每个人都曾试图在平淡的学习、工作和生活中写一篇文章。写作是培养人的观察、联想、想象、思维和记忆的重要手段。范文怎么写才能发挥它最大的作用呢?下面是小编帮大家整理的优质范文,仅供参考,大家一起来看看吧。
多边形说课稿八年级篇一
今天听了蔡老师的一堂课给我带来了深刻的印象,下面我就蔡老师的《5.1多边形(1)》谈谈自己听课的几点感受:
在整个教学过程中,蔡老师注重学生问题意识的挖掘,做到以生为本,师生关系融洽,整个课堂非常活跃。
我们知道,学生的数学的学习过程就是问题解决的过程。数学问题解决在一定的问题情境引入中开始,这就要求教师提供有价值的材料,创造一种激发学生数学问题意识的情境,以引起学生内部的认知矛盾冲突,激发起学生积极、主动的思维活动,再经过教师启发和帮助,通过学生主动地分析、探索并提出解决问题方法、检验这种方法等思维活动,从而达到掌握知识、发展能力的教学目标。首先,蔡老师让学生类比三角形定义、概念、表示法等得出四边形的定义以及边、角的概念、表示法等,遵循学生数学学习的认知规律,让学生在熟悉的情境中挖掘出未知的数学学习内容,让学生经历几何图形学习的方法,找出问题解决的共同点,以此让学生在以后多边形概念学习找到模型。
在课堂教学中,挖掘数学教学的核心知识,让我们教师创设的问题有探讨的空间以及延伸的方向,这样才会使学生的数学问题意识的得到提升,对数学课堂教学的实效起到事半功倍的良好效果。本课教学中,蔡老师让学生类比三角形内角和1800猜想得出四边形内角和3600,再让学生探究四边形内角和定理,让不同的学生尝试用不同的证明方法进行问题解决,这样做符合我们几何教学的一般过程:从猜想到证明。同时,蔡老师还对四边形内角和定理的应用进行了适度挖掘。
从以上教学过程中,我们可以看到蔡老师拥有熟练现代化教学技术应用能力,非常直观地把我们所需要的教学情境创设出来了。青年教师的对教材的挖掘、对课堂的掌控非常好,但在听课过程中,本人有一点不成熟的做法想与大家商榷:
对四边形内角和定理的证明内涵挖掘能否再次深入。蔡老师和学生都在课堂中展示了四边形内角和3600的三种常见证明方法,本人认为能否在此处停留教学脚步,放开手脚让学生再多几种证明方法,最主要的是提炼这些证明方法的统一性,可以让学生对各种证明方法进行分类、归纳、提升,比如把3600进行各种分解,这样课堂教学的内涵是不是更加精彩一些。如果时间不够,也可以延伸到课后让学生来比拼和交流,这样数学的学习味道更加强烈一点。以上是本人对蔡老师课的一点不成熟想法,欢迎大家批评指正。
多边形说课稿八年级篇二
“组合图形的面积”是小学数学人教版第九册第五单元的内容。教材把这一内容安排在平行四边形、三角形和梯形面积计算之后学习,让学生知道在进行组合图形面积计算时,要把一个组合图形转化成已学过的平面图形再进行计算,这样既可以巩固对各种平面图形特征的认识和面积公式的运用,又有利于发展学生的空间观念并解决一些实际问题。教材在内容呈现上突出了两个部分,一是感受计算组合图形面积的必要性。二是针对组合图形的特点强调学生学习的自主探索性。
根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难,所以在探索组合图形面积的计算方法时,我通过自主探索、小组合作交流等方式达到方法的多样化。
基于以上的分析,我确立本节课的教学目标:
