在制定教案的过程中,教师需要充分考虑学生的特点和需求。教案的编写可以借助一些教学资源和多媒体技术来提高教学效果。欢迎大家查阅以下教案范文,希望能给大家带来一些启示和借鉴。
工程问题的数学教案篇一
1、仔细观察的习惯。通过课堂上仔细观察情境图、操作的过程,发展到留心观察周围事物的习惯。
2、敢于提问的习惯。教师要引导学生不耻下问,随时表扬那些敢于、善于提问题的同学。对于学生的问题,教师要耐心解答。课堂上把提问的权利还给学生。
3、多角度思考的习惯。遇到问题不要局限或拘泥于一个角度思考问题,而是从多个角度去探讨问题的答案,鼓励学生的创新思维、求异思维。
4、善于联想、猜想和假设的习惯。遇到问题,无从下手时,可以大胆去猜想、假设答案,然后再往前推理。尤其是在做那些难度较大的思考题时,可用这种方法。
如果学生养成了这几种好的习惯,学生的思维灵活度便会大大提高,理解能力也会跟着上升。
将本文的word文档下载到电脑,方便收藏和打印。
工程问题的数学教案篇二
教学内容:
苏教版课标本第十二册7172页、试一试和练一练、练习十四的第13题。
教学目标:
1.使学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据题目的特点选择具体的转化方法,从而有效地解决问题。
2.使学生在解决问题的过程中,感受转化策略的应用。
3.使学生进一步积累运用转化策略解决问题的经验,感受转化的多样性。增强解决问题时的转化意识,提高学好数学的信心。
教学重点:
感受转化策略的价值,初步掌握转化的方法和技巧。
教学难点:灵活运用转化的策略解决问题。
教学准备:
多媒体课件、作业纸。
教学过程:
一、教学例1,揭示转化的策略。
1.出示。
师:这是什么图形?(长方形)图中每个小方格的面积都是l平方厘米。
如何求出这个长方形的面积?(54=20(平方厘米))。
2.出示。
师:你能求出这个图形的面积吗?怎样思考?(把左边的三角形剪下来,平移到右边。
去,使原来的图形转化成一个长方形)演示转化过程。(板书:转化)师:转化成的这个长方形与原来的图形面积有什么关系?(面积相等)。
(评析:用较为简单的图形过渡,把它转化为面积相等的长方形。孕伏转化的策略,使学生初步感受转化的作用)。
3.出示例1的两幅图,(作业纸)。
师:这两个图形你们学过吗?
(1)同桌讨论。(数方格,转化(割补))。
(2)动手操作?
(3)交流自己所用的转化方法,鼓励学生采用多种转化的方法:(如果有学生提出数方格,则提示他们进一步想想不完整的方格如何处理)重点让学生说一说如何将两个图形转化成已学过面积计算公式的图形。然后课件演示。
师:你是怎样进行转化的?
(第一幅图:先割下上面的半圆,再将这个半圆向下平移5格,就转化成了54的长方形了;第二幅图:先把下半部分凸出来的两个半圆割下来,再绕直径的上端旋转180度,补到图形上半部分凹进去的地方,于是这个图形也转化成54的长方形)。
师:转化后的两个图形的面积什么关系?(都等于20格)。
师:你怎么想到把图形分割后重新拼合进行转化的?(原图复杂,转化后的图形容易计算面积,而且转化前后图形的面积不变)(板书:复杂简单)。
(4)总结评价。
师小结:刚才我们为了比较两个图形的面积,先把它们转化成长方形,这就是我们今天要学习的解决问题的策略转化。(板书:解决问题的策略)。
(评析:转化的目的是为了把困难的问题化为容易的问题,或者把复杂的问题化为简单的问题,利用动画使转化的过程更加直观,更加便于理解,学生动手操作亲身体验了转化的好处)。
二、回顾转化实例,感受转化的价值。
1.回顾以往转化的经验。
师:其实在我们以前的学习中,已经多次运用过转化的策略,想一想,在哪些地方用到了这种策略?(可适当提示不同领域的转化)。
生可能会说:
a、面积或体积公式的推导过程中用过形的转化。(平行四边形长方形;三角。
形、梯形平行四边形;圆长方形;圆柱长方体;圆锥圆柱)。
b、计算中用过数的转化(异分母分数加减法同分母分数加减法;小数乘除法整。
数乘除法;分数除法分数乘法)。
c、简便计算中用过的式的转化。
2、初步感受转化的价值。
师:这些运用转化的策略解决问题的过程有什么共同点?(化繁为简、化难为易,化陌生的新问题为熟悉的问题)。
板书:新问题熟悉的问题。
师:以后你再遇到一个陌生的问题时,你会怎样想呢?
(评析:学生曾经多次运用转化的策略学习新知识,引导学生对这些过程进行回忆,从策略的`角度重建相关知识的联系,有利于他们理解转化的共同点)。
工程问题的数学教案篇三
教学过程:
一、积累铺垫。
1.引入:刚才的游戏有意思吗?我们再来玩个游戏好吗?(课前游戏:你来比划我来猜)。
2.要求:刚刚我们根据比划来猜测是什么事物,现在请同学们在纸上画出题目的意思。
4.从图中你能求出什么?
二、初步感知。
1.出示第二关:中山路小学原来操场是一个长方形,长40米。在扩建校园时,长增加了20米,这样操场面积就增加了600平方米。原来操场面积是多少平方米?。
2.审题激需:你能想个办法让大部分同学都能理解题意顺利闯关呢?(画图)。
3.看谁能把题目中的条件和问题都在图中表示出来?(1)学生画图,(2)对比交流:
4.现在图有了,你能根据图来求出原来操场的面积吗?
