例7。
这里有些珠子,你会穿吗?板书课题。
二、互动新授。
出示题目的要求:有58个珠子,10个穿一串,能穿几串?
从题目中你知道了什么?要解决的问题是什么?
个别汇报。
要想知道能穿几串,该怎样解答?
a、画图。圈一圈。
b、数的组成。58里面有5个十和8个一。
验证。1串是10个,5串就是50个,剩下的8个,正好是58个。
2、想一想:如果是5个珠子穿一串,能穿几串?
三、巩固梳理,拓展应用。
1、完成第46页的做一做。
2、完成第47页第1~4题。
四、课堂小结。
板书设计:
春季,教学。
【本文地址:http://www.xuefen.com.cn/zuowen/17368088.html】