学习大学数学的心得(优秀18篇)

格式:DOC 上传日期:2023-12-04 06:59:16
学习大学数学的心得(优秀18篇)
时间:2023-12-04 06:59:16     小编:紫衣梦

议论文是一种重要的文体类型,它既要有逻辑严密的论证,又要有独特的观点和立场。写总结时可以借鉴他人的经验和总结范文,但要保持自己的原创性和独特性。在阅读以下的总结范文之前,我们可以先思考一下自己的总结写作技巧和方法。

学习大学数学的心得篇一

第一轮复习时先做一些基础题,主要用于检验对知识点和常见的解题方法的掌握情况,在此基础上复习基本概念、掌握相关定义、归纳基础知识、活用公式定理。掌握复习的主动权。

1、先苦后甜,夯实基础解题前不要复习相关内容,独立做习题,让问题充分暴露,再有针对性复习。

例1:a={x2-3x+2=0},b={x2-ax+4=0},若ab=a,则实数a的取值范围为______。

实践表明同学们常犯两个错误:忽视b=,即0,解得-4。

2、讲究算理,夯实基础算理就是计算的基本道理,包括数字运算和字母运算,也包括对代数式的恒等变形、方程的同解变形等。简捷的运算不仅可以节省时间,关键是能提高正确率。

例2:点p在抛物线(y-1)2=8x上,p到抛物线顶点的距离与到准线的距离相等,则点p的坐标是______。

设p(x,y),则x+2=x2+(y-1)2。

有同学消去(y-1)2很快得到正确答案。有同学试图消去x则觉得做不下去;有同学根据抛物线定义得p为焦点(2,1)与顶点(0,1)连线的垂直平分线和抛物线交点,即x=1,y=122姨,简单的不要动笔。这里充分体现讲究算理的重要性。

3、考后满分,夯实基础每次考试不免要犯错误,有些同学对做错的题目,在评讲后只是改个答案,认为自己懂了,其实不然。建议对做错的试题,订正时要写出详细过程(包括某些客观题),以便真正搞懂。最好能找出思维受阻原因,并努力做到举一反三,掌握一类问题的解法。

经过这样一番工作的考试才是高效益的,就像近视眼的人戴上眼镜,心明眼亮。必要时还要把做过的几套试卷加以比较,检查是否还犯同类错误,或检查以前做错的问题现在是否已经掌握。考后满分,不犯同类错误,你的基础就逐步扎实了。

二、注重通法追求特技。

数学是高考科目之一,故从初一开始就要认真地学习数学。进入高中以后,往往有不少同学不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。出现这样的情况,原因很多。但主要是由于同学们不了解高中数学教学内容特点与自身学习方法有问题等因素所造成的。有不少同学把提高数学成绩的希望寄托在大量做题上。我认为这是不妥当的,我认为,“不要以做题多少论英雄”,重要的不在做题多,而在于做题的效益要高。做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。

其次要掌握正确的学习方法。锻炼自己学数学的能力,转变学习方式,要改变单纯接受的学习方式,要学会采用接受学习与探究学习、合作学习、体验学习等多样化的方式进行学习,要在教师的指导下逐步学会“提出问题—实验探究—开展讨论—形成新知—应用反思”的学习方法。这样,通过学习方式由单一到多样的转变,我们在学习活动中的自主性、探索性、合作性就能够得到加强,成为学习的主人。

学习大学数学的心得篇二

数学是一门非常有趣味的学科,也是最有逻辑性的学科。数学不存在似是而非,也不存在模棱两可,对就是对,错就是错。

以我目前的理解,我认为中学阶段数学有以下特点:一是数学的基础知识非常重要;这里的基础知识并不是低年级和简单知识,应该是所有前边掌握的知识都归到基础知识里边,因为,对于后来的知识来说,前边的都是基础。二是数学的趣味性非常强;我们生活中唯独离不开的就是数学,有些是在我们不经意间运用的数学知识。可以这么举例,凡是带数字的东西,都是在数学基础上派生或应用的事物。三是数学的关键在理解和应用;人类所有的知识都归结为一点,就是为我所用。很多人认为数学难、不容易学,其实是在最初接触数学的时候把它困难化了。数学中最直接的目的就是解决问题,解决困难,只要我们对这些问题、这些困难认识到位、理解透彻、方法得当、措施正确再加上我们认真和细致的推导,问题和困难都会迎刃而解。

我非常喜欢数学,特别喜欢立体几何和线性代数部分。我记得在高中开始的时候,我数学成绩并不是很理想,我对数学也是按部就班的学。在高二下学期的时候,因为一次考试让我对数学的兴趣陡然提升,数学成绩也快速提高。那次成绩虽然不是特别高,主要是因为我是全校里边唯一把90分选择题全部做对的一个,当时我们数学老师都认为不可思议,但是我做到了。也就从那一刻起,我自信心大涨,数学课听讲特别认真,老师讲课时注意力特别集中,数学题竟然不再乏味和无趣,在我眼里竟然都热闹和活灵活现起来。

如何学好数学呢?还是谈一下个人体会。

首先,我们对待数学要端正态度。数学学习和考试时面对的每一道题都是一个困难,都需要我们抱着高度认真负责的态度去应对,不能草率对待。我们要坚信,每一个数学题必定有正确的答案,必定有合理的解决方法,我们当时不会,肯定是还没有找到而已。

其次,要认真对待每一道题目。鉴于数学的特点,我们面对学习和考试中的每一道题目,都要确保:只要本人能理解明白这道题,只要认为个人完全可以把这道题做对,那么无论如何不能丢掉这道题目的分。

再次,要试着培养学习数学的兴趣点。生活中用到最多的就是数字,数学知识贯穿在生活中的时时刻刻和方方面面。人们从幼儿出生前就开始推算预产期;幼儿出生后要称体重、量身高,要化验血型参数;随后要定期防疫;要按照规定的年龄去幼儿园、上小学;期间身高、体重、衣服尺寸、鞋码等等都与数字有关;生活中更是离不开数学。卖油条的,要称斤两,按价格收款;超市里所有商品都有价格;我们的住址门牌号、楼座是为了确定方位;等等等等一切都离不开数学的因素。

最后,也是最重要的一点,要善于总结和不断自我提升。这一点不仅仅是对待数学,不仅仅是对待学习,对待生活和工作中的事物都一样。科学知识是在前人总结和归纳的基础上,融入新的东西,不断拓展延伸。作为我们个人来说,虽然我们不可能把一切东西全部学懂弄通,不可能面面俱到。但是我们可以在适当的时期和特定的情况下,尽量多的提升自我能力,迎接更多困难和挑战。

另外,有一点多加体会:个体的唯一性和事物的变化铁律。天下没有两片完全一样的树叶,当然天下也没有完全一样的两个人。每个人的身高、体重、年龄、血型、智商、生活环境、碰到的一切等等都是独一无二、无法复制的。这里重点说一下智商。人的智商只也是数学的一种体现,是人们为了研究人类在智力水平方面的认识,也可叫做工具,通过测量对不同题目的解答和最后的得分,反映一个人智力水平的高低。多年总结研究,人们发现智商极高(iq在130分以上)和智商极低的人(iq在70分以下)均为少数,智力中等或接近中等(iq在80-120分)之间者约占全部人口的80%。也就是说,一个班级中50名学生的话,有40名学生是平均智商水平,有4-5名学生,智商略低,有4-5名学生智商略高。因此,大部分的学生智力水平并未明显差别,更多是后天的努力和学习的认真程度及学习方法。既然每一个人都有唯一性,那么我们不要和别人比较,分数和名次只是参考,关键是自己是否发挥了应有的能力和水平。本来我具备110分的能力,结果考了90分,20分的差距可能是粗心、误解、笔误等;本来110分的能力,考了115分,有5分是对你取得成绩的额外奖励,只是你不自知而已!分数多少还在其次,关键在我们是否能通过这一次考试真的总结并找到更适合自己的学习方法,这才是不断前进的动力源。

世界中,唯一不变的东西就是万事万物始终在变。当我们真的习惯于一种状态的时候,其实是最需要变化的时候,甚至是最危险的时候。羚羊只有不断的提高跑步的速度,才能确保性命无忧;而狮子、豹子只有不断提高速度和捕猎技巧才能捕获猎物。在变化中寻找平衡,在动态中保持稳定,挖掘潜力,提升自我,创造一个属于自己的精彩时空!

学习大学数学的心得篇三

经过学习二年级下册数学《课程纲要》,我从中学习到了很多,感触颇深。

首先,我明确了学科《课程纲要》的内涵和意义。《课程纲要》是学科教师依据学科课程标准、学材、校情、学情编制的、体现学科各种课程元素的计划大纲,是一种规定时间内的课程计划。编制《课程纲要》,就是对一个学期或一个模块、一个单元所要实施的教学进行整体设计,也就是从学生学习的角度对一定时期内的学习内容进行整体规划,研究和分析教与学中所涉及到的各方面因素。编制和使用学科《课程纲要》,有利于教师整体把握课程实施的目标与内容,有利于教师审视、满足课程实施的所需条件,有利于学生明确所学课程的总体目标与内容框架,有利于学校开展课程审议、管理与评价。

其次,我把握住了学科《课程纲要》的基本结构与内容。《课程纲要》不同于教学进度表,课程纲要完整的体现了课程元素,而教学进度表只是教学时间和教学内容的简单安排。《课程纲要》的构成要素包括:

(一)一般项目:学校名称、课程类型、设计教师、日期、适用年级、课时。

(二)课程元素:课程目标、课程内容、课程实施、课程评价。

(三)所需条件:为顺利实施该课程所需要的条件。

课程目标:是课程的灵魂。制定目标的依据是对课程标准的分解和对学生的研究、对学材及其他教学资源的分析。具体要求是:全面、适当、清晰;目标要涉及三个维度,特别是认知要求。

课程内容:是指依据课程目标对学材的内容及相关的资源进行一定的选择与组织,教师要从总体上把握教学内容的难点、重点,依据课程标准、学材及现场学习资源进行设置。

课程实施:是指如何更好的实施课程内容,以便于学生实现预定的学习目标。涉及学习主题,课时安排,教与学的方法等。

课程评价:是指选择与课程目标匹配的评价方式,以获得学生实现目标的证据,包括过程作业与模块、单元测试。

我会继续对课程纲要细致琢磨,深入学习的,把学习到的运用到实际的教学工作中!