(1)学生尝试,教师巡视。(2)讨论交流:
5.小结:从开始审题我们觉得有点困难,至现在大部分同学都能做出来,你有什么感受?(画图是解决问题的好办法,画图能帮助我们思考……)。
三、再次体验。
2.审题后问:长方形操场是怎样变化的?(宽减少)你能把宽减少在图上表示出来吗?
3.学生画图,尝试解答后交流:把题意表示清楚了吗?能指着图说一说自己是怎么想的吗?(可能会有几种方法,重点指出宽减少了,长不变,减少的长方形的长就是现在长方形的长。)。
4.小结揭题:我们顺利闯过了第三关,你能谈谈画图对我们解决问题有什么帮助吗?(清楚地找到数量之间的关系)这就是我们今天学习的“解决问题的策略”之一画图(板书)。
四、深入体验。
(一)第四关:
1.引入:应用画图的策略,我们来闯第四关。
2.分层出示:
(1)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场长增加了20米。这个操场面积增加了多少平方米?(学生口答,再出图列式)。
(2)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场宽增加了15米。这个操场面积增加了多少平方米?(学生口答,再出图列式)。
学生猜测。先独立画图,再讨论验证。(得出不是增加1200平方米,应该大于1200平方米)。
到底增加了多少?学生解答后交流。(交流“整体”和“分块”两种思路)。
3.反思小结:从用经验猜测,到画图验证,最后到解决问题,你有什么启发吗?
(二)第五关:
1.引入:第四关我们都闯过了,下面我们要挑战――第五关!
(1)审题后问:与第四关有什么区别?(一个是“同时”,一个是“或者”)。
(2)学生画图解答后交流:(让学生指了图来说思路。重点交流长增加出来的长方形的长就是原来长方形的宽;宽增加出来的长方形的宽就是原来长方形的长)。
五、全课总结。
工程问题的数学教案篇四
教学内容:
人教版3年级下册72页例8。
教学目标:
1、使学生感受数学与现实生活的联系,初步学会用所学的有关面积知识解决简单的实际问题。
2、进一步体会解决问题的一般步骤,知道可以用不同的方法解决问题。
重点难点:
学会用所学的有关面积的知识解决简单的实际问题。
教学过程:
一、激情导课。
1、复习。孩子们前面我们学习了面积的相关知识,老师看看大家掌握的如何了?
课件出示,指名回答。
师:看来大家掌握的'很好,这节课我们就利用面积知识来解决生活中一些简单的实际问题,板书课题。
二、民主导学。
(一)任务呈现。
2、生质疑,提条件。
3、(出示情境图)师:工人叔正在测量呢,仔细观察,你了解到哪些信息?生读条件。
4、教师课件出示示意图。照这样铺下去,多少块就铺满了呢?怎样解决呢?学生先初步说出自己的想法。
(二)自主学习。
师:这样行吗?大家快来算一算吧!先独立思考,列式计算,然后在小组内交流你的想法。
(三)展示交流。
1、请小组成员上台板演成果。全班交流。
2、验证。
师:谢谢大家替老师解决了一个大难题,但是这200块中到底算对了没有?怎样验证呢?
3、小结。
(1)师:再遇到这类问题,你会解决了吗?谁能总结一下?让学生明确两种方法分别是怎样解答。
(2)师:回顾刚才的解题过程,我们是怎样做的呢?
4、练习。
师:老师的厨房也想铺上地砖。(课件出示题)你能发现给出的数据和刚才有什么不同吗?(让学生明确这次是直接给出了正方形地砖的面积而不是边长)到底需要多少块地砖呢?独立列式解答。
三、目标检测。
1、出示检测题。
2、结果反馈。请一个学生说正确答案,做对的给自己打3颗星。
3、反思总结。通过这节课你有什么收获?
工程问题的数学教案篇五
教学内容:
苏教版义务教育教科书《数学》六年级上册70~71页例2、练一练,第73页练习十一第4~7题。
教学目标:
1、使学生初步学会用“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。
2、使学生在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
教学重点:
解决用假设的策略时总量变化的实际问题。
教学难点:
理解假设时数量的复杂关系。
教学过程:
一、出示问题,讨论策略。
1、出示例2,读题。
3、你准备怎样假设呢?
二、自主探索,运用策略。
1、出示提问:
(1)这题告诉了我们哪些条件,要求什么问题?
(2)你是怎样理解题中数量之间关系的?
小盒里球的个数+8=1个大盒里球的个数。
2、列式计算:
(1)你能根据假设后的数量关系列示解决吗?
果,看看答案是不是相同。
集体评议,重点讨论球的总数发生了怎样的变化。
3、引导比较:
它们有什么相同的地方吗?
小结。
三、反思比较,内化策略。
1、比较异同。
同桌讨论后全班交流。
2、反思内化。
引导:回顾例1和例2解决问题的过程,你有什么体会?
四、拓展应用,巩固策略。
1、做练一练第1题。
提问:两种不同的假设有什么区别,解题时有什么不同?
让学生列式解答,指名板演。
2、做练一练第2题。
减少了多少。
3、做练习十一第5题。
引导学生课业用三种不同的假设方法说明。
五、全课总结:
1、这节课我们学了什么本领?你有什么想法或还不懂的地方可以提出来?