1、知识目标:在自主探索过程中,理解计算组合图形面积的多种方法;并能根据组合图形的条件有效地选择合理的计算方法解决问题;能运用所学的知识解决生活中的问题。
2、能力目标:培养运用多种策略解决实际问题的意识,渗透转化的学习思想策略。
3、情感目标、感受数学与生活的密切联系,体会组合图形的面积在实际生活中的应用价值。
针对五年级学生的年龄特点和认知水平,我确定本节课的教学重难点为:认识简单的组合图形,会把组合图形分解成已学过的平面图形并计算出它的面积。
教学难点:引导学生观察组合图形,根据图形的特点,运用不同的方法计算出它的面积。在这个过程中,培养学生运用多种策略解决实际问题的意识。
(1)多媒体教学法
在教学中,我充分利用多媒体教学课件引发学生的兴趣,调动学生的积极性,激活学生原有知识和经验并以此为基础展开想象和思考,自觉地构建良好的知识体系,特别是转化图形的几种方法通过课件的演示,学生一目了然,直观形象,更好的突出了教学重点、突破了教学难点。
(2)自主探索和合作交流教学法
设计中放手让学生大胆探索,让学生在拼一拼、分一分、画一画、算一算中体验,在体验中思考,在思考中发展。老师说的很少,基本上都是由学生自己探究出来的,充分发挥了学生的主体作用。
(1)自主观察思考
学生是学习的主体,只有当学生真正自己主动、积极的参与到学习中时,才能最为有效地提高学生的学习效果。引导学生自己来观察组合图形的特点,思考解决问题的方法,逐步构建自己的知识体系,也有利于后面小组的合作学习以及更好地倾听他人的不同意见,进一步完善自己的知识体系。
(2)小组合作学习
小组合作学习能够帮助学生在有限的时间里,通过与他人的交流与合作,获取更多的方法,找到合适、有效的解决问题的方法。本课让学生在自主观察思考的前提下,通过小组合作学习来进一步拓宽学生的思维空间,提升学生的学习能力。
为完成本节教学目标,突出重点,突破难点,让学生充分体会到数学就在身边,感受到组合图形的趣味性,我制定了以下教学环节:
首先,让学生欣赏一些日常生活中经常见到的图片,让学生观察比较说一说共同之处,同时说说这些图片的表面都由哪些图形组合而成的。(这里让学生说出物品表面的图形组成,为建立组合图形的概念和计算组合图形的面积打下基础。)
其次,让学生说一说生活中的组合图形。这时我让学生畅所欲言,尽情说说身边的组合图形,感受组合图形就在身边,体会组合图形的美。最后让学生拆开老师给大家的礼物盒,看看里面是什么礼物,就会使学生立刻认识到正方形、长方形、平行四边形、三角形、梯形,让学生举手发言回答,这些图形的面积公式分别是什么,谁说的对,老师就把礼物送给谁,这样做既可以充分调动学生的积极性,为本节课后面环节提供积极活跃的气氛,也可以复习这些图形名称及相应的面积公式,为确保正确的计算组合图的面积打下基础。再让学生以小组为单位利用这些图形,设计拼搭组合图形,当学生创作完成,我让他们在小组内交流,并鼓励学生上台展示,向小伙伴介绍自己拼的图案像什么?是由哪些基本图形组成的?从而明确组合图形是由几个基本图形组合而成的,引出组合图形的概念。
这一环节通过拆礼物,送礼物的游戏,让学生在说一说,拼一拼,看一看的游戏过程中充分调动多种感官参与到学习中来 ,在浓厚的学习氛围中感受到知识来源于生活,而又服务于生活,明确生活中的很多问题都和组合图形有关。
经历了拆礼物游戏之后,学生的学习兴致非常高,这时我在呈现一个这样的生活情境:最近老师家的房子正在装修,正计划粉刷墙面呢,同时多媒体出示墙面的平面图。