学习大学数学的心得篇四

参加20______年高教杯全国大学生数学建模竞赛,感觉只有一个字――累!三天紧张拼搏的日子已经过去,时间飞快走过的感觉仿佛依旧,充实忙碌的情景依然时时浮现眼前。

经过这次竞赛,我学到了许多东西,拓广了对数学的认识,锻炼了自己的思维,主要有以下几点:

一、理论联系实际。

以前,对于书本上的知识永远只是停留在理论的基础上,特别是数学知识。只是沉溺于解题和公式的推导所带来的乐趣中,很少来把书本上的知识与实际联系起来。自从参加了数学建模集训-竞赛的整个流程后,才真正踏进数学的殿堂,原来利用数学的知识还可以解决工业、商业和农业等生活中的问题。

数模竞赛的题目往往是从日常生产生活中提炼、抽象出来的,尽管题目已经得到了相当程度的简化,但对于我们这些仍在学校里求学而并未遇到过如此复杂问题的学生来说,并不简单。有时我们需要对海量数据进行处理,有时我们面临的却是零数据,无论何种情形,问题的解决都很让人头疼。不过这并不要紧,我们是勇敢者,既然已经选择了挑战,无论多艰难都要坚持下去,绝不退缩,在纷繁复杂的题目中寻找规律,运用合适的数学工具加以解决,对问题进行有效的分类,并逐个击破。

二、团队合作。

三天三夜的时间面对同一个题目,不仅仅是紧张枯燥、机械乏味的脑力劳动。只有真正参加了比赛的同学,才能体会到一种与集体融为一体,与数学融为一体,与竞赛融为一体的感觉。

这里需要说明一点,我们不建议论文只由一个人来写,而应由队伍中的所有同学共同完成,以体现每个人的特点、反映每个人的智慧。分了工并不是说大家各自为正、互不交流,而是为了更好地进行合作。遇到问题时,大家需要共同讨论,发表自己的见解并理解同伴的想法,最后将意见统一起来。有的时候即使自己感觉别人不对,如果多数人意见统一了,也最好能同意他人的看法,这需要对队友充分的信任且具备否定自己的魄力。如果分工不当、配合失误,往往会导致竞赛的失败,对此我们一定要小心谨慎。

竞赛中的合作是一种艺术,只有大家不断的磨合,才能使合作达到默契的程度。

三、顽强的意志力。

通过这次比赛使我重新认识了自己,72小时的连续奋战,不敢相信我的体力会如此充沛,能把题目做出来,写出了还算成功的论文来,不管得奖与否,这对我们已经是最大的肯定了。这次比赛也让我明白了一个道理:人的潜能是巨大的,关键是自己怎样去挖掘。记得参赛第一天早上8点,当我们拿到题目的时候,对着密密麻麻几千字的题目,只能用四个字来形容我们当时的表情――一头雾水;当第四天上午,我们把经过三天三夜的汗水与脑汁换来的论文时,我们终于松了一口气。

总之,这次参赛经历培养了我的综合素质,比如计算机应用能力,检索文献能力,学习新知识的意识与能力,论文撰写能力等;在和队友一起奋斗的过程中,使我们建立了深厚的友谊;在和指导老师的交往中,使我在更深层次上理解了数模;与周围的交际能力也得到提高,领悟和理解别人的意思的能力也得到了很好的锻炼。

数模,我们永远的老师!

学习大学数学的心得篇五

对课本上的内容,上课之前最好能够首先预习一下,否则上课时有一个知识点没有跟上老师的步骤,下面的就不知所以然了,如此恶性循环,就会开始厌烦数学,对学习来说兴趣是很重要的。课后针对性的练习题一定要认真做,不能偷懒,也可以在课后复习时把课堂例题反复演算几遍,毕竟上课的时候,是老师在进行题目的演算和讲解,学生在听,这是一个比较机械、比较被动的接受知识的过程。也许你认为自己在课堂上听懂了,但实际上你对于解题方法的理解还没有达到一个比较深入的程度,并且非常容易忽视一些真正的解题过程中必定遇到的难点。好脑子不如赖笔头。对于数理化题目的解法,光靠脑子里的大致想法是不够的,一定要经过周密的笔头计算才能够发现其中的难点并且掌握化解方法,最终得到正确的计算结果。

其次是要善于总结归类,寻找不同的题型、不同的知识点之间的共性和联系,把学过的知识系统化。举个具体的例子:高一代数的函数部分,我们学习了指数函数、对数函数、幂函数、三角函数等好几种不同类型的函数。但是把它们对比着总结一下,你就会发现无论哪种函数,我们需要掌握的都是它的表达式、图象形状、奇偶性、增减性和对称性。那么你可以将这些函数的上述内容制作在一张大表格中,对比着进行理解和记忆。在解题时注意函数表达式与图形结合使用,必定会收到好得多的效果。

最后就是要加强课后练习,除了作业之外,找一本好的参考书,尽量多做一下书上的练习题(尤其是综合题和应用题)。熟能生巧,这样才能巩固课堂学习的效果,使你的解题速度越来越快。

学习大学数学的心得篇六

学习必须讲究方法,而改进学习方法的本质目的,就是为了提高学习效率。可以这样认为,学习效率很高的人,必定是学习成绩好的学生(言外之意,学习成绩好未必学习效率高)。因此,对大部分学生而言,提高学习效率就是提高学习成绩的直接途径。

下面是几条我搜集的提高学习效率的经验:

连续长时间的学习很容易使自己产生厌烦情绪,这时可以把功课分成若干个部分,把每一部分限定时间,例如一小时内完成这份练习、八点以前做完那份测试等等,这样不仅有助于提高效率,还不会产生疲劳感。如果可能的话,逐步缩短所用的时间,不久你就会发现,以前一小时都完不成的作业,现在四十分钟就完成了。

一心不能二用的道理谁都明白,可还是有许多同学在边学习边听音乐。或许你会说听音乐是放松神经的好办法,那么你尽可以专心的'学习一小时后全身放松地听一刻钟音乐,这样比带着耳机做功课的效果好多了。

除了十分重要的内容以外,课堂上不必记很详细的笔记。如果课堂上忙于记笔记,听课的效率一定不高,况且你也不能保证课后一定会去看笔记。课堂上所做的主要工作应当是把老师的讲课消化吸收,适当做一些简要的笔记即可。

学习效率的提高最需要的是清醒敏捷的头脑,所以适当的休息,娱乐不仅仅是有好处的,更是必要的,是提高各项学习效率的基础。课前要有一定的预习,这样课本上讲的内容、听起课来就比较有针对性。预习时,不必搞得太细,如果过细一是浪费时间,二是上课时未免会有些松懈,有时反而忽略了最有用的东西。上课时认真听课当然是必须的。

最重要的是选"好题",千万不能见题就作。作题效率的提高,很大程度上还取决于作题之后的过程,对于做错的题,应当认真思考错误的原因,是知识点掌握不清还是因为马虎大意,分析过之后再做一遍以加深印象,这样作题效率就会高得多。

学习的过程,应当是用脑思考的过程,无论是用眼睛看,用口读,或者用手抄写,都是作为辅助用脑的手段,真正的关键还在于用脑子去想。

学习大学数学的心得篇七

20__年11月4日,我和同事赶到支河小学听课。这是支河中心校组织的同课异构教研活动。在短短的一天时间里,听了陈辉和张燕两位数学老师的课,此次听课收获很大,受益匪浅,不仅让我领略到了两位数学教师的讲课风采,也让我从中发觉到了在课堂教学方面自身的浅薄与不足。在以后的教学中,我会努力上好每一节课,向身边的优秀教师学习。下面我谈谈自己的体会。

第一、教师善于创设情境;教师在教学过程中创设的情境,目标明确,能为教学服务。提高了学生的好奇心、激发了求知欲,进而促进其思维。教师创设的情境要真正为教学服务,如果只是为了情境而情境,那就是一种假的教学情境。

在这两节课里,上课的老师都能根据小学生的特点为学生创设充满趣味的学习情景,以激发他们的学习兴趣。最大限度地利用小学生好奇、好动、好问等心理特点,并紧密结合数学学科的自身特点,创设使学生感到真实、新奇、有趣的学习情境,激起学生学习兴趣。让学生用数学思想去思考问题,解决问题。使他们在质疑中思考,在思考中学到知识。

第二、教师所创设的师生互动环节氛围融洽。在数学教学中,根据学生的心理发展特点,把枯燥、呆板的课堂教学改变了,从而也培养了学生学习数学的兴趣,激发了孩子的求知欲。尤其是在听课过程中,我更加深刻的体会到这些数学教师教学方法的与众不同,我感受到老师和学生之间是如此的默契看到每个老师都精心的设计每一堂课,从板书、内容,那种工作态度与热情都值得我们每个人去学习,在他们的课堂上很少有见到不学习的孩子,因为他们都深深地被老师的课所吸引着。我在以后的工作中,要学习他们的优秀经验,让自己的课堂也活跃起来,真正让学生在快乐的氛围中学习。充分让学生参与到数学学习中来从而切实感受到了数学的魅力!也充分体现了“教师以学生为主体,学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”的教学理念。

共听了2节课,每堂课细细的听下来后,感觉每位授课教师都煞费苦心的作了周密而细致的准备,所以每堂课都有很闪光的亮点供我们参考、学习、借鉴,当然有比较就会有鉴别。所以我会把其中的精华加以吸取,尝试运用到以后的课堂教学过程中,来逐步的提高和完善自己的课堂教学。

总之,平时一定要多学习新课改理念,认真钻研教材,挖掘教材,积极参加教科研活动,提高自己的业务水平、授课能力,多听同任教师的课,取人之长,补己之短,争取在以后的教学中取得好成绩。

学习大学数学的心得篇八

通过对高等数学一年的学习,在这里很荣幸和大家分享一下高数的学习心得。首先,我想说一下高数在大学的重要性,看过教学计划的同学就会知道,高数的学分是你大学四年里最高的,可以毫不夸张的说如果你高数的学分拿不到,你的学位证书也就不用想了。一般来说,如果你大一高数挂了,要想重修过还是很痛苦的。所以希望大家无论如何,一定要把高数考好。记得开学时有位老师告诉我,专业课可以挂,但高数一定不能。说这句话,并不是说专业课不重要,只是为了说明考好高数的重要性。

其实,学号高数并不难,但大家需要注意一点,到了大学,你仍然不能放松,你心里还是需要绷紧一根弦(注意!!!)。可能之前会听到家长或者老师会说,到了大学就可以好好玩了。不错,但一切都应该有个度,所有的玩都必须建立在学习上没有问题的前提下,同学们万万不能因为玩而耽误了学业。而且,大学其实并不比高中轻松(这句话大家一定注意)。

下面我来介绍一下,大学高数的一些学习方法:

第一,还是老生常谈,那就是课前预习,而且,我觉得在大学课前预习显得比以前任何时候都重要。因为,大学课程的进程可不是一般的快。希望大家能保持课时比老师快两节,练习比老师快一节。最低限度,是不能落下(其实,这个要求也不低,但希望大家一定不能落下)。

第二,要好好利用课堂时间,对于预习中不明白的地方,注意听讲,而对于自己觉得简单的地方,大家就可以做些相关练习了。有一点大家需要注意,不明白的问题一定不要积压,要及时的问同学或者老师(建议是老师,但前提是你对这道题目要有一定的思考),经常问老师题目对你的好处是很大的,因为考试的题目一般都是你们的老师出的,所以老师在给你讲题的时候会不知不觉的给你透漏考试的一些信息,同时,万一考试时你出了状况,结果考了个五十几分,如果老师对你有不错的印象,她是可以把你送过的。

第三,就是你所需要做的题目,可以说只要你能把课本习题和老师上课讲的所有的题都弄会,考试是完全没有问题的,其他的题目就完全没有必要了,这里就不像高中要做大量的其他习题,但大家要注意,课本的题是有一定难度的。希望大家认真对待,不要气馁,不懂就问。这里的最低限度就是课本例题、练习册,一定不能再少了。想拿高分的同学,一定要多做题(范围也就是课本和老师讲的题),特别是向拿奖学金的同学。