2、作业:
完成练习十一第4、6、7题。
工程问题的数学教案篇六
1、使学生理解求两数相差多少的应用题的数量关系,学会解答此类应用题.。
2、通过操作、观察和讨论,初步培养学生的逻辑思维能力和语言表达能力.。
3、通过教学,向学生渗透比较思想,激发学生学习数学的兴趣.。
教学重点和难点。
重点:解答“求比一个数少几的数”的应用题.。
难点:理解“求比一个数少几的数”的应用题中的数量关系,学会分析这类应用题.。
教学过程设计。
(一)学习新课。
生:第二名。
生:第一名。
……。
2.师:我们一起来看一看全校卫生评比表。(出示表格)。
生:我们班最多16面。
师:用统计表很容易看出各班的卫生成绩。
3.师:那你还可以知道其他班得红旗情况吗?(表格下面被树遮住)。
生:二(2)班比我们班少3面,
生:二(1)班比我们班少5面,
生:二(4)班比我们班少1面,
……。
4.师:知道他们班红旗比我们班少,可以算出他们有多少面吗?(补上问题)。
学生计算。
师:为什么这样算?同桌讨论一下。
出示课件。再请几个学生说一说思路.。
5归纳.。
二、巩固练习.。
师:比15少8的数是多少?怎样计算?
生:15-8=7,比15少8的数是7.。
师:比30少6的数是多少?怎样计算?
生:30-6=24,比30少6的数是24.。
(三)巩固反馈。
1.拍手游戏.。
(1)老师拍6下,同学们比老师少拍2下,同学们拍几下?
(2)同桌同学仿照上面的做法,进行拍手游戏.。
2.出示书23页,做一做。
(1)国庆节促销,每个球优惠8元。
(2)让学生提出问题。
(3)学生独立完成,完成后把思考过程小声说给同学听一听.。
(四)合作练习。
1、根据各国金牌数关系进行计算。小组合作完成。
算式。
工程问题的数学教案篇七
教学内容:
人教版三年级下册教科书第100页例2,“做一做”和练习二十三第11、12题。
教学目标:
1.让学生经历解决问题的过程,学会用除法两步计算解决问题。
2.通过解决具体问题,让学生获得一些用除法计算解决问题的活动经验,感受数学在日常生活中的作用。
3、在解决实际问题的过程中体验解决问题方法的多样化,进一步培养分析和推理能力。
教学重点:
使学生学会从实际生活中发现问题、提出问题。对连除解决问题能正确求解。
教学难点:
会用多种方法来解答。
教具准备:课件。
【设计意图】通过前面两个课时的教学,现在学生已初步获得了解决问题的经验,为了让学生区分连乘与连除,结合教材特意设计了这一节连除。(具体设计意图负载各个环节后)。
教学过程:
一、基础训练:
(1)口算。
师:今天我们继续学习解决问题,老师带来了一些口算练习,你来?
出示:5×3×2=60÷3÷4=7×7+1=21÷3+9=。
…………。
出示:有30人参加团体操表演,平均分成5行,?
师:能补充问题吗?
引导学生总结出:把一个数平均分成几份,求每份是多少用除法。(齐读)。
【设计意图】口算是学生必须掌握的,两步的口算题给本节课的两部计算埋下伏笔。“发明千千万,起点一个问”学生提出一个问题,往往比解决一个问题更重要。把问题的提出留给学生,让学生做到真正的学习主人。
二、新授例题。
1、找信息搜集数学信息。
【设计意图】“说数学、做数学、创数学”是我校数学研究课题“数学阅读”的主旨,通过指导学生仔细认真的阅读主题图,以便保证学生收集的完整性、也是教会学生看图的基本方法,同时让学生知道了数学离不开阅读。
师:整理题目,出示“这场团体操有60人表演,平均分成了2个大圈,每个大圈平均分成了5个小圈,?”
师:你能补充问题吗?
生:每个小圈有多少人?(学生默读)。
【设计意图】课堂的学习,不应该是一个圆满的句号,而是给学生一个充满遐想的省略号,应留给学生一片未曾开发的滩涂。就像前面说的“发明千千万,起点一个问”学生提出一个问题,往往比解决一个问题更重要。
12。
3、说思路理清解题思路。
师:要求每个小圈有多少人,先要求什么(思考)。
师:谁还能说一说这一题的解题思路。
【设计意图】“说数学”的目标是让每一位学生会说数学,也就是表达自己的思考过程,在教师总结后让学生互相说,既是给养学生成功的体验,也体现了让不同的人在数学上得到不同的发展。
师:你能列式解答吗。
【设计意图】会说不一定会写,让学生在草稿本上把他的想法写下来,也是为了检查学生将解题思路转变成数学符号的一种有效的方法。
5、说意义掌握解题步骤。
师:“60÷2=30(人)”表示什么?
师:是的,要求每个小圈有多少人?先求一个大圈多少人,再求每个小圈有多少人。同学们,今天我们解决问题用的什么计算方法(除法),几步计算呢?(两步计算),这就是我们今天要学习的“运用除法两部计算”解决问题。(板书课题),在解决问题里,我们先要观察图,找到有用的数学信息,再通过有用的数学信息分析问题,也就是确定先求什么,再求什么,最后列式解答。
【设计意图】让学生在说的过程中逐步建立起解决问题要知道先求什么,再求什么,同时也是让学生在说的过程中足部完善自己的表达,获得成功的体验,最后通过师生的交流互动完善板书。
6、写综合算式。类比分步计算。
师:刚才我们是用分步计算的方法,你能写出这个两步计算的综合算式吗?
师:综合算式和他一样的向老师招招手,好吗?