(1)首先让学生观察、讨论:这个图形的面积我们是否学过呢?又可以把它分解成哪些基本的平面图形呢?学生通过前面的经验,以及小组讨论交流,学生可能会出现以下两种情况:
a、是把这个组合图形分解成一个三角形和一个正方形来计算。
b、是把这个组合图形分解成两个梯形。(对于这两种情况我都及时予以肯定)
(2)接着再问学生,你们是乐于助人的好孩子吗?那你们能不能开动脑筋帮助老师算一算粉刷这面墙老师需要买多少平方米颜料吗?这样的提问形式,学生当然很愿意去动手、动脑帮老师的忙。然后以比赛的形式让学生自己独立完成:比一比,看谁的方法多,谁能更快更好的帮老师算出来,而我就在下面巡视,并帮助个别有困难的学生。
(3)当学生独立完成后鼓励学生上台展示自己的计算方法,并介绍自己的方法。同时,我在用多媒体清晰、直观地向学生展示分割的过程。让学生更好的理解计算组合图形面积的方法。在让学生自主观察比较并在小组内交流讨论上面几种方法,最后让学生自己总结出求组合图形面积的计算方法:可以把一个组合图形分解成简单基本图形,再把分解出来大的简单图形的面积加起来,掌握“分割法”在解决这一生活问题环节中,我给学生足够的时间和空间,让学生积极主动地参与到学习中,通过自主探索,小组交流,获取更多的解题方法,让他们在小组活动中都有成功的体验和经验的收获。
这一环节,以小组比赛的形式帮助老师解决生活中的问题,激励了学生探索新知的欲望,激发学生学习的积极性。同时学生通过自己动手分割,以及多媒体的直观生动的演示让学生能更好的理解组合图形面积计算方法。
练习是为了学生及时巩固新知,并能用学到的新知进行迁移。为此我设计了以下的下练习:
(1)为了巩固新知,又突出本课的教学难点,我紧接着装修的问题情景,设计了给地面铺地板这一练习,先让学生自主独立的解决,学生会想到用四种方法来解决问题,并观察第四种方法,让他们自己观察比较出不同?从而引导学生感受计算组合图形的面积,有时也可以用一个图形的面积减去另一个图形的面积。渗透添补法。
(2)接着为了巩固这一难点,我又设计了一个判断题,淘气、笑笑、小明、和小丽,他们也正在求一个组合图形的面积,请你看一看,想一想,他们的做法都能求出这个组合图形的面积吗?你最喜欢谁的做法,为什么?让学生通过观察他们这四位同学的转化方法和这个组合图形所给的数据信息,来判断出,有的方法能够求出这个组合图形的面积,但是有的方法会因为没法得到一些关键数据信息而不能求出这个组合图形的面积,从而提醒大家要灵活应用所学的知识解决生活中的各种问题。
(3) 最后,我鼓励学生利用今天所学的知识,解决上课开始时,自己设计的组合图形的面积,由课内延伸到课后,做到了首尾呼应,让学生把掌握的知识拓展到实际生活中去。
好的板书就像一份微型教案,这节板书力图全面而简明的将授课内容传递给学生,清晰直观,便于学生理解和记忆理清学习的脉络。
组合图形的面积分割 转化基本图形添补
多边形说课稿八年级篇三
出示学生课前整理的多边形图形
教师请学生提问质疑。
生:长方形是怎样变成平行四边形的?
另一个学生介绍平行四边形是怎样转化成长方形的。
师:它们之间有什么联系?
学生指着图说明。
教师板书:新知识转化已学过的知识
师:平行四边形是怎么推导出三角形的面积公式?
学生交流展示。
师:从平行四边形的'面积怎样推导出梯形的面积公式?
学生回答。
师:通过这些整理,你有什么体会?