第四,希望大家把学习时间一定要给足了,只靠考前突击,高数是没办法过的,除非你是天才。强烈建议大家去自习室,养成晚自习的习惯。宿舍的学习环境并不好,如果就想在宿舍学习,那么你必须先把桌子收拾干净,这样可以很好的提高你的注意力,原因大家应该体会的到。

好了,说的不少了,希望大家能有所收获,预祝大家取得优异的成绩。

学习大学数学的心得篇九

参加20xx年高教杯全国大学生数学建模竞赛,感觉只有一个字――累!三天紧张拼搏的日子已经过去,时间飞快走过的感觉仿佛依旧,充实忙碌的情景依然时时浮现眼前。

经过这次竞赛,我学到了许多东西,拓广了对数学的认识,锻炼了自己的思维,主要有以下几点:

以前,对于书本上的知识永远只是停留在理论的基础上,特别是数学知识。只是沉溺于解题和公式的推导所带来的乐趣中,很少来把书本上的知识与实际联系起来。自从参加了数学建模集训-竞赛的整个流程后,才真正踏进数学的殿堂,原来利用数学的知识还可以解决工业、商业和农业等生活中的问题。

数模竞赛的题目往往是从日常生产生活中提炼、抽象出来的,尽管题目已经得到了相当程度的简化,但对于我们这些仍在学校里求学而并未遇到过如此复杂问题的学生来说,并不简单。有时我们需要对海量数据进行处理,有时我们面临的却是零数据,无论何种情形,问题的解决都很让人头疼。不过这并不要紧,我们是勇敢者,既然已经选择了挑战,无论多艰难都要坚持下去,绝不退缩,在纷繁复杂的题目中寻找规律,运用合适的数学工具加以解决,对问题进行有效的分类,并逐个击破。

三天三夜的时间面对同一个题目,不仅仅是紧张枯燥、机械乏味的脑力劳动。只有真正参加了比赛的同学,才能体会到一种与集体融为一体,与数学融为一体,与竞赛融为一体的感觉。

这里需要说明一点,我们不建议论文只由一个人来写,而应由队伍中的所有同学共同完成,以体现每个人的特点、反映每个人的智慧。分了工并不是说大家各自为正、互不交流,而是为了更好地进行合作。遇到问题时,大家需要共同讨论,发表自己的见解并理解同伴的想法,最后将意见统一起来。有的时候即使自己感觉别人不对,如果多数人意见统一了,也最好能同意他人的看法,这需要对队友充分的信任且具备否定自己的魄力。如果分工不当、配合失误,往往会导致竞赛的失败,对此我们一定要小心谨慎。

竞赛中的合作是一种艺术,只有大家不断的磨合,才能使合作达到默契的程度。

通过这次比赛使我重新认识了自己,72小时的连续奋战,不敢相信我的体力会如此充沛,能把题目做出来,写出了还算成功的论文来,不管得奖与否,这对我们已经是最大的肯定了。这次比赛也让我明白了一个道理:人的潜能是巨大的,关键是自己怎样去挖掘。记得参赛第一天早上8点,当我们拿到题目的时候,对着密密麻麻几千字的题目,只能用四个字来形容我们当时的表情――一头雾水;当第四天上午,我们把经过三天三夜的汗水与脑汁换来的论文时,我们终于松了一口气。

总之,这次参赛经历培养了我的综合素质,比如计算机应用能力,检索文献能力,学习新知识的意识与能力,论文撰写能力等;在和队友一起奋斗的过程中,使我们建立了深厚的友谊;在和指导老师的交往中,使我在更深层次上理解了数模;与周围的交际能力也得到提高,领悟和理解别人的意思的能力也得到了很好的锻炼。

数模,我们永远的老师!

学习大学数学的心得篇十

大部分中国人心目中的数学,其实按严格的分类,都属于应用数学。一句话:应用数学是用数字和公式描述客观世界的科学,研究的是客观世界的数量性质和运动规律;而数学(为了区分,多称作“纯数学”或“基础数学”)是含有公式的哲学,研究的是抽象概念的关系、运动规律和空间的性质,具有很强的主观性和艺术性。

古人从猎物分配中总结了算术,从土地面积丈量中总结出基础的平面几何,可以说,先有应用数学后有纯数学。二者在300年前可以说不分彼此,牛顿、高斯、欧拉等大数学家同样也在应用数学、物理和哲学等领域取得累累硕果。后来,罗巴切夫斯基和黎曼等建立非欧几何学,使得人类第一次脱离生活中直观的三维空间,思考抽象空间的性质,这个事件标志着纯数学开始自立门户。而1900年希尔伯特在国际数学家大会上的讲话,可以说是纯数学从应用数学中彻底独立出来。二战后经济复苏,数学家有了资金支持可以无忧生计,全心全力做研究,数学得到长足发展。

为什么要学基础数学?

常言道,练武不练功,到老一场空。倚天剑屠龙刀是绝世神兵,但也要拿得动舞得起来才有威力。看过电影《导火线》的筒子,肯定对里面甄子丹的背摔印象深刻。但如果没有甄子丹的身体素质和协调能力,硬用背摔这样的技能非伤到自己不可。应用数学的模型的发明研究者多数有很深的基础数学功底,故学习者若无一定的基础数学的训练,理解他们的成果就要花费很多的时间和精力,而且难以理解透彻和应用到位,更不要提举一反三了。而目前工业日新月异,金融界瞬息万变,相关的模型和公式也是层出不穷。学习者如果不能触类旁通,一个一个学是必然学不完的。

一切高级的数学,归根结底都是微积分和线性代数的各种变化,这是哈佛数学系主任丘成桐和普林斯顿数学系前系主任释天(eliasstein)经常告诫学生的话。而基础数学的初级学科,如数学分析和高等代数,就是对最基本的高等数学和线性代数进行理论上的完善,让学习者不仅仅能学会现有的套路,更能理解公式定理背后的道理,从而能更好地应对各种随机的情况,甚至于自创招式。故将来计划学习理工科和金融的学生,除了练好微积分和线性代数的计算,至少要学习一下这两个领域的证明课程,也就是一年的基础数学。这只是最低要求,物理学特别是理论方向的必修群论(属于抽象代数),量子力学要学希尔伯特空间(属于实变函数)。

另外,有些较为高端的金融数学项目中的随机模型的课程,已经要求初步掌握测度论。具体到理工科和金融的名家案例:生物学家施一公高中数学竞赛河南省第一名,大学物理和生物双学位中修了大量数学;哈佛大学双聘教授庄小威本科在中科大读核物理,群论和偏微分方程是必修,出国读博时数学水准不亚于数学系毕业生;文艺复兴基金创始人、30年内杀入福布斯前50名的富豪赛猛宅(jamessimons)本身就是基础数学出身。

近一点的例子:北大生命科学学院05级本科第一名、现斯坦福博士生高小井;06级本科第一名、现哈佛医学院博士生李鑫,高中都有数学奥赛经历,在大学也一直加强数学学习。mhc生物和化学双学位取得者,目前杜克大学医学院md学生王晓雯,大学期间做完了著名的《吉米多维奇数学分析习题集》。本科阶段学好数学,是理工社科从业者一生的财富。

我的数学到底有多烂?做过《五年高考三年模拟》的朋友,都知道高考数学北京卷的特点是基础题特别基础,最后一道大题用超纲知识+新信息+方法综合拉开分数档次。我当时模考,就总是最后一道题得一两分或者全部放弃。我从小强于记忆而不善也不喜欢逻辑推理,故高中数学基本上靠题海练习、熟悉题型、照搬定式来得分。

来到石溪,我学数学有过非常痛苦的经历。其实当时规划也有失误,很多地方失于急躁冒进,不然,完全可以不那么累而且学得更好。欧美有很多数学天才写过数学的学习心得,但鉴于他们起点太高,学习节奏可以很快,故方法未必适合大家。我的方法可以说是零起点的,目的是帮助像我一样没搞过竞赛的理科生以及文科生搞定美国大学的数学系要求,以在未来的职业竞争中,数学方面不至于拖累自己甚至领先身边人。那么如何学好数学?看我细细道来:

第一,要具备不卑不亢的心态。

数学并非难,只是它的表述体系和思维要求,对于多数中国学生比较陌生。要把它当作全新的东西来认识,就跟学习一门新语言一样。以前自己学的东西,包括高中知识和ap数学等,记住概念即可,思维推导不要沿用。然后严格按照老师讲的思维方式,不厌其烦的推导和证明,慢慢一回生二回熟。几年前华人数学天才陶哲轩给ucla本科生讲honoranalysi的时候,上来进度非常慢,前一个月都在证明皮亚诺公理、集合论和基本的映射理论,但后来可以越学越快,而且学生越学越hi。拳不离手,曲不离口,学语言要勤动口和动笔,学数学也要没事常动脑。

就算文科生一样可以学好数学:20世纪俄罗斯数学学派掌门人、莫斯科国立大学数学系主任柯莫高(kolmogorov,又译柯尔莫格洛夫)大一是读历史的。美国人魏爱华(edwardwitten)更奇葩,本科四年读的都是历史和语言学,博士申请uwm的经济学博士,读了半年退学,自修数学和物理,23岁考进princeton,硕转博再同时搞数学和物理。16年后,他站在菲尔兹奖的领奖台上。

我说过了基础数学其实是哲学,而哲学算文科还是理科都有道理。另一方面,国内就算奥赛摘金夺银,到美国也要扎扎实实的学。因为奥赛国际金牌在欧美的精英面前多数是渣:俄罗斯盖芳德(gelfand)15岁读完代数几何教父高探蝶(grothendieck)的名著ega(代数几何原理),这套书让北大博士去读都够呛。我们石溪的米糯教授本科大一在《数学年鉴》上发论文,这是数学界最高学术期刊,每年中国大陆都很难有一篇文章发表。

这里特别要说一下美国数学教学的二段教学法:不同于俄罗斯和中国上来就是带证明的数学分析和高等代数,美国的教学更为亲民:上来先是微积分和不带证明的线性代数,内容比较简单,作业和考试很多中国学生可以依靠高中基础秒杀之。但不少人练习不够,很多知识没搞透,方法技巧也不够熟练。然后到了第二段,数分和高代一开,很多人欲哭无泪。这就要求第一阶段,哪怕觉得这些题再傻,一本书一道不落地做完是很有必要的。然后第二段就要细读书,多问老师。在美国基础数学能学好的中国人,要么是自己天才,要么就把教授办公室的椅子坐穿。

第二,保证数学的学习时间。

要是天才并且喜欢数学,那你自然会给数学大量时间。如果是为了将来胜任其他领域而学数学,要记住大一大二对于打好数学基础是最宝贵的。所以,建议每天先完成其他学科的作业,然后把大块时间分配给数学的看书做题细琢磨。

我目前主要是修各种数学课和一门应用数学的概率论,每天时间大体是这样分割的:睡觉6小时,吃饭包括饭后的休息2小时,健身和洗澡2小时,交通1小时,个人爱好1小时(抄抄四书五经,读读文艺的歌词,主要是墨明棋妙的还有林夕的),机动时间1小时,剩下11小时是听课和课下学习。周末多用两小时坐校车去买个菜,路上一直思考,也相当于最终学习10小时。

谁说数学天才每天悠哉游哉?那么最年轻的菲尔兹奖得主,27岁得奖的赛赫(jean-pierreserre)够天才了吧?他自述道:习惯带着数学题入梦,醒来往往有思路。故我用最爱的《红楼梦》第一回作为他的雅号:“梦幻通灵”赛赫(与“造化阴阳”高探蝶,“迷津慈航”艾抵涯(sirmichaelatiyah,英国皇家学会会长,敕封爵士)并列20世纪世界第一的数学家)。数学多好算好?别说拿a,满分都是不够的。一本书读完,知识和方法不超纲的题目要难不住你(by“现代微分几何之父”陈省身)。一本书读完,同一领域下一阶段的书要能自通30%(by菲尔兹奖得主curtismcmullen的导师dennissullivan,石溪数学四大导师之苏立文)。校内传的什么每天学习八小时那是给别的学科的。每天八小时想学好数学?做梦!