【设计意图】掌握综合算式的一般计算法则是学生必须掌握的,上节课学生已经初步获得了用综合算式来解题的经验,在这里直接放手让学生列综合算式,同时也是为了把课堂还给学生。
三、巩固练习。
100页做一做。
师:请同学们阅读教材第100页的.做一做,然后把你的想法用算式表达出来。
……。
【设计意图】这是一道模仿练习题,老师不过多的讲解,而是让学生独立解答,部分学生完成后并不着急讲解,等待更多的学生完成再讲解,同时也是培养学生倾听的习惯。
四、课堂训练。
1、第104页的第11题。
师:请同学们完成教材第104页的第11题。
…………。
生:能。
【设计意图】通过练习,让学生在比较中学会减除类型的解决问题,加深学生对连除、减除类型解决问题的理解,同是也对学生进行了情感态度价值观的培养。
2、第104页的第12题。
师:请同学们完成教材第104页的第12题。
师:做好的认真思考,我做的对不对?我还有没有其他的方法?
【设计意图】这一题意在培养学生从多角度观察问题,解决问题的能力。在学生学会一种方法后,并不急于评讲,而是鼓励学生从不同的角度分析信息、寻找方法,激发学生探索的欲望、增强他们的信心,逐步提高解决问题的能力。
五、课堂总结。
师:这一节课我们学习了什么?你有什么收获?
【设计意图】课堂的真正主人是学生,学生的学习必须是一个生动活泼的过程,把课堂小结交给学生,让学生在快乐的学习氛围中乐学、爱学。
板书设计。
这场团体操有60人表演,平均分成了2个大圈,1、搜集信息。
每个大圈平均分成了5个小圈,每个小圈有几人?2、理清思路。
先求:每个大圈有多少人。列式计算:60÷2=30(人)(先算什么,再算什么)。
再求:每个小圈有多少人。列式计算:30÷5=6(人)3、列式解答。
答:每个小圈有6人。
工程问题的数学教案篇八
(1)培养良好的审题习惯。一要审数和符号,二要审运算顺序,明确先算什么,后算什么。三要审计算方法的合理、简便,看能否简算,然后再动手解题。
(2)养成仔细计算、规范书写的习惯。按格式书写,数位对齐,字迹工整、不潦草,保持作业的整齐美观。
(3)养成估算和验算的习惯。这是计算正确的保证。验算是一种能力,也是一种习惯。
(4)强调检查。计算都要抄题,要求学生凡是抄下来的都校对,做到不错不漏。
(5)合理使用草稿纸。在打草稿的时候,要从左往右,从上到下,有序的打下去。一张写完,再翻一张,估计位置不够不要随意下笔换一个空间大的地方打草稿。检查时,也可从草稿入手。
工程问题的数学教案篇九
程老师听说呀,咱们班的同学个个都是好样的!上课时,每位同学都能坐得端端正正,而且善于开动小脑筋。今天,咱们也让在座的这些老师们看看我们的精彩表现,好吗?这里,老师还特意为每个组准备了一个礼物盒,咱们来比一比,看看哪个组学得最棒,得到的礼物最多!
师:现在,程老师先请大家欣赏一下秋天里的景色。请看大屏幕!
(课件呈现配乐情景:美丽的秋天)。
师:同学们,你们觉得秋天美吗?
师:确实很美!那你们知道吗,在这些美丽的画面中还藏着好多的数学问题呢!今天这节课,咱们就一起去发现问题,(板书课题:解决问题)并且解决这些问题!
二、学习例1。
师:请看,在这美丽的秋天里,这几个小朋友玩得可开心啦!
(课件出示扑蝴蝶图)。
师:同学们好好看看,左边有几个小朋友?
生:4个。
师:那么,右边呢?
生:2个。
师:通过观察,大家发现左边有4个小朋友,右边有2个小朋友。你们能试着提出一个问题吗?请同桌的同学互相说一说!
(生讨论)。
师:好,谁能把你提出的问题说给大家听听?
生1:4+2=7。
师:4加2等于“7”吗?
生:不是,应该等于6。
师:你再说说,4加2等于几?
生1:4加2等于6。
生1:好。
师:谁再来说说你提出的问题!
生2:合起来有多少个小朋友?
师:真不错,都已经学会提问了!
师:谁还想说说你的问题?
生3:一共有多少个小朋友?
师:瞧瞧!这位同学也会提问啦!他提出的问题也是“一共有多少个小朋友?”。真是好样的`!
师:那你们知道“一共”是什么意思吗?
生:就是合起来。
(生活动,师引导)。
非常棒!你们知道吗?我们还可以用一个符号来表示合起来。
(板书:)。
师:那么,刚才我们提出的问题“一共有多少个小朋友?”。(适时板书:?人)老师在大括号的下面写上一个问号。这就是我们今天要认识的第二位新朋友--问号!问号表示这是一个问题。
师:那么,要解决“一共有多少个小朋友?”,我们该用什么方法来列式呢?
生:加法。
师:你们同意吗?
师:老师也同意!把两个部分合起来,我们就用加法计算。(板书:+)。
师:谁来列一道加法算式?
生:4+2=6。
师:对!这里的“4”表示什么?“2”呢?很好!把左边的“4个”小朋友和右边的“2个”小朋友加起来,一共是6个小朋友!4+2=6。请大家齐读一遍!
(板书:4+2=6。生齐读)。
师:谁还能列一道加法算式?
生:2+4=6。
师:对吗?