让学生上黑板前将几个图形摆一摆,画上箭头,形成网络图。
追问:我们还可以学习什么?(组合图形的面积)
板书:基本图形组合图形
二、练习(限时5分钟)
小组交流要求:
1.相互校对批改。
2.做对的同学教会做错的同学。
3.做错的同学上台讲解题目。
评析:
朱老师的课堂上作业练习限时完成后,组织“兵教兵”,组内校对批改,让做对的同学教会做错的,而且让做错的同学上台讲解。这样做,能充分发挥小组的作用,发挥小组合作学习的有效性,让需要帮助的学生得到最大的收获。学生上台讲解语言流畅、自信、自然,可见展示交流是一种常态,平时肯定也是坚持进行生本教学的。
前半部分梳理多边形的面积,应该将重点放在网络图的构建上,而课堂上花了较多的时间复习面积公式的推导,这样不太合理。
多边形说课稿八年级篇四
今天我说课的题目《多边形及其内角和》,这是我在进行完这节课的教学后结合着课堂进行情况以及我对《新课程标准理》的理解从以下几个方面进行的反思。
《多边形的内角和》选自人教版八年级上册的第十一章第三节,《多边形内角和》是本章的一个重点,是三角形有关知识的拓展,是以后学平面镶嵌的基础,多边形内角和公式的运用还充分体现了图形与客观世界的联系。在内容上,起着承上启下的作用,是在学生学习了一元一次方程、三角形内角和知识和多种平面几何图形的基础上进行的,目的是使学生进一步了解多边形的性质,感受图形世界的现实性和丰富多彩,同时在教学中渗透类比,转化等思想方法培养学生用联系的变换的观点思考问题。
1、我所任教的班级,大部分学生来自农村,基础知识参差不齐,但从小独立性较强,性格活泼,喜欢合作讨论,对数学学习有较浓厚的兴趣。经过了一年的小组合作方式的磨合,大部分学生已经养成了良好的学习习惯,具有一定的理解能力和归纳能力。
2、学生已经学习了三角形的内角和,这为本节课的学习打下了一定的基础。八年级学生好奇心比较强,观察能力、动手能力、自主探究能力都得到一定的训练,所以在探究任意四边形内角和时学生采用了测量、拼图、折纸、分割的方法,但是把多边形转化为三角形这一过程是学生学习的难点,所以在探究的过程中注重了把难点分散,有利于学生对本课知识的学习和掌握。
根据《新课程标准》的要求,本节内容的特点以及学生的情况,我确定以下教学目标和重、难点。
【知识与技能】
认识多边形,了解多边形的定义,多边形的顶点、边、对角线、内角及外角等概念;探索并掌握多边形内角和定理与外角和公式,在理解的基础上运用其解决简单的实际问题。
【数学思考】
学生通过猜想、动手实践、合作交流,归纳等活动探索多边形的内角和公式与外角和公式,激发学生兴趣、调动学生积极性、鼓励学生的的创造性思维,感受数学思考过程的条理性。
【问题解决】
通过探索多边形的内角和获得分析问题和解决问题的一些基本方法,并体验解决问题方法的多样性,发展创新意识,渗透转化思想在数学学习中的应用。
【情感态度】
在数学学习过程中,体验学习的快乐、获得成功的喜悦,激发对图形学习的好奇心,形成积极参与数学活动、主动与他人交流合作的意识。
【教学重点】探索多边形的内角和公式。
【教学难点】探究多边形内角和时,如何把多边形转化成三角形。
在这节课的教学中我结合了学生的实际情况和教学目标,借鉴了美国教育学家杜威的“做中学”的教育理论,运用了如下的教学方法。
1.教学方法:
根据新课成标准,教师教学应该以学生的认知发展水平和已有的经验为基础、面向全体学生,注重启发式和因材施教。教师要发挥主导作用,处理好讲授与学生自主学习的关系,引导学生独立思考、主动探索、合作交流,使学生理解和掌握基本的数学知识与技能,体会和运用数学思想和方法,获得基本的数学活动经验。整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,合作者,而学生才是学习的主体。
2.学习方法:
学生的学习应当是一个生动活泼的、主动的和富有个性的过程。所以利用学生的好奇心设疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,在学生在经历观察、实验、猜测、推理、验证等活动过程中,体会了数学学习方法,体验到了自主探索和合作交流快乐,更好更准确的理解和掌握了本节课的内容。
环节一:创设情景、引入新课
问题情景:将一张正方形卡片剪一刀,剩下的卡片是什么图形呢?