第三,学会科学的思维方法。

(1)数学思维的三个方面。

任何数学的定义、定理说透了也就三部分:

第一是它本身的文字和(或)符号、公式内容;。

第三是它所涉及的范畴有什么具体实例(比如循环群就有旋转图形、整数加群和同余模加群等例子),这些例子又有何作用,能否在数学中或数学外(典型的如几何和物理)取得应用。

这就分别是数学对象的本体论、方法论和目的论。柯莫高说:“的确学生对数学的适应性存在差异,这种适应性表现在:

1、算法能力,也就是对复杂式子作高明的变形,以解决标准方法解决不了的问题的能力。

2、几何直观的能力,对于抽象的东西能把它在头脑里像图画一样表达出来,并进行思考的能力。

3、一步一步进行逻辑推理的能力。

这些对应的就是掌握数学概念的三方面需要什么能力。提高算法能力最好多做题,几何直观除了做题还要平时多留意,多联系生活实际;逻辑推理这个往往是中国学生的弱项,毕竟我们母语的方块字二维画面性远远超过西方拼音文字,而一维线形(逻辑链的内在属性)却不足。汉字个个如画,横竖左右写均可,而西方拼音文字就得一条路从左往右,上下写都够呛。故逻辑推理要特别练习。练习逻辑推理的方法关键在定理的证明,下面会详述。

(2)如何课前预习。

一开始微积分可以多做一点,而数分和高代等带证明的预习下一节课内容即可。先回顾上堂课所学知识,再看新章节内容:先略读本章节,看清有几个定义(definition),几个定理(theorem)和引理(lemma),有哪些例子(example)和注释(remark)。如果把数学比作一门语言,定义就是名词,定理和引理是句子,而例子和注释相当于古文经典中的注和疏。定义一定要自己品味,比较长的拆开句子成分慢慢看,不行就抄。日本第一个菲尔兹奖小平邦彦大学时抄过整本vandewarden的代数,咱们抄书不丢人。定义要么是全新的,这个不急着理解,往后看看;要么是基于以前内容的,这个不妨回顾一下相关内容再继续看。

遇到定理就要注意,课本的证明不要先看,自己理解定理内容后,把定理当作习题徒手证一遍,写下来,再与课本原文比较,查找二者的不同:自己的证明是不是漏某条件或者把某需要说明的当做显然了(初学者常犯错误),是不是有多余的语句,是不是有地方用错了。凡是不同处,都要重点思考,这样进步就快了。如果实在想不起来,就看看书本怎么证的。对于自己的不足,要整理到上述公式、逻辑或几何三个大类中,并提醒自己注意(如国内分析教材从罗尔定理证明拉格朗日中值定理,很多人不会把一般的函数构造成符合罗尔定理条件的函数,这个就牵涉到公式变形能力和逻辑能力)。

引理也是这么证。别小看引理,朗兰兹猜想中的基本引理之一,吴宝珠证出来就是一个菲尔兹奖。至于例子,也是不要先看,自己看了定理,自己想至少两个例子,一个是典型的,一个是退化的极限情况(byhalmos,《我要做数学家》和《希尔伯特空间习题集》的作者,芝加哥大学鼎盛时期和陈省身等共事的数学家)。例如高中解析几何的双曲线,分母的a^2,b^2当然大于零,可以找出来一个例子。如果其中一项等于零,就退化成两条直线,这就是退化的极限情况。不要小看退化,这正是跟以前知识的联系。自己想了例子,其实潜意识中,注释的内容已经过了一遍。然后不必太早做习题,再回顾一下整个思维过程有没有需要看课本提示的地方,有没有自己能看懂但是跟以往惯性思维相悖的地方,有没有突然顿悟的地方。这都要记下来,上课等老师讲到这里时要格外留心。

(3)听课。

美国的数学教授基本还是写黑板,而且不会太快。上课公式一写几黑板的那是应用数学教授,噼噼啪啪打幻灯的在石溪一定不是数学或物理教授。所以,有时间记笔记。但不必全记住,把预习的成果调动起来,老师讲的时候跟自己脑中的备份随时印证并修正。就一个建议,教授不停嘴,学生不动笔。真正听好了,上课一字不写又何妨?课下完全可以轻松补全并注上自己的心得见解。

(4)课下。

先整理笔记,一定有自己的见解,全抄老师的对于学应数是有用的,对于学数学则是浪费时间。数学界的师生关系往往很融洽,但思维上绝对是批判继承和启发继承,学我者昌,似我者亡。然后是定义再品味一下,定理和引理自己再证一遍,比较老师的证明、课本的证明和自己当初的证明,这次不仅要能说出哪个好,还要能说出为什么好。

然后是做题了。除了开始的微积分要刷书,带证明的课,课本做好作业题就够了,因为老师选的可能不是经典教材(经典的往往比较难,很多美国学生受不了)。但每个题要做精,做完一题回顾自己的思路历程,并对其中的公式变形、逻辑推理和几何直观进行归类。实在做不出来,画个记号,改天再看,两天都做不出来才可以看解答。对于解答中自己想不到的,要特别标注,常常回顾。然后就是选一本这一门课比较经典的书,按照上文预习和做题的路子走一遍。经典教材的知识点和思路要自己总结,每过一两章节,找一张大的纸画下来本章定理的逻辑体系图。经典教材的题目最好都做,做不出来,officehour坐穿椅子去。

(5)心理状态。

很多人开始觉得数学难,然后生怕基础打得不牢,一个定理看半天,看似很认真很投入,其实就算理解了思维也很僵化,而且容易跟不上进度。这就像打羽毛球和练书法,你心里紧张,手抓得太紧,反而发不出力来,写的字也不好看。掌心要虚着,身体要保持随时可以发力的弹簧状,击球时蹬地转体推肩压臂一套动作一气呵成,手掌瞬间抓紧最后一次加速,这才能打出林丹那样硬砸开李宗伟铁板防御的扣杀。书法所谓挥洒,也是如此。要保持轻微的紧张和激动,有点小期待,随时能调动已有知识,并可以多角度观察新知识,思维能发散也能迅速收回并集中攻关。

这种感觉一旦找到,妙不可言。不过重难点也要适当文火慢炖:如果教材中有令自己感到太难的思考,头一天理解了要标记,第二天要试着不看书回忆。曾任princeton和universityofwisconsinmadison教授,现坐镇石溪的微分几何大家陈秀雄先生在《初遇尤金·卡拉比》中写道,当年导师卡拉比告诉过他:如果你不能在脑海中重复整个论证过程,那么它就没有成为你的一部分。

第四,打造良好的身体素质。

数学是劳心的工作,如果身体素质不够,气血不足,将直接影响思维质量。数学牛人几乎没有不爱运动的:柯莫高70岁仍冬泳,注意,是莫斯科的冬天!陶哲轩骑山地车,高探蝶养牛(囧),陈秀雄卖萌(我坚持认为他是自然萌)。要想学好数学,摸爬滚打至少要喜欢一项。这里给男生推荐练习腹肌:首先这个可以天天练,作为读书的调剂(上肢和下肢如果负重,要隔天练才不会受伤);其次腹肌训练能提高躯干供血,这样在各种环境(沙发,椅子,树上,火车或飞机上)看书都不易出现头晕或胸闷;最后当然是能吸引妹子。每天推荐训练量:腹肌撕裂者(absripper)或八分钟腹肌(8minabs)教程一套(网上有),配合腿部负重(沙袋就好);负重仰卧起坐50次每组x5组(开始可以20次每组x10组),负重悬垂举腿10-30每组x5组,负重俯卧挺身10-20次每组x5组。这对综合防身也有用:常言到手是两扇门,全靠腿打人。同样是低位置的快速踢腿,小腿发力叫下段踢,腰胯发力叫碎骨,只有用上腹部和背部的力量,才是令人闻风丧胆的“武神强踢”。

最后祝大家都能以高效率学好数学,享受学习数学的过程。各路高人欢迎拍砖。

几个本科课程的经典教材:

基础微积分:stewart,thomas,吉米多维奇选一个就可以。吉米可以晚一些,学数学分析时做。

基础线性代数:gilbertstrang的introductiontolinearalgebra,mitocw上有教学视频,作者亲自讲,非常非常适合入门。

高等代数(带证明的线代):friedberg的linearalgebra。不要用那个linearalgebradoneright,太粗糙。

抽象代数:小丫挺(michaelartin)的algebra,国内张禾瑞的《近世代数基础》很好,毕竟是小丫挺的父亲丫挺先生(emilartin)的博士生,土豆网上有授课视频。学有余力的看dummit&foote的algebra,再牛的挑战郎射日(sergelang)的algebra。

数学分析:基础一般的,陶哲轩的analysisi,ii很好。基础很好的用苏联卓里奇(vladimirzorich)的mathematicalanalysisi,ii,这是清华基础科学班大一数分教材。课外想自虐的用rudin的principlesofmathematicalanalysis,即babyrudin。

复分析:经典的多数用rudin的realandcomplexanalysis,不过有点小难。

实分析:这个不必看本科生专门的实分析,研究生的可以直接上,毕竟本科分析扎实的话,测度论可以直接看。上一条中rudin的就好,另外有个realanalysis:moderntechniquesandtheirapplicationsbyfolland写的不错。至于释天的三卷分析,相当难,慎用。

微分方程:常微分方程很多人推荐arnold的,不过偏难。偏微分一定要问老师,毕竟涉及的范畴太广了。

拓扑学:munkres的不解释。如果多元微积分很好,可以用milnor的那本小册子(topologyfromthedifferentiableviewpoint)看看微分拓扑。

补充。

本文的每条回复我都细看过,无论臧否,皆是动力。不过有一些内容,需要略作补充说明(补充说明本来另发日志,后发现整合进入原文更加直观。原文除错别字外一字不易,便于大家比较):

1、这篇文章是帮助我这样基础不好的人学数学的,而绝非劝人做数学的。我提到的学习方法无非看书听课做题,这些只可以供本科和硕士阶段学数学用。读论文,查资料,听研讨班才是做数学的纯数学博士生的每天工作。做数学需要很多现代的数学工具,如李群论、表示论、算子代数等等,而这些我的文章中一个都没有推荐。如果要做数学,我列的书单全做透还是谈不上入门的,一定要多听教授指点。