三、做一做2。
师:其实啊,这些蝴蝶已经飞到咱们身边来了!看看!每个小组都有一块这样的小白板,白板的左边和右边各有几只蝴蝶。(出示师白板)。
师:请大家先在小组内数一数小白板的左边和右边各有几只蝴蝶,组长负责写在白板上。好了,请组长把小白板拿到桌上来!开始吧!(出示)。
(师巡视,走到一组,停下)。
师:你们也说得很好!我们已经知道了左边有几只,右边有几只,那合起来呢?(手势)合起来可以用我们刚才学过的什么符号表示?(大括号)。
师:同意吗?老师为每个组各准备了一个大括号,小组的同学商量商量,商量好了,就贴上去吧!
师:贴完了吗?好,我来看看!嗯,不错!我再看看其它几个组(巡视),你们都很棒!
师:大括号贴好了,现在你们能提出一个数学问题吗?好,先在小组内说一说,再写上一个“?”,表示你们的问题。(师边举白板边说)。
师:我们来看看,这是第2组的。你们提的问题是什么?(指“?”)你们组谁来告诉大家?(生)。
师:你们组呢?(转向另一组)。
生:也是“一共有多少只蝴蝶?”。
师:其它组的问题也和他们一样吗?好,请同学们拿出练习纸,列式计算吧!组长在小白板上列式!
师:做完了吗?谁来说说你的算式!
生:4+3=7。
师:你们同意吗?哦,你们组一共有7只蝴蝶。
师:很好。还有哪个组的同学说说你们的算式?
工程问题的数学教案篇十
教学目标:
1、运用画线段图的方法整理已知条件和问题,理解和差问题的解题思路,掌握和差问题的解题方法。
2、掌握画线段图分析问题的方法,感受画线段图的策略在分析问题中的好处,培养学生运用线段图进行分析问题的意识。
3、培养学生良好的逻辑思维能力,鼓励学生在合作交流中激发自主探究、创新的精神。
教学重点:理解和差问题的解题思路,掌握和差问题的解题方法。
教学难点:掌握画线段图分析问题的方法,培养学生运用线段图进行分析问题的意识。
教学准备:课件。
教学过程:
一、谈话引入。
1、课件出示:小明买3本故事书用了27元,小军买了5本同样的故事书需要多少元?
(1)将题目中的信息整理到下面的表格中。
(2)分析表格中的信息,明确解题思路。
引导学生明确:可以先算出一本故事书多少元,再计算出5本故事书多少元。
(3)学生独立解答。
一本故事书:27÷3=9(元)。
5本故事书:9×5=45(元)。
2、谈话导入。
他的解决问题的策略,同学们想学吗?今天我们就一起来学习新的解决问题的策略。(板书课题)。
二、交流共享。
1、课件出示教材第48页例题1。
让学生读题,说说题目中的已知条件和所求的问题。
已知条件:小宁和小春共有72枚邮票;小春比小宁多12枚。
所求问题:两人各有邮票多少枚?
提问:想一想:这道题我们用列表的方法来分析,能找到解题思路吗?
学生交流得出:由于两人的邮票数量都是未知的,用列表的方法进行分析,不容易找到解题思路。
引导:接下来我们就来学习用画线段图的策略来分析这道题。
3、根据题意画线段图。
(1)提问:题目中有几个相关联的量?应该用几条线段来表示呢?学生回答后课件出示:
小宁:
多枚()枚。
小春:
(2)追问:你能根据题意把线段图填写完整吗?
让学生在教材的线段图上填一填,完成后组织汇报交流。
小宁:
多(12)枚(72)枚。
小春:
4、看线段图,分析数量关系。
提问:观察线段图,想一想可以先算什么?
(1)学生独立观察思考后,小组交流讨论。
(2)全班交流解题思路。
汇报预测:
解题思路一:先算出小宁有多少枚邮票。两人邮票的总数减去12枚,等于小宁邮票枚数的2倍。
解题思路二:先算出小春有多少枚邮票。两人的总数加上12枚,等于小春邮票枚数的2倍。
5、学生独立解答。
引导学生选择一种自己喜欢的方法解答。
6、组织检验。
(1)提问:我们用什么方法进行检验?
(2)追问:检验要分几步进行?
(3)学生独立进行检验,并写出答案。
7、回顾反思。
先让学生在四人小组内说一说自己的体会,再组织全班交流。
8、交流讨论。
在之前的学习中,我们曾经运用画图的策略解决过哪些问题?
三、反馈完善。
1、完成教材第49页“练一练”。
这道题和例题1相似,只不过要让学生自己从线段图中获取已知条件,通过这样的练习可以培养学生的读图能力。
2、完成教材第52页“练习八”第1题。
这道题也和例题1相似,但题目要求先把线段图补充完整,组织练习时要把重点放在线段图的画法上。
3、完成教材第52页“练习八”第3题。
这道题练习的重点应放在观察线段图、分析数量关系上,引导学生从线段图上看出下层图书的2倍就是60×2=120(本)。
四、反思总结。
通过本课的学习,你有什么收获?还有哪些疑问?