做一做:让学生拿出准备好的纸片和剪刀动手操作,并让学生展示自己剪出的图形。学生展示以下几种图形?(图)同时老师指出这些图形就是我们今天要研究的多边形。(意图是:通过动手操作,激发了学生的兴趣,学生体会到了图形之间具有一定的联系,顺理成章引出本节课的学习内容,符合学生的心里特征和认知规律,调动学生积极性,发展学生的创新意识。为整堂课的学习打下了基础)然后让学生自学多边形的定义,边,[x10]顶点,对角线,和内角,外角的概念以及凸多形的知识。
问题:三角形内角和是多少?(设计这个问题的目的是:因为探索多边形内角和的根本方法是把多边形转化为多个三角形,因此唤醒学生已有知识“三角形内角和等于180°”有助于解决后面的问题。),那么我们剪出的图形内角和是多少呢?与三角形有什么联系呢?(设计这个问题的目的是:使学生的兴趣转化为期待,进入下一个环节。)
环节二、动手操作、激发欲望
活动1:做一做:让学生用剪出的多边形纸片探四边形内角和。
(这一个环节我采取了小组合作的方式,给了学生充分的探究时间,鼓励学生积极参与,合作交流,学生在探究过程中采用了测量、拼图、折纸和做辅助线等多种方法,同时告诉学生测量、剪拼等活动可能会产生误差,由此让学生感觉到做辅助线在解决几何问题中的必要性。)
针对不同层次的学生,,适当的引导学生利用作辅助线的方法把多边形转化为三角形,鼓励学生寻找多种分割方法,深入领会转化的本质——将四边形转化为三角形问题来解决。然后让学生自己到黑板上展示自己的解决办法[x14]。
想一想:这些分法有什么异同点?学生积极思考,大胆发言,教师给予适当的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形分割的关键在于公共点的选取,并演示公共点在图形内、边上、顶点处。同时指出求多边形的内角和的方法[x15]是一样的,都是把多边形转化为三角形。
(这些活动的设计意图是:让学生通过猜想、动手操作、合作交流等数学活动获得知识,真正体会“做中学”的快乐,激发学生的学习兴趣、调动学生积极性、引发学生的数学思考,鼓励学生的的创造性思维,培养学生良好的数学学习习惯,并让学生在学习过程中,体验获得成功的乐趣,激发对图形学习的好奇心,形成积极参与数学活动、主动与他人交流合作的意识。)
活动2:让学生利用方法1填表:
多边形的边数
图形
能分成三角形的个数
多边形的内角和
(在教学过程中并没有告诉学生结论,而是采用让学生探索归纳、化未知为已知,自己去尝试从而培养学生的创新能力。)
环节三:巩固新知、知识共享
例题展示:
例1:求八边形的内角和的度数。
例2:一个正多边形的一个内角为150°,你知道它是几边形吗?
例3:一个多边形的内角和等于它的外角和的3倍,它是几边形?(设计这些例题的目的是巩固和应用内角和与外角和公式)
小试牛刀(这里利用学生喜欢竞赛的特征,我采用了分组展示,分组计分的形式,这样能够激发学生的学习兴趣,并能培养学生的合作意识和团队精神)
(1)一个多边形内角和是900°,它是边形
(2)十二边形的内角和等于度。
(3)一个多边形的每个外角都等于60°,它是边形。
环节四:回归情景、能力提升
将一个六边形截去一个三角形后,内角和是多少呢?这一环节我仍然采用的小组合作的形式,让学生动手画图,合作交流,分组展示。
(学生通过课前的动手活动对问题情景中的问题已经得到解决办法,类比四边形学生通过动手操作,合作交流,互相验证得出六边形的解决方法,设计这道题的意图是:渗透类比思想在数学学习中的运用,体会数学学习方法的重要性。)
环节五:畅所欲言、分享成果
请学生谈谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,通过这个环节使学生这节课所学的知识系统化。
最后用多媒体展示多边形图片结束本节课。(目的是让学生感受现实中多边形的丰富多彩和给我们的生活带来的美感)
多边形说课稿八年级篇五
在上周四下午因12学时到二十五中培训,有幸听到林老师的课。
环节一:探究多边形内角和性质,用时22分钟。学生从多方面探究多边形内角和的规律,有的学生从一个顶点出发画对角对角线,把多边形分成(n-2)个三角形,内角和为(n-2)×180;有的学生从多边形的一边上取点与多边形各顶点连结,分成(n-1)个三角形,内角和为(n-1)×180-180,最后化为(n-2)×180;也有的学生从多边形内部任意取一个点与多边形各顶点连结,分成n个三角形,内角和为n×180-360,最后也能化为(n-2)×180;殊图同归。这一环节精彩之处是:在学生探究五边形内角和时,有的学生不按老师的常理出牌,把五边形分成一个三角形和一个四边形来计算;然后在探究六边形的内角和时,就分成一个三角形和一个五边形,依此类推。