2、我需要重申这篇文章的读者定位:首先是需要应用数学的理工科和社科同学,以及想学基础数学但中学期间没有受过系统训练的数学系同学(奥赛可以近似看作系统的思维训练而非数学训练,下文详述)。学习安排也需要明确一下:建议利用大一大二专业课不是特别重的时间(这是美国的情况,国内有些专业大一大二课程较重),尽可能利用选课或旁听的条件来掌握相当于国内数学系大一的数学分析和高等代数。国内这是四门课(各两学期),美国则是微积分两门,基础线形代数一门,高等代数一门,数学分析一到两门,故为五到六门,但实际工作量并不比国内的四门更多。这个工作量对于大多数比较努力的同学应该不难达成。至于抽象代数、实分析和复分析等并非对所有理工科和社科均必需,请根据具体情况按需学习。

3、一些具体的数学内容:首先是线性代数和高等代数的区别:我当然知道这两个学术领域范畴有差别,而不仅仅是难度和对证明的要求不同。但这里谈的是课程名称。美国的introductiontolinearalgebra确实是数学系第一门代数类课程,接着是linearalgebra。美国一般没有对应于“高等代数”的“higheralgebra”或“advancedalgebra”的课程名称。这两门学完,课程进度上等同于国内学完一年高等代数,下面可以学抽象代数了。然后是gelfand读完ega,我当时确实看到过一则消息这样写的,未加考证就直接用了,是我的失误,在此致歉。其实gelfand比grothendieck要年长不少,他15岁的时候grothendieck还在童年。

4、关于教材的推荐:有人说我推荐的都太难,请去读stewart的微积分和陶哲轩的analysis半小时,然后是否还是坚持此观点。rudin的书主要是思路跳跃性大,讲完一个知识点马上就要灵活运用,而且默认读者的微积分和集合论有很好的基础,故不适合作为第一本分析教材。而卓里奇是知识量大并且对思维考察事无巨细,需要经常查资料或有老师带。如果这些都感到难,陶哲轩应当是最好的第一本分析教材之一,在解答的详细度和思路的严谨性上都堪称一绝。至于国内的教材的问题,主要不在定义上的错误,而在思路上的舍近求远和表述上的佶屈聱牙。并非国内的数学教材都不好,只是每个领域各有长短。

4、关于奥赛:奥数比起高考的数学,难度和深度上高很多,对锻炼思维有好处。但奥赛和科研路子还是不一样,如果是纯搞奥数,到研究阶段未必有大成就。陶哲轩的情况是小学时学完了澳洲的高中数学,小学高年级就在家附近的大学听数学课,然后12岁起顺手去参加奥赛。故想做数学家,比较容易达成的路子是童子功加上正统大学数学教学为主,奥赛成绩如何并无决定性意义。

5、关于翻译:无论做数学还是只学数学,都很辛苦。故娱乐万岁。翻译如果能博人一笑,不仅便于记忆,还能为大脑增氧。至于grothendieck和atiyah的封号来源:前者的自传《收获与播种》中用很大篇幅探讨东方哲学中的阴阳辩证关系,加上他提出很多代数几何的新概念,故得来“造化阴阳”的雅号;后者艾抵涯和辛格(i.m.singer)提出的atiyah-singerindextheorem,对分析、拓扑、微分几何等领域都产生了深远影响。加上艾抵涯自己带出来donaldson一个菲尔兹奖得主,又力挺物理学家魏爱华(edwardwitten)获菲尔兹奖,并且喜欢帮助数学上比较后进的国家(担任中国和巴西的最高数学刊物的顾问等等),故送他雅号“迷津慈航”。

6、关于健身。用dnf的技能只是比喻,毕竟这几招很有渐进性。锻炼腹肌不仅男生可以练习,女生练也不错。健身房里时时有女生做腹肌撕裂者。一次学校主健身房人太多,改去一个宿舍楼的健身房,遇到一个身材修长堪比超模的白人女生,脚夹20磅哑铃做负重悬垂举腿,一组20个。女生如果担心长肌肉,只要不吃蛋白质粉,并且使用每组能做20次以上的较轻重量即可。

第一轮:(预估时间2个月)。

这一轮的目的:熟悉大纲的知识框架,摸清对应的考试题型。

把整本书过认认真真过一遍,知识点必须理解清楚,相关练习题都必须自己一步一步推算。遇到解决不了的问题,马上请教同学和老师,不要不懂装懂,自己骗自己。

第一遍认真地啃完整本书,后面几轮的复习就会顺畅很多。

时间上,建议一周攻克一个部分,内容较多的章节多分配些时间,总之灵活安排复习时间。

第二轮:(预估时间1个月)。

这一轮的目的在于:扫清自己存在知识上的盲点。

开始复习第二遍指导书。经过第一遍的认真复习,你应该比较熟悉知识点、考点以及常规考题的套路了。

这一轮复习,重点在于查漏补缺,把自己不懂得知识点和题型好好的记录下来,一个都不要给我漏掉。实在搞不懂的,还是那句话,问同学,问老师,直到搞懂为止。

第三轮:(预估时间20天)。

这一轮目的:通过练题,灵活的掌握知识,熟悉全部的考试题型,并掌握每种题型的解题方法。

开始练习模拟试卷,按照标准考试时间练习:具体操作步骤:

1、自己找个安静的地方,记录好时间,按照考试的状态进行练习。遇到不会的,不准翻书,不准看答案,记住这是考试!

2、到点后,无论题做完没有,马上停笔,马上停笔,马上停笔。根据答案,自己评分。

3、继续把没做完的搞定(按时完成了试卷所以题目的忽略此步骤)。

4、查看自己那些错误的题,没完成的题。仔细分析原因,是知识点没搞懂?是这类题型从来没见过?还是自己做题时间太慢了?或者什么其他原因。

知识点没搞懂?

翻到指导书对应的地方,认真理解。如果还是不懂,怎么办?你懂的。

题型从来没见过?

重点标记下来,摸清这种题型的答题套路,再把它归纳到相应知识点的题型上去。

做题时间太慢了?

说明你对知识点和题型不熟悉。(不要给我说你写字慢!)解决办法:练题,反复练题,直到把速度给我练上去。就这么简单。

还有,模拟试卷不要练完了,留几套最后冲刺阶段找感觉。

第四轮:(预估时间10天)。

错题为主,把指导书和模拟试卷上做错了的题都拿出来,反复研究,彻底弄清自己错误的原因,并且再动手自己推算几次,直到自己再次遇到同类型题不会犯错为止。

好了,如果你严格按照上面的步骤执行下去,我想你想要考个优异的成绩应该没有啥问题了。

在临近考试的那几天,大家再把剩下的那几套试卷拿出来练练手,找找感觉。

最后,你就可以很有底气的步入考场了啦。

最后再给大家说明几点:

1、再次强调,以上具体的复习时间因人而异,每个人的基础和学习能力不同,所以大家把上面时间作为一个参考即可。你需要根据自己的实际情况,灵活地作出调整。

2、以上复习时间全部指的是有效学习时间。对于喜欢三天打鱼,两天晒网的同学来说,以上复习时间可能不会合适你。

3、我不希望大家完全按照这个步骤来进行复习,我反复强调,每个人的情况不同,我只是给大家提够了一种经过我自己验证后比较有效的复习的思路。

记住:聪明人学的是思维方式和做事方法,愚昧的人才会生搬硬套。

学习大学数学的心得篇十一

你是一个大学生,学历大学的数学之后你有什么想说的?看看下面的大学生学习数学心得体会吧!

大学数学实验对于我们来说是一门陌生的学科。

大学数学实验作为一门新兴的数学课程在近十年来取得了迅速的发展。

数学实验以计算机技术和数学软件为载体,将数学建模的思想和方法融入其中,现在已经成为一种潮流大学数学的心得体会大学数学的心得体会。

刚开始时学大学数学实验的时候我都有一种恐惧感,因为对于它都是陌生的,虽然在学数值分析时接触过matlab,但那只是皮毛。

大学数学实验才让我真正了解到了这门学科,真正学到了matlab的使用方法,并且对数学建模有了一定的了解。

matlab在各个领域均有应用,作为数学系的学生对于matlab解决数学问题的能力相当震惊,真是太强大了。

数学实验这门课让我学到了很多东西,收获丰硕。

第一节课我了解到了数学实验的一些基本发展史和一些基本知识。

对于一些实际问题,我们可以建立数学模型,把问题简化,然后运用一些数学工具和方法去解决。

大学数学实验我们学习了matlab的编程方法,虽然仅仅只有一种软件,可是整本书可用分的数学知识一点都不少,比如插值、拟合、微积分、线性代数、概率论与数理统计等等,现在终于知道课本上的知识如何用于实际问题了,真可谓应用十分广泛大学数学的心得体会心得体会。

刚开始我对matlab很陌生,感觉这个软件很难,以为它就像c语言一样难学,而且这个软件都是英文原版,对于我这种英语很烂的人来说真是种噩梦。

但是经过一段时间的学习后感觉其实并没有想象中的那么可怕,感觉很好玩。

我觉得学好这门课需要做到以下几点:1、多运用matlab编写、调试程序2对于不懂得程序要尽量搞清楚问题出在哪3、与同学课下多多交流,课上多请教老师。

数学,在整个人类生命进程中至关重要,从小学到中学,再到大学,乃至更高层次的科学研究都离不开数学,随着时代的发展,人们越来越重视数学知识的应用,对数学课程提出了更高层次的要求,于是便诞生了数学实验。

学期最初,大学数学实验对于我们来说既熟悉又陌生,在我们的记忆中,我们做过物理实验、化学实验、生物实验,故然我们以为数学实验与它们一样,当我们在网上搜索有关数学实验的信息时,我们才知道,大学数学实验作为一门新兴的数学课程在近十年来取得了迅速的发展。

数学实验以计算机技术和数学软件为载体,将数学建模的思想和方法融入其中,现在已经成为一种潮流。

当我们怀着好奇的心情走进屈静国老师的数学实验课堂时,我们才渐渐懂得,数学实验是一门有关计算机软件的课程,就像c语言一样,需要编辑运行程序,从而进行数学运算,它不需要自己来运算,就像计算器一样,只要我们自己记下重要程序语句,输入运行程序,便可得到运行结果,大大降低了我们的`运算量,给我们生活带来许多便捷,在大一时,我学过c语言,由于这样的基础,让我能够更快的学会并应用此软件。

时间飞逝,转眼间,我们就要结课了,这学期我们学习了mathematics的基础,微积分实验,线性代数实验,概率论与数理统计实验,数值计算方法及实验。

通过这学期的学习,我也积累了些自己的学习方法和心得。

首先,我们要在平时上课牢记那些mathematics语言和公式,那些东西就想单词和公式一样,只需要背诵;然后,我们要看几遍书,并多看一下例题;最后,我们要多应用mathematics软件去练习。

正所谓熟能生巧,我坚信,只要我们能够做到这三步,我们就能很好的掌握这门课程。

通过学习使用数学软件,数学实验建模,使我们能够从实际问题出发,认真分析研究,建立简单数学模型,然后借助先进的计算机技术,最终找出解决实际问题的一种或多种方案,从而提高了我们的数学思维能力,为我们参加数学竞赛和数学建模打下了坚实的基础,同时也为我们进一步深造和参加工作打下一定的实践基础!