工程问题的数学教案篇十一
解:
1/20+1/16=9/80表示甲乙的工作效率。
9/80×5=45/80表示5小时后进水量。
1-45/80=35/80表示还要的进水量。
35/80÷(9/80-1/10)=35表示还要35小时注满。
答:5小时后还要35小时就能将水池注满。
解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效甲的工效乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天。
1/20*(16-x)+7/100*x=1。
x=10。
答:甲乙最短合作10天。
解:
由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量。
(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
1/10÷2=1/20表示乙的工作效率。
1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
解:由题意可知。
1/甲+1/乙+1/甲+1/乙+……+1/甲=1。
1/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1。
(1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)。
1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)。
得到1/甲=1/乙×2。
又因为1/乙=1/17。
所以1/甲=2/17,甲等于17÷2=8.5天。
答案为300个。
120÷(4/5÷2)=300个。
可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
答案是15棵。
算式:1÷(1/6-1/10)=15棵。
答案45分钟。
1÷(1/20+1/30)=12表示乙丙合作将满池水放完需要的分钟数。
1/2÷18=1/36表示甲每分钟进水。
最后就是1÷(1/20-1/36)=45分钟。
答案为6天。
解:
即:甲乙的工作效率比是3:2。
甲、乙分别做全部的的工作时间比是2:3。
时间比的差是1份。
实际时间的差是3天。
所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期
工程问题的数学教案篇十二
1.船行于一段长120千米的江河中,逆流而上用10小时,顺流而下用6小时,水速_______千米/小时,船速________千米/小时.
2.一只船逆流而上,水速2千米,船速32千米,4小时行________千米.(船速,水速按每小时算)。
3.一只船静水中每小时行8千米,逆流行2小时行12千米,水速________千米/小时.
4.某船在静水中的速度是每小时18千米,水速是每小时2千米,这船从甲地到乙地逆水行驶需15小时,则甲、乙两地相距_______千米.
5.两个码头相距192千米,一艘汽艇顺水行完全程要8小时,已知水流速度是每小时4千米,逆水行完全程要用________小时.
6.一只船在河中航行,水速为每小时2千米,它在静水中航行每小时行8千米,顺水航行50千米需用_______小时.
7.船在河中航行时,顺水速度是每小时12千米,逆水速度是每小时6千米.船速每小时______千米,水速每小时______千米.
8.一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米.此船在静水中的速度是__________千米/小时.
9.一只渔船在静水中每小时航行4千米,逆水4小时航行12千米.水流的速度是每小时__________千米.
10.甲、乙两个港口相距77千米,船速为每小时9千米,水流速度为每小时2千米,那么由甲港到乙港顺水航行需_______小时.
11.某船在静水中的速度是每小时14千米,水流速度是每小时4千米,逆水而行的速度是每小时_______千米.
12.某船的航行速度是每小时10千米,水流速度是每小时_____千米,逆水上行5小时行40千米.
13.一只每小时航行13千米的客船在一条河中航行,这条河的水速为每小时7千米,那么这只船行140千米需______小时(顺水而行).
14.一艘轮船在静水中的速度是每小时15公里,它逆水航行11小时走了88公里,这艘船返回需______小时.
15.长江号轮船第一次顺流航行21公里又逆流航行4公里,第二次在同一河流中顺流航行12公里,逆流航行7公里,结果两次所用的.时间相等.顺水速度是逆水速度的_______倍.
16.一条轮船往返于a、b两地之间,由a到b是顺水航行;由b到a是逆水航行.已知船在静水中的速度是每小时20千米,由a到b用了6小时,由b到a所用时间是由a到b所用时间的1.5倍,那么水流速度为:____________千米/每小时.
17.甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,则船速每小时千米,水速每小时__________千米.
18.某河有相距45千米的上、下两码头,每天定时有甲、乙两艘船速相同的客轮分别从两码头同时出发相向而行.一天甲船从上游码头出发时掉下一物,此物浮于水面顺水飘下,4分钟后,与甲船相距1千米.预计乙船出发后___________小时可以与此物相遇.
19.两个码头相距432千米,轮船顺水行这段路程要16小时,逆水每小时比顺水少行9千米,逆水比顺水多用________小时.
20.甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,又知汽船在静水中每小时行21千米,那么汽船顺流开回乙码头需要_______小时.
21.已知80千米水路,甲船顺流而下需要4小时,逆流而上需要10小时.如果乙船顺流而下需5小时,问乙船逆流而上需要_______小时.
22.已知从河中a地到海口60千米,如船顺流而下,4小时可到海口.已知水速为每小时6千米,船返回已航行4小时后,因河水涨潮,由海向河的水速为每小时3千米,此船回到原地,还需再行___________小时.
23.甲乙两船分别从a港逆水而上,静水中甲船每小时行15千米,乙船每小时行12千米,水速为每小时3千米,乙船出发2小时后,甲船才开始出发,当甲船追上乙船时,已离开a港______千米.
24.a河是b河的支流,a河水的水速为每小时3千米,b河水的水流速度是2千米.一船沿a河顺水航行7小时,行了133千米到达b河,在b河还要逆水航行84千米,这船还要行_______小时.
25.一只小船第一次顺流航行56公里,逆水航行20公里,共用12小时;第二次用同样的时间,顺流航行40公里,逆流航行28公里,船速______公里/小时,水速_______公里/小时.
26.甲、乙两港相距192千米,一艘轮船从甲港到乙港顺水而下行16小时到达乙港,已知船在静水中的速度是水流速度的5倍,那么水速______千米/小时,船速是______千米/小时.
27.一只船在河里航行,顺流而下,每小时行18千米,船下行2小时与上行3小时的路程相等,那么船速______千米/小时,水速_______千米/小时.
28.一船逆水而上,船上某人有一件东西掉入水中,当船调回头时已过5分钟.若船的静水中速度为每分钟50米,再经过_____分钟船才能追上所掉的东西.