环节二:探究多边形外角和性质,用时7分钟。与环节一相似,也是让学生各抒已见。探究出多边形性质。
由环节一、二教师指出:找规律的方法,从特殊到一般。
环节三:两个性质的巩固练习。
有一道题是这样的:一个多边形的每个内角都是144度,求这个多边形是几边形。如果此题不留给学生思考和发言的机会,按教师的常理思考会用内角和性质:设多边形为n边形,再由(n-2)×180/n=144。再求出n。精彩之处:学生竟然用了外角和性质,先求出每一个外角为180-144=36,再用360÷36=10从而得出多边形为10边形,学生的思路和方法与老师想的不一致而且容易计算。
环节四:书上例题解答,教师还是依然放手让学生来完成。
学生一解答如同书上解答。
学生二的解答方案让在坐的.老师大吃一惊,竟然会在原六边形的一组对边上任意连结一条线段把原六边形分成两个五边形,根据五边形的内角和是540,两直线平行,同旁内角互补,快速就能求出所求三个角这和为540-180=360。太精彩了。
据统计:班级人数36人,学生回答问题达28人次,学生的参与度很高,学生学习热情非我的学生能比。
给我的启示:多给学生探究和思考的机会,他将会还你一个意想不到的精彩。
多边形说课稿八年级篇六
各位领导,各位老师大家下午好,很高兴有机会参加这次教学研究活动。
我的教学设计是华师大版七年级数学(下)第八章第三节"多边形的内角和与外角和"。根据新的课程标准,我从以下七个方面说一下本节课的教学设想:
从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。
学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。
【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想
【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。
【教学重点】多边形内角和及外角和定理
【教学难点】转化的数学思维方法
本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。
【课堂组织策略】利用学生的好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。
【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。
【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。
整个教学过程分五步完成。
1, 创设情景,引入新课
首先解决四边形内角的问题,通过转化为三角形问题来解决。
2,合作交流,探索新知。
更进一步解决五边形内角和,乃至六边形,七边形直到n边形的内角和,都能用同样的方法解决。学生分组讨论。
3, 归纳总结,建构体系。
多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。
4, 实际应用,提高能力。
5, 分组竞赛,升华情感
四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。
板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理
本节课在知识上由简单到复杂,学生经历质疑,猜想,验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。
多边形说课稿八年级篇七
我说课的内容是人教版七年级(下)册第七章第三节《多边形及其内角和》的第二课时。我将在新课程理念的指导下从以下七个方面进行说课。
多边形的内角和是在三角形内角和知识基础上的拓广和发展,是从特殊到一般的深化,是后面学习多边形镶嵌的基础,也是今后学习空间几何的基础,学好多边形内角和的内容,为学生认识探索客观世界中不同形状物体存在的一般规律打下基础,对发展学生的空间观念和几何直觉有很大的帮助。
1、我所任教的班级,大部分学生来自农村,由于自小独立性较强,具有较强的理解能力和应用能力,喜欢合作讨论,对数学学习有较浓厚的兴趣。大部分学生学习习惯和学习方式较好。
2、本节课让学生通过实验探索多边形内角和公式。在此之前学生对三角形、特殊四边形的内角和已经有了一定的理解和认识。估计学生在探究任意四边形内角和时会想到量、拼、分的方法,但是分割“多边形为三角形”这一过程会是学生学习的难点,在探究的过程中教师要想办法把难点分散,有利于学生对本课知识的学习和掌握。