一直以来都觉得数学是门无用之学大学数学的心得体会大学数学的心得体会。

给我的感觉就是好晕,好复杂!选修了大学数学这门课,网上也查阅了一些有趣的数学题目,突然间觉得我们的生活中数学无处不在。

与我们的学习,生活息息相关。

不得不说,数学是十分有趣的。

可以说,这是死中带活的智力游戏。

数学有它一定的规律性,就象自然规律一样,你永远也无法改变。

但就是这样,它就越困难,越有挑战性。

数学无边无际深奥,更是能让人着迷的遨游在学海的快乐中。

数学是很深奥,但它也不是我们可望不可及的。

它更拥有自己的独特意义。

学习数学的意义为了更好的生活,初中数学吧;为了进入工科领域工作,高中数学吧;为了谋求数学专业领域的发展,大学数学吧数学是什么是什么什么学科,公认的!我觉得是一们艺术,就象有黄金分割才美!几何图形如此精致!规律循环何等奇妙!

在网上看到一个很有趣的题目:有一个刚从大学毕业的年轻人去找工作。

为了能够胜任这第一份工作,他也自作聪明地象老板提出了一个特殊的要求。

“我刚进入社会,现在只是想好锻炼自己,所以你就不必付我太多钱。

我先干7天。

第一天,你付我5角钱;第二天就付我前一天的平方倍工钱,之后依次类推。”老板一口答应了。

可到了最后一天领工资的时候,这个年轻人却只领到了寥寥几块钱。

年轻人很不解,老板却说自己已经很不错了,多付了他好几百天的工钱。

自然,赚几元钱就得好多天了。

但是如果年轻人第一天要的工钱大于1元钱,那么7天的工钱可就多得多了。

我们不得不说这个老板是聪明的,员工的马虎的。

这么简单的知识也会运用错误,导致自己吃了哑巴亏还没办法挽回。

这么一个简单的例子事实上就已经说明数学就在我们的身边。

其实数学就是在我们的身边,之所以没有发现它的存在,我想有时候可能还是因为它的存在及运用实在太多。

数学讲究的是逻辑和准确的判断。

在一般人看来,数学又是一门枯燥无味的学科,因而很多人视其为求学路上的拦路虎,可以说这是由于我们的数学教科书讲述的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样便可以激发学生的学习兴趣,也有助于学生对数学方法和原理的理解认识的深化。

数学不是迷宫,它更多时候是象人生曲折的路:坎坷越多,困难越多,那么之后的收获就一定越大!

学习大学数学的心得篇十二

数学是一门让很多同学都头疼的学科,到了大学除了法学等个别社会科学专业的学生,都摆脱不了对它的学习,但因为它的相对复杂性,使得数学成了一门挂科率很高的学科,正像大学校园里经常调侃的:“大学里面都有一颗树,叫做“高数”,很多人都挂在上面。”很多同学不爱学习数学,认为自己学不好,但是数学对我们的日常生活很重要,涉及面也十分广泛,我感觉只要掌握好数学的学习方法,学起来应该还是比较容易的,下面给大家分享一下高数的学习方法。

每个人的学习习惯和理解问题的能力也有所不同,但一般的方法还是有规律的,想要学好数学必不可少的有以下几个环节。

一、培养兴趣。

大家都知道,想要把一件事做好首先要对其有兴趣,学习也是一样。很多同学看见数学复杂多变的符号和公式,头就变大了。一开始便对其产生了厌恶,不爱学习导致成绩下滑,成绩不好就对其更加厌烦,久而久之成了一个循环的怪圈。所以想学好数学,首当其冲的是培养对它的兴趣,把学数学当成一种快乐的事,同学们可以试着从简单的题目开始学习,每解出一道问题心里就会有种成就感,大大提高对数学的兴趣,然后在逐步向难度大的题目过度,使学数学成为一种习惯。

二、课前预习。

这一过程很重要,因为只有课前预习过,才会在听课时做到心中有数,即老师所讲的内容哪些是属于难以理解的,什么是重点等。预习的过程也不需要花太多时间,一般地一次课内容花三、四十分钟左右时间就可以了。在预习时不必要把所有问题弄懂,只要带着这些不懂的问题去听课就行。

三、认真听讲,记好笔记。

对于上课要用心听讲大家都明白,但要记好课堂笔记的重要性有的同学就不以为然了,认为教材上都有,大可不必去记。其实这种认识是错误的,也是中学里带来的一种不良的学习习惯。老师对于高等数学课程的讲授,绝对不是教材上的内容的简单重复,而是翻阅了大量的同类参考书,而结合自己的教学经验与体会,所以毫不夸张地说,教师的授课教案既有以往成功的经验体会,同时也有过去的教训的借鉴。因此,同学在听课的同时必须记好课堂笔记,同时这种好的学习习惯即勤动笔对于自己学习及工作能力的培养也是大有好处的。

四、跟随老师,积极互动。

上面说了上课要认真听讲记好笔记,与此同时上课积极发言、踊跃的与老师做好互动也非常重要。上课积极回答老师提出的问题,老师的讲课状态就会越好,从而可以多讲一些有用的知识。这样课堂气氛也活跃了,有了更好的学习氛围,老师通过学生的反应与互动,更清楚的了解学生接受的程度,以调整自己的讲课方式和速度等,以便同学们更好的理解。学习是一个互动的过程,所以师生间的交流必不可少。

五、课后复习,整理笔记,多做题。

课后的自习,不少人是赶快做作业,这也是一种不好的习惯,其实下课后应该进一步认真钻研教材或教学参考书,在完全弄懂本次课内容之后,整理充实课堂笔记,有些需要理解的地方添上自己的心得与体会,把书本上的知识真正变成自己掌握的知识,然后再完成作业,这要比下课就赶作业的效果要好得多,而且完成作业的速度也要快得多。理科类的东西重要的还是多加练习,多做习题,才能更好地运用和理解公式,培养出良好的解题思路和逻辑思维。

六、善于归纳。

人的记忆力是有限的,要全面记住所有有用的东西而不遗忘是很难办到的,怎么办呢?这就需要对自己学的知识加以归纳总结,找出它们之间的内在联系和共同本质的东西,然后使之系统化条理化,从而记住最有代表性的知识点,而其余部分只要在此基础上经过推理便可以了解。每学完一章,自己要作总结。总结包括一章中的基本概念,核心内容;本章解决了什么问题,是怎样解决的;依靠哪些重要理论和结论,解决问题的思路是什么?理出条理,归纳出要点与核心内容以及自己对问题的理解和体会。最后是全课程的总结。在考试前要作总结,这个总结将全书内容加以整理概括,分析所学的内容,掌握各章之间的联系。这个总结很重要,是对全课程核心内容、重要理论与方法的综合整理。在总结的基础上,自己对全书内容要有更深一层的了解,要对一些稍有难度的题加以分析解决以检验自己对全部内容的掌握。

总之,大学的学习是人生中最后一个系统的学习过程,它不仅要传授给我们一个比较完整的专业知识,还要培养学生即将走向社会的工作能力和社会知识。就高等数学课程而言,是培养我们学生的观察判断能力、逻辑思维能力、自学能力以及动手解题的能力,而这几种能力结合起来,就可以构成独立分析问题的能力和解决问题的能力。在此,期望大家高度重视高等数学的学习,找到适合自己的学习方法,相信大家会获得更大的收获。

学习大学数学的心得篇十三

还有一个月的时间就要开学了,现在时不时想起去年复习考研的那段日子,感觉好像是昨天刚刚经历过。这不是因为它给我的心中留下了任何“痛苦”的回忆,相反的,复习考研的过程已经为我心中留下了一块珍贵的宝藏,并将让我一生受益无穷。

我之所以决定报考北京大学数学科学学院,基础数学专业的硕士研究生,主要是出于对于这个专业的兴趣和热情。本想本科毕业之后就工作,以后就可以自己养活自己,不让父母为我像以前那样操心了。但做了一段时间的程序员之后,感觉这项工作并不适合我,我不能像许多it工作者那样充满热情地长时间面对着电脑屏幕编写一行行的程序。我开始愈加怀念本科时学数学的生活,怀念和一群同样对于数学充满热情的同学讨论问题的日子。经过认真的自我分析之后,我决定继续追求自己的理想,踏上了考研的征程。

工欲善其事,必先利其器,首先要做的当然是收集考研的相关信息和复习资料。我那些天在北大研究生院的网页、北大未名bbs和一些考研相关的网站上得到了许多有价值的信息,让我在短时间内对考研有了许多了解,也大体上安排好了复习的时间表。事实上,在整个复习考研过程中我都很关注最新的资料和信息的收集整理,随时调整自己的复习计划,毕竟“闭门造车”的方法往往是事倍功半的,面对考研这种需要耗费大量心力的“工程”就更不可取了。

接下来就是一步一个脚印的复习了,但是复习考研的风格可不像期末考试前突击的那几天一样,它需要的时间少则几个月,多则一年,所以一个适合自己的复习计划是必不可少的。由于我本科时读的就是数学,在专业课上的复习压力相对小些,所以我选择在最后两个多月在家里全力复习备考,之前的几个月在业余时间以看书浏览各科知识点为主,偶尔做做题。

有了计划,更关键的是严格执行它。其实这个道理大家都明白,但俗话说:计划赶不上变化。今天可能你最要好的同学拉着你聚会,明天可能你身体不适一整天都看不进多少东西,大家有各自的情况,我反正这些事都赶上过不止一次,之后一般都选择每天把复习的量加大一点,争取能在几天之内把损失的时间补上。另外,我觉得复习计划也不宜定得太长、太详细,就像《每天爱你八小时》里梁朝伟说的:“我不能保证24小时之后的事。”每天早晨根据具体情况定好当天的计划就行了,第二天到了再说第二天的,如果你连今天的都没完成,那明天的计划提前定了也是白搭。但这并不表示一个长期的计划没有用,大家心里应该衡量好比如用大约多久看完这本书啦,用多久做完这本习题集啦,不然的话会在考试临近的时候发现好多最初计划要做的复习工作没时间做了。

具体到各科,对于公共课政治其实我是最头疼的(相信好多研友也是跟我同样的感觉),因为文科的东西重在积累,而这种需要记和背的活儿感觉总是很累人。我对付它的方法是“书读千遍,其意自现”,当然千遍是读不到,但那本“红宝书”我读了肯定有五遍,岳华亭的那本我也看了三遍。我一般选择做数学做的比较累了之后抱着政治参考书浏览,指望逐字逐句记住是不现实的,但把知识点理解了之后,能够用自己的话说出来还是不难的,前几遍可能看得比较慢,到后来大部分都熟了,只要在一些没掌握的地方留一下心就好了,今年的考题证明这种靠理解而不是靠背的方法还算是对路的。

公共课英语中我感觉阅读是最重要的(其实很显然,占分多嘛),而想要提高阅读水平的前提是单词量一定要过关,就是大纲里给的单词要无条件掌握,毕竟要读懂句子就要先认识单词才行。其实对于考研英语我没有太多的心得,只能给大家介绍一下我练模拟题用的书:一本是毕金献的'模拟题,难度比较大,但认真做下来会感觉很有收获;张锦芯的那本难度没有前者大,但跟最后真题比较相似,推荐做模拟考试用。