29.a、b两码头间河流长为90千米,甲、乙两船分别从a、b码头同时启航.如果相向而行3小时相遇,如果同向而行15小时甲船追上乙船,那么,甲船在静水中的速度是千米/小时,乙船在静水中的速度是__________千米/小时.
30.一只船,顺水每小时行20千米,逆水每小时行12千米.那么这只船在静水中的速度是___________千米/小时、水流的速度是____________千米/小时.
工程问题的数学教案篇十三
1、使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同的方法解决问题。
2、培养学生认真观察等良好的学习习惯,初步培养学生发现问题、提出问题、解决问题的能力。
3、通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
4、通过合作交流,使学生体验到合作的快乐,学习的愉悦。
实物投影、跷跷板乐园图。
用不同的方法解决问题,体会解决问题策略的多样性,提高解决问题的能力。
1、谈话:小朋友爱玩跷跷板吗?今天我们到跷跷板乐园去玩一玩好吗?
2、投影出示跷跷板情境图,问:“我们看看图中的小朋友们在做什么?”让学生仔细观察图。
3、让学生观察画面,提出问题。教师适当启发引导:跷跷板乐园一共有多少人?学生自由发言,提出问题。
从学生喜欢的事物引入,激发学生学习的兴趣。
2、观察了解信息:从图中你知道了什么?
3、小组交流讨论。
(1)应该怎样计算跷跷板乐园一共有多少人?
(2)独立思考后,把自己的想法在组内交流。
(3)选派组内代表在班中交流解决问题的方法。
4、把学生解决问题的方法记录在黑板上。(有一种写一种特别让学生思考还可以怎样算)
5、比较各种方法的异同。明确名种方法的结果都是求跷跷板乐园一共有多少人,只不过在解决问题的思路上略有不同。
6、学生尝试列综合算式。
交流:你是怎么想的?
7、小结。
:使学生在观察事情的发生、发展过程中明确条件,提出问题并自主解决。掌握用多种方法进行解答。
1、练习一的第1题,让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的`学生以启发。
2、练习二的第2题,让学生说明图意,明确计算的问题后,让学生独立列式解答。然后请几名学生说一说解决问题的方法,给有困难的学生以启发。同时对学生进行尊老爱幼的教育。
:让学生在交流、实践中掌握知识。充分利用主题图的作用。
工程问题的数学教案篇十四
1.使学生经历解决简单实际问题的过程,学会用列表的方法整理实际问题中的信息,分析数量关系,寻求解决问题的有效方法,初步体会用列表的方法整理相关信息的作用。
2.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验。
教学过程。
一、动画引入,感受策略。
1.谈话:同学们喜欢看动画片吗?(播放动画《曹冲称象》的故事,播放至曹操质疑大象有多重呢)大象有多重?称大象,没有那么大的秤!又不能杀掉大象。在大家一筹莫展的时候,曹冲究竟想出了一个什么样的策略?(板书:策略)。
2.小结:曹冲想到把大象转化成同样重量的石头,称出石头的重量,就知道大象的体重了。这是一个很好的策略!
其实,在日常生活和数学学习中,为了解决实际问题,需要运用很多策略。(板书:解决问题)。
1.学会列表。
谈话:我校同学在小书虫俱乐部成员的带领下积极参与了读书快乐,快乐读书的各项活动,为了及时记下读书心得,大家利用假期到文具店购买笔记本。(出示例题情境图)。
引导:仔细观察情境图,你知道了哪些信息?
提问:题目中的信息比较多,怎样才能看得更清楚一些?
学生可能提出不同的想法:按不同人物将信息进行整理;从问题出发,找到有关联的信息。
引导:老师给大家介绍另一种整理信息的方法。出示表格:
可以先把题目中小明买笔记本的信息填在表格第一行,第二行填谁的信息?(小华)5本填在哪里?多少元填在哪里?完成下列表格:
小明。
3本。
18元。
小华。
5本。
元
回顾:为什么每人购买的本数和所用的钱数填在同一行?(买的本数和钱数是对应的,3本用的钱数是18元)。
你觉得列表整理信息有什么好处?(清楚、简洁)。
2.引导学生利用表格,分析数量关系。
引导:根据表格的第一行,小明买3本用去18元,可以先求出什么?(1本的价钱)再看表格的第二行,求小华买5本用去多少元,需要知道什么条件?(1本的价钱)。
提问:你能列式解决这个问题吗?
引导学生列式:183=6(元)。
65=30(元)。
提问:解决这个问题先求什么?再求什么?
3.尝试从问题想起,列式解答。
提问:刚才我们是根据表格从条件想起的。如果从问题出发,可以怎样想呢?(要求5本用去多少元,先要求出1本的价钱)。
提问:这样想该怎样列式?
小结:解决这个问题,我们采用了两种不同的思路。
(1)从条件想起:根据买3本用去18元,可先求出1本的价钱。
(2)从问题想起:要求买5本用去多少元,先要求出1本的价钱。
出示:如果小军用42元买笔记本,他买了多少本?你能先列表整理再解答吗?(学生自己填表)。
提问:要解决这个问题,可以怎样想?先在小组里说一说。
引导学生分别从条件和问题想起。
全班交流,列式解答。
提问:通过两次用表格整理条件和问题,你体会到什么?(利用表格分析数量关系比较容易)。
谈话:根据上面两题的解答结果和表格,如果把两次的表格合并起来,可以得到:
小明。
3本。
18元。
小华。
5本。
元
小军。
()本。
42元。
我们把这张表格再简化:
3本18元。
5本()元。
()本42元。
学生在书上第66页填出括号里的数。
1.完成想想做做第1、2题。(略)。
2.书法长卷。
介绍:我校的才女邱叶红同学是南京市十佳少先队员,小书法家。为迎接的北京奥运会专门书写了米书法长卷,已经被载入上海吉尼斯大全。
学生独立列表整理信息,并列式解答。
3.想想做做第3题。
引导重点理解照这样计算的意思。
4.投篮比赛。
出示相关信息:姚明在两场比赛中投篮30次,投中21次,得分为42分。奥尼尔在三场比赛中投篮40次,投中30次,得分为60分。
解决下面的问题:
(1)假设姚明保持这样的状态不变,下面的五场比赛中姚明一共能得多少分?