关于数学专业课的复习,由于介绍多了大家也不一定感兴趣,毕竟都是考不同专业的,所以我只想跟大家分享一下对于理科类科目复习共同的心得,那就是——做题。所谓“重剑无锋,大巧不工”,“做题”真的是我认为取得考研成功的关键,甚至是唯一的道路。专业课本的书后习题一定要做,一方面,通过做题检验你是否真正掌握了知识,还能进一步加深对其的理解;另一方面,出题的老师往往是教过这门课的,那课本自然是出题的最大依据,课后习题一般都很具有代表性,完全可以变个样子甚至就原样出成考题,用来考察考生的知识掌握程度再合适不过了。跟课程相关的习题集也可以有选择性地做,不是要搞题海战术,而是作为对课本题目的补充,比如复习数学分析时就很有必要做做《吉米多维奇数学分析习题集》。另外,如果能够拿到往届的或正在上这门课的同学的平时作业习题,也很有参考价值的,因为对同一本书不同的老师侧重点也会有所不同,这可以从他平时给学生留作业的风格看出来,而这个老师出题的风格也许就会出现在你的专业课试卷上。

复习考研说起来往往是个很艰辛的过程,但当你身处其中时,并不一定只会觉得苦。有时会因为取得一点进步而欣喜,有时会面临困难而苦恼,其中的点点滴滴都是一种生活经历,从中学到的不只是知识,还有许多终生值得借鉴的经验,需要自己体会。

何苦不现在就把握机遇,挑战新的高峰,给自己的人生定制一个清晰的方向。

在安适的山寨容易埋葬憧憬,在舒适的田野容易迷失方向。失去竞争实力时才去感叹时光如逝,何苦不现在就把握机遇,挑战新的高峰,给自己的人生定制一个清晰的方向。我希冀,我付出,所以我收获。你是否也像我一样为考研奋斗而最终收获呢?你的心中是否有明确的计划去实现你的理想呢?在此我希望与大家分享自己的心得与体会,使大家少走弯路,顺利攀登考研高峰。

制订好整体复习计划,合理安排复习时间,是相当重要的。对数学复习而言,我将其大体分成三个阶段。

因为课本对基本概念的定义,基本原理的推导都是十分准确、精练的,掌握了这些基础知识体系,后续阶段的复习会取得事半功倍的效果。有些同学一开始就盲目地追求做题数量,忽视了课本的复习,那是极不可取的。必须通过对课本的复习,理出一个知识框架体系,从总体上把握考点。另外,必须定期总结和巩固前一阶段所学习的知识,温故而知新。

众所周知,数学还是以练为主的。除了第一阶段必须完成课本上的习题外,主要的精力应集中在陈老师和黄老师本书所提到的黄老师均为黄先开教授。主编的《复习指南》上。刚做这本书上的习题时,我真有点力不从心,有时觉得解题方法很奇特,而答案也有些突兀。经过陈老师和黄老师上课时仔细地讲解,我对这些难点有了更深刻的理解。老师们稳重的授课风格,有条不紊的解题思路,以及循序渐进、举一反三的教学方法使大家能够更有效地吸收知识。我想强调融会贯通的重要性,千万别为了做题而做题,因为做题只是一种手段而已。应通过做题将所学知识点联系起来,并将所学的思路与方法为己所用。

从一些研究生介绍和自我感觉来说,真题的作用绝对是其他模拟题所不可替代的。只要你仔细研究就会发现历史是如此惊人地相似,很多考题都是貌离神合。应该用一到两个月的时间来做和研究近十年真题,包括数(一)到数(四)中你要考的内容。这不仅可作为检测自己最直接的手段,而且更重要的是能让考生熟悉考试的内容和侧重点,了解命题人的命题思路。在分析真题时,可找出自己的不足,再回到课本和辅导书进行复习巩固,理解的'程度自然就加深了。至于模拟题应有选择地做几套,目的只是练练手,切勿一味贪多。

当然,检验复习效果要靠考试,所以在抓做题的同时也要注意应试技巧的训练。主要做到快、准、全。快要求你通过分析能迅速找到解题思路:准则要求解题过程中运算要准确无误;而全则是必须按标准答案的步骤答题。以上三点需要你在平时训练中慢慢积累,如在做真题时严格按考试时间和要求检测自己,通过八套左右的练习,到考试时自然是水到渠成了。最后衷心祝愿师弟师妹们在来年的考研中取得理想的成绩。

学习大学数学的心得篇十四

20--年3月24日,由省教科所组织的小学数学优质课评比活动在仙桃举行,我有幸参加了这次观摩活动。看到参赛的每一位老师都以自己的特色诠释着数学课堂教学中生命的对话,真可谓“八仙过海,各显神通”。置身于会场中,倾听着老师们一堂堂精心准备的课,在这里,我亲身领略着他们对教材的深刻解读,感受着他们对课堂的准确把握,体会着他们对学生的密切关注。他们在开启学生智慧大门的同时,也让我学到了很多很多新的教学方法和新的教学理念,引发了我对课堂化的思考。

由于我校也曾经研讨过《千以内数的认识》,所以对东方红小学万睿杉老师所执教的这一课颇有感触。

1、重视数学与生活的联系。

教师作为学生学习的引导者为学生提供活动的舞台,调整学习的方向,是关键时刻予以适当点拔的学习过程的支持者。在课堂学习中,学习的材料来源不再是单一的教材,更多的是从学生的生活经验中来。万老师用动态的广州亚运会开幕式视频资料代替静态的单元主题图,通过学生猜测体育馆的人数,使学生深刻地感受到大数在生活上切实存在,这些数比以往学过的百以内的数多得多。导入的设计既具实用性又具时效性。在处理例2时,教师并没有拘泥于教材的编排运用计数器读数和写数,而是巧妙地将例1数正方体得到的两个数据398和406加以运用,再加上教师创造性的将数人民币融入此处,用生活中的数学,既调动学生学习的积极性,又巩固了例1刚学过的新的计数单位,而且还为后面读数、写数和数的组成埋下伏笔。

例1和例2两个例题在一个课时内完成,本身内容的量就不小,但在教学完例1,认识了新的计数单位后,教师舍得花时间放手让学生自己动手操作数小正方体,利用实物经历数数的过程。万老师提出“怎样摆能让人一眼看出你摆的是多少”。这一设计,让学生在动手摆的过程中体验一个一个地数、一十一十地数、一百一百地数,“一、十、百”这几个计数单位,掌握数的组成,同时感受相邻两个计数单位间的十进关系。在教学本课时的一个难点“从九百八十五数到一千”时。老师让学生借助计数器边拔边数,利用手、眼、脑多重感观体验个位满十要向十位进一;十位满十要向百位进一、百位满十要向千位进一的过程。这两次操作使学生在自主探究、自我感悟中轻松地学会了知识。

2、重视学生学习方法的指导和良好学习习惯的养成。

小学阶段是学生学习习惯养成的重要阶段,低年级更是如此。在万老师的课堂中,我们不仅能看到教学环节精彩的设计,老师对于学生学习方法的指导和学习习惯的养成也尤为重视。小组合作学习是一种有效的学习方法,但这种学习方法也容易流于形式。万老师在活动前明确提出“怎样分工合作,才能数得快”,让学生有意识地对小组成员进行分工合作,再通过倾听一个小组的合理分工,对其它小组进行指导。不仅使数小正方体的活动开展有序,更重要的是提高学生的合作意识并为以后的合作活动提供范例。使学生在学习中体会了成功的喜悦,增强了学生的自信心。

通过这次活动,我找到了教育教学方面的差距,要向这些优秀的青年教师学习。教坛无边,学海无涯,在以后的教学中,以更加昂扬的斗志,以更加饱满的热情,全身心地投入到教育教学工作中。

学习大学数学的心得篇十五

我是电大教育06秋行政管理专科的一名学员,现在已经毕业。通过在校两年多的学习和实践,我真实地感受到了远程教育独有的魅力,它的方便、快捷、灵活是其它教学模式无可比拟的,也正因如此,才让我有可能边工作,边学习,通过学习提高了工作水平,也通过工作巩固了学习效果。

我们站在生命的每一个路口,回顾学习时总是必不可少的致敬方式。对于走过的岁月,每个人都有属于自己的一份体验,常常我们会对往昔充满了许多怀念,怀念让生命变得完整,因生活终将不可逆流,而回忆使人完成追溯。因为曾经坚定地选择行政管理作为专业,便注定这三年里几乎所有的怀念都与行政管理有关。

第一,必须树立一个明确的学习目标,因为明确的学习目标是顺利完成全部课程的前提。从目前社会大环境看,在信息技术迅猛发展、知识经济初露端倪的今天,知识的有效期在不断缩短。有的人往往会因为知识有限和社会变化太快而被淘汰。这就给我们继续学习,不断完善自己、不断提高自己提出了必然的要求。所以,加强学习成为我们生存发展和应对竞争的有效手段。我决定参加电大开放教育的学习,用理论知识提高自己的文化素质,并争取能够学以致用。所以我学习的目标很明确,不只是拿专科文凭,而是力争双丰收,既拿到文凭,又提高水平;既学到知识,又增加本领。目标明确才能有动力,才能够促使你想尽一切办法实现你的目标。我之所以能够顺利完成学业与我有一个明确的目标有很大的关系。

第二,要尽快适应开放教育的教学方法,变被动学习为主动学习,这也是开放教育本身的性质所决定的。在几个月的学习中,我逐步学会了从主教材、从网上、从站点上、从电话咨询、电子邮件、参加面授等等方式获得教学信息来进行学习,特别喜欢网上获取信息的学习方式,我觉得,如果学习从读文字教材入手,往往不得要领,看着后边忘了前边,效果不好,而通过上网下载同步测验题和作业,从同步测验和作业入手,既先熟悉了题型,同时边做看主教材,有的放矢,不会做的地方再上网查看教学动态辅导信息,各章节教学内容的讲解提示,再查不到弄不懂的问题就给老师发电子邮件询问,有时进入参与讨论,才有了今天的学习成绩,顺利的通过了电大大专课程。

第三,要正确处理好工作、生活、学习之间的矛盾。工学矛盾是每一个已经参加工作的电大学员都要面临的问题。在实际工作和学习中,如何能够较好的处理工学矛盾,在高标准、高质量完成工作的同时,能及时深化所学知识,并将知识快速转化为能力素质,这是我们不能回避的一个问题。我从事行政行业,想通过电大多学一些知识,工作经常加班加点,有时周末还不休息,非常繁忙,。一段时间内,围绕学习、工作、,我忙得晕头转向。虽然困难很多,但我经常告诫自己,一定要咬牙坚持,绝不能轻言放弃,“挤”时间保证学习质量,较好解决了工学矛盾。

今年我又报考了行政管理专业专续本的课程,使我能在今后的两年学习时间里有更好的提高。通过在专科的学习期间,有了很好的学习方法,相信自己能够很好的完成本科的课程,对社会有更多的帮助。

学习大学数学的心得篇十六

一、数学建模推广月活动。

为了让更多的同学了解数学建模,以便于本协会其他活动的顺利开展,在新生报到后,我们以高教社杯全国大学生数学建模竞赛为契机,通过宣传和组织,展开数学建模推广活动,向广大同学介绍数学建模相关知识,推广月的主要内容有:数学建模竞赛的介绍,数学建模所涉及的数学知识的介绍,数学建模相关软件的推广等。推广月活动的主要形式是:横幅、宣传材料、人工咨询等。

二、组织学生参加每年高教社杯全国大学生数学建模竞赛。

一年一度的高教社杯大学生数学建模竞赛将于9月15日左右如期举行,届时本协会将在相关指导老师的统一安排下,组织参赛队伍参加此次大赛,力争为我校争取荣誉。

三、年度会员招收工作。

在校社团管理部统一安排的时间,展开新会员招收工作,主要针对大一新生,并适量吸收大二学生,为协会增加一些新鲜力量,为协会的长足发展注入新的活力,招新活动将持续两到三天,在两校区同时进行。

四、干事招聘会。

在招新活动结束后,我们将在全校范围内的,由协会内部主要负责人组成评审团,通过公开招聘的形式,招收一批具有突出能力的新干事,组成一支新的工作人员队伍,为更好的开展协会活动和服务会员打下基础。招收新干事部门有:办公室、外联部、实践部、宣传部、科研部、网络信息部。

五、数学建模专题讲座。

邀请本协会指导老师廖虎教授、余庆红、吴文海等,举办三到四次数学建模专题讲座,为广大同学提供一个了解数学建模、学习建模知识的平台。

六、会员大会。

数学建模学习体会(2)海等和其他兄弟协会。届时几位辅导老师将介绍数学建模的意义和魅力,并讲述大学生数学建模大赛的来历、发展、参赛形式和我校每届参与大赛的获奖情况等,让新会员更快的认识数学建模,并激发其学习数学的积极性,让其更好的参与以后协会的活动。

七、西安电力高等专科学校第二届大学生数学建模竞赛。

为进一步提升我校学生参与数学建模的积极性,提高数学建模的广泛参与性,我们拟于每年11月中旬举办西安电力高等专科学校第二届大学生数学建模竞赛;大赛将分为4组,针对不同层次的大学生评选出获奖作品。比赛结束之后将举行颁奖大会,为各个参赛组获奖选手颁发奖品。

八、数学建模经验交流会。

为加深我校学生对数学建模知识的了解,帮助同学们参与到数学建模事业中去,我们拟邀请全国大学生数学建模竞赛获奖选手与协会会员一起交流比赛经验,并由获奖选手回答提问。

九、大学生数学建模协会网站的建设与信息服务。

将本文的word文档下载到电脑,方便收藏和打印。

学习大学数学的心得篇十七

20xx年9月27日我有幸参加了由连云港市教育局主办的连云港市中小学“青蓝课程”初中数学班学习,学习结束后我感触很深,受益匪浅。

在开幕式上,我知道了“青蓝课程”被指定为连云港市中小学高层次人才“333工程”培训活动的选修课程;通过“青蓝课程”的建设,鼓励高层次人才潜心治学,建立一批高质量、高水平具有示范作用的精品课程,通过“青蓝课程”的实施,促进全市学校管理水平和教学质量的全面提高。

在上午的。

一、四节课中,我听了来自新海实验中学的姜晓刚老师、东海实验中学的丁广琳老师的七年级数学《3。1字母表示数》,两位老师采用了不同的教学方法都很透彻的讲解了本节内容;姜晓刚老师在自学质疑环节中讲解生动形象,在数学实验室中讲解直观、简洁、明了,在智力大比拼环节中的算“24”中的j突出了本节课的重点,它更能生动形象的说明用字母表示数的意义;丁广琳老师通过学案上的问题1和问题2巧妙的引入课题,其中例子日常用语中“你已经说了n遍”中的n是字母,但它能很好的表示数多的意思,这更能充分的体现用字母表示数的优越性;另外两位老师的思路都很清晰,都能充分调动学生的积极性,都能突出本节课的重点。

上午的第二节课中,来自海州实验中学的王立老师利用多媒体从自主探究、生活小测、自主合作、挑战自我等几个方面精彩的讲述了九年级数学《3。1二次根式》。

上午的第三节课中来自东辛农场中学的潘守忠老师利用分组比赛充分的调动了学生的学习积极性,由学生自主总结出等腰梯形的性质定理和判定定理,并由学生自主发言证明等腰梯形的性质定理和判定定理,在讲解过程中潘守忠老师能充分利用模型进行形象直观的讲解,最后由师生一起总结出解决等腰梯形问题常见的辅助线。

下午的第一节课中,来自赣榆欢墩中学的李加官老师循序渐进的讲解了九年级数学《4。1一元二次方程》,在讲解过程中能很好的培养学生的思维习惯,所提的问题都具有一定的引导性和启发性。

最后孙朝仁所长的评课更是精彩无比,他的观点使我感慨很深,具体如下:

教师在教学中一定要体现课程改革的特点,不能象传统教学一样,教师负责教,学生负责学,以“教”为中心,学生围绕教师转,教师是知识的占有者和传授者,教师是课堂的主宰者,教师与学生之间缺乏沟通与交流,课堂中的“双边活动”变成了“单边活动”;另外学案导学的一定要科学,问题的设置一定要富有启发性,一定要体现“先学后教”的理念。

教师在教学中一定要引导学生回归课本,以课本为载体,这就要求老师在教学前一定要学透大纲、读透课本,通过认真研读课本,再将自己对课本的理解和实践结合起来才能收到更好的效果。所以,我们不能忘了课本,课本是我们教学的一块主阵地,这块阵地不但要守住、还要守好,不但研究它,还要读透它。

教师在教学中一定要注重引导学生的数学思维,使其认识数学的本质;不能让学生死记硬背,而要引导学生进行分析推理;不能进行纵向的深挖,而应进行横向的拓宽,更不能只注重知识的高难度,只要能引导学生的数学思维即可。

教师一定要把握好每节课的教学目标,明白自己要讲什么;教学引入也一定要干脆、利落,直指教学本质、教学目标;教学内容、教学总结同样也要围绕教学目标。

在进行教学改革时一定要到位,不管是“三案六环节”还是“六模块”,不能只是形式上的改变,要的是内涵上的改变;学案不能只是课本的“搬家”,同时学案也不一定还是六个环节,要进行变通,要真正理解教学改革的精神。

上面就是我这次学习的心得体会,我觉得这次学习很值!

学习大学数学的心得篇十八

离11.7温州学习已经过了十天,在这十天里,游走在现实与理想之间,剩下的除了“后遗症”,还有爱因斯坦的关于教育的名言:“当一个人忘掉了他在学校接受的每一样东西,那么剩下来的才是教育。”三天的学习,见识了苏派风格的课堂与教学理念,见识了北方名师的温文博学;体会了现实与理想的差距,意识到形成自己风格的重要性。

郑毓信:数学教育应回归数学学科本质:科学性;刘德武:教育教学应该慢下来;强震球:教学设计回应了郑教授的数学本质;刘松:大师遇到学生不通的时候,也会着急的;张齐华:同课异构再一次证明了,教学要跟随学生的步伐,但又要走在学生的前面;徐斌:稳重,层层深入,一节生动的常态课;华应龙:文学素养极高的大师:《找次品》一课,是全会的高潮;程鹏:我们的同伴,我们共同的问题在他身上全部体现;余颖:游戏与数学无关;罗鸣亮:全课一条线索:摩托车到底多少钱?教好书是一项技术活;贲友林:以学生前研究为基础,课堂上老师引导者,可是差生怎么办?黄爱华:一代名师遇到学业一般的学生也会着急,他的新东西“微格教研”和我们大学时的教学实习有点相似。

本次的高潮当推华应龙老师《找次品》一课和《好老师:播种太阳》讲座。《找次品》一课中一个亮点或是创新是“第三个盘子”。

《找次品》一课是五年级下册数学广角的内容,这是一个经典的数学智力问题,即:“若干个外表完成相同的零件,已知其中一个是次品,次品比正品重一些(或者轻一些)。使用一架没有法码的天平,至少几次就一定能找出这个次品?”

华老师先引导学生读题,找关键词:“只有1个”“没有法码”“最少”“保证”,再让学生把这道题用自己的话说一说。

这是一般老师都可以努力能做到的,但华老师不同,他紧接着以老子的名言:“天下难事,必做于易”将学生的思路集中到化简上。

华老师带领学生,从2个球开始,探索找次品,并在黑板上用简图表示称的过程,并且用课件演示了称的过程,非常形象,通俗易懂。

3个球中找次品,是全课的第一个小高潮:在探索找的次数时,有同学说需要称2次,有同学说只要1次,最终统一意见,只需要一次。同时,他还用课件演示了称的过程,提出了“第三个”盘子的思想。在这儿,华老师有效的组织学生汇报了找的过程:“两边各放一个,如果不平衡,沉下去的就是重球,如果平衡,没有称的就是轻球”然后同桌之间相互说,这样在里给学生有一个消化的时间。为下一个难度“8个球”打下了坚实的基础。

了问题:“8个和9个两次称法有什么不同?”生汇报:1、用的盘子数不同,2、每次分的个数不同:9个正好平均分成3份;8个也分了3次,但不是平均分。“那他们有什么相同的地方?”“都分成了3份”“为什么要分成3份?”在华老师的问题中,学生明白了“尽可能平均的分成3份,充分利用第3个盘子”,也就是化归的思想。最后小结找法:用总结乘1/3。

经过前面称法的演绎,学生都很快掌握了解题的要领。如果前面的课,只是给观众一次展示了一次精巧的教学设计和炉火纯青的教学艺术,那么接下来的讲座给了听众一次如何回归教育真谛的思考:

华老师在讲座中谈到了他的一次公开课:一个女生直白的话:这不是打击我们成绩好的吗?原因是他对于成绩并不是人生唯一的评价标准的言论。后来,他在课堂上,再一次给了女生一个交待:人皆可以为尧舜。两个月后,他再致电那个女生:你还记得我吗?记得那次课吗?那个女生犹豫许久,似乎不太记得了,但她记得他的那句话,不过变成了:“成绩好的会走得很远”。华老师用这个故事向我们说明了一个道理:“我们只会看到我们想看的,只会听到我们想听的。”这个故事引发的不仅是我们对于教育真谛思考,更引发的是整个人生自我实现的思考:不同环境造就不同的人,如果不想任由环境塑造下去,应该多看看书。

这次学习,我看到了一种比较贴合学生实际的教学方法:学生前研究——课堂总探究。这种方法比较好,可是差生怎么办?我回到现实课堂后,也试着让学生自己探索一些东西,可是常常差生比较难跟上,他们更喜欢即时的欢乐。如果非要给次学习一次“谴责”的的话:大师:您是如何做到您的课堂,您的学生随时都在听你上课?理想固然美好,但落到实处,总会遇到各种各样的瓶颈,出现各式各样的缺陷,还是大师的话缅怀我们矛盾纠结的内心:有些成就是靠天分的。

【本文地址:http://www.xuefen.com.cn/zuowen/17202733.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档