(2)姚明平均每场比奥尼尔多得多少分?
工程问题的数学教案篇十五
教材分析:
1.课标中例1通过解答一个与长方形周长计算有关的实际问题,让学生初步感知一一列举的策略在解决问题过程中的作用。初步掌握运用一一列举的策略解决问题的基本思考过程和方法。在此之前学生已经学习过用列表和画图的策略决问题,对解决问题策略的价值已有了一些具体的体验和认识。通过这部分内容的学习,一面可以使学生进一步加深对现实问题增强分析问题贩条理性和严密性。
2.本节结合场景图提出问题:王大叔用18根1米长的栅栏围成一个长方形羊圈,有多少种不同的围法?这场景图既有助于学生准确地理解题意,又有助于学生从数学的角度展开对问题的分析和思考。
学情分析:
1.让学生通过观察、分析、独立思考、动手摆小棒的操作、合作交流等方式进行学习,学生学得轻松愉快,而且学习效果好。
2.解决本例题的问题关键有三个:第一,要认识到18根1米的栅栏的总长度就是围成的长方形的周长;第二,用18根1米长的栅栏围成长方形,其围法应该是多样的;第三,要知道一共有多少种不同的围法,就需要把符合要求的长宽一一列举出来,这就是学生认知障碍点,在这方面学生学得有点困难,所以教材先引导学生用小棒摆一摆。
3.通过摆小棒的操作,一方面可以使学生进一步明确围成的长方形的周长与它的长和宽的关系;另一方面也能使学生实实在在地感受到:要找出所有不同的围法,需要有条理地一一列举,再列表填一填。
教学目标:
1、使学生经历用一一列举的策略解决简单实际问题的过程,能通过有条理的列举分析有关实际问题的数量关系,并获得问题的答案。
2、使学生在对解决简单实际问题过程的反思和交流中,感受一一列举策略的特点和价值,进一步发展思维的条理性和严密性。
3、在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。
教学重点和难点:
重点:让学生体会策略的价值,并使学生能主动运用策略解决问题。
难点:在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。
教学环节:
一、创设情境、探索策略。
1.预设学生行为。
提出不同的问题,活跃学生的思维。同学们能积极讨论融入到火热的课堂中。
学生热情地投入各自的操作,组织展示、交流。
学生回答不只,有很多种,使学生更进一步去探问题。
学生很积极地说相信我们能。
学生积极地参与活动中。
学生回答:能!
学生积极融入学习中。每个小组把活动中不同的围法有条理地画在黑板上。
学生独立完成!积极回答老师提出的问题。
积极,认真投入作业中去!
2.设计意图。
激发学生的学习兴趣,调动学生的学习极性。培养学生独立思考的能力。
积极地想展示自己的能力。体会成功的乐趣,培养学生的学习兴趣。
培养学生勇于挑战的精神。
培养学生的互相合作的精神。
培养学生多动脑动手能力。
能举一反三列举规律,解决生活中的实际问题。
培养学生善于严准学习的习惯。使学生体会不重复,不遗漏的重要性。
能独立完成作业,加深应用能力!
二、动手操作验证策略。
1、出示例题及其场景图,指名读题。
2、提问:你们能根据题意,用18根同样长的小棒先围成一个长方形吗?
3、把学生分组活动,组织交流。
谈话:同学们通过操作找到了这么多种不同的围法,真是了不起呀!但是否还会有其他的不同的围法呢?我们再作进一步的分析。
三、联系实际,应用策略。
1、羊圈的周长是多少米?如果宽是1米,长是几米?宽是2米,长是几米?
2、从刚才解决问题的过程,能说说你们的体会吗?
四、应用巩固。
你们能算出围成的每个长方形的面积,并比较它们的长、宽和面积吗?
五、课堂作业。
出示练一练和想想做做,让同学独立完成。做练习十一的第1~3题。
工程问题的数学教案篇十六
答:5小时后还要35小时就能将水池注满。
解:由题意知,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效甲的工效乙的工效。
答:甲乙最短合作10天。
解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量(1/4+1/5)×2=9/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。
根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。1/10÷2=1/20表示乙的工作效率。1÷1/20=20小时表示乙单独完成需要20小时。
答:乙单独完成需要20小时。
所以1/甲=2/17,甲等于17÷2=8.5天。
答:甲单独做这项工程要8.5天完成。
答案为300个120÷(4/5÷2)=300个可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。
工程问题的数学教案篇十七
答案:甲收8元,乙收2元。
解:“三人将五条鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。又因为“甲钓了三条”,相当于甲吃之前已经出资3*6=18元,“乙钓了两条”,相当于乙吃之前已经出资2*6=12元。
答案是22/25。
最好画线段图思考:
增加的'成本2份刚好是下降利润的2份。售价都是25份。所以,今年的成本占售价的22/25。
答案为64:27。
【本文地址:http://www.xuefen.com.cn/zuowen/17354085.html】