新的课程标准注重学生经历观察、操作、猜想、归纳等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点、难点。
【知识与技能】
掌握多边形的内角和公式,并能熟练运用。
【数学思考】
(1)通过测量,类比,推理等教学活动,探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力。
(2)通过把多边形转化成三角形体会转化思想在几何中的运用,同时让学生体会从特殊到一般的认识问题的方法。
【解决问题】
通过探索多边形内角和公式,让学生尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。
【情感态度】
1、通过动手实践、相互间的交流,进一步激发学习热情和求知欲望。
2、体验猜想得到证实的成就感,在解题中感受生活中数学的存在,体验数学充满探索。并在探索过程中激发、培养学生的爱国主义热情。
基于以上教学目标,我确定以下教学重难点:
【教学重点】探索多边形的`内角和公式。
【教学难点】探究多边形内角和时,如何把多边形转化成三角形。
因此,本节课我借助课件辅助教学,可以更好的突破重难点,增强直观效果,丰富学生的感性认识,提高课堂效率。
本节课借鉴了美国教育家杜威的“在做中学”的理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”的思想,我确定如下教法和学法:
1.教学方法:
根据本节课的教学目标、教材内容以及学生的认知特点,我采用启发式、探索式教学方法,意在帮助学生通过观察,自己动手,从实践中获得知识。整个探究学习的过程充满了师生之间、学生之间的交流和互动,体现了教师是教学活动的组织者、引导者,而学生才是学习的主体。
2.学习方法:
利用学生的好奇心设疑,解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。
1、环节一:创设情景、引入新课
情景:请学生观察“上海世博园”的宣传视频。
从“情境认知理论”得知:图文加情境能有效提高课堂教学效率,而图文和情境并用可使效率提高到300%。通过观看上海世博园视频,能激发学生的爱国主义热情,并引导学生大胆提出问题,对建筑物的外观抽象成已知的三角形、长方形、正方形等多边形。提出问题:三角形的内角和是多少?设计这个问题的目的是因为探索多边形内角和与边数关系的根本方法是把多边形转化为多个三角形,因此唤醒学生已有知识“三角形内角和等于180°”有助于解决后面的问题。接下来提出问题,正方形、长方形的内角和是多少?学生回答后进入新课内容,根据三角形的内角和是个确定值,引导学生猜想任意四边形的内角和是多少?唤醒学生已有知识,将有助于本堂课问题的解决,也为后面习题作铺垫。
2、环节二:合作交流、探索新知。
活动1:
猜一猜:围绕“任意四边形的内角和等于多少度?”这一问题引导学生从正方形、长方形这两个特殊的多边形的内角和,很容易猜测出四边形的内角和等于360度。
议一议:你是怎样得到的?你能找到几种方法?这个环节学生可能出现“度量”、“剪拼”、“作辅助线”等等甚至更多的方法。为此我又抛出问题:五、六、七边形的内角和怎么求?你发现了什么?通过这个问题让学生自然过渡到用作辅助线的方法求多边形的内角和,同时也要告诉学生在测量和剪拼活动中可能会产生误差,由此感受到作辅助线在解决几何问题中的必要性。这一环节要给予学生充分的探究时间,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。
针对不同层次的学生,要适当的引导学生利用作辅助线的方法把多边形转化为三角形,鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。然后让学生表达自己解决问题的方法,并用电脑演示四边形分割成三角形的多种方法让学生体验数学活动充满探索,体验解决问题策略的多样性。
想一想:这些分法有什么异同点?学生积极思考,大胆发言,教师给予适当的评价和鼓励。教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形分割的关键在于公共点的选取,并演示公共点在图形内、外、顶点处。利用三角形内角和求得四边形内角和,这是数学学习中的一种常用转化的思想方法。
活动2:
做一做:选一种你喜欢的上述分割的方法,类比求四边形的内角和方法求五边形、六边形、七边形等的内角和,让学生再一次经历转化的过程,加深对转化思想的理解,通过增加图形的复杂性,再一次经历转化的过程,加深对转化思想方法的理解,体会由简单到复杂,由特殊到一般的思想方法。
议一议:
问题1:对比上面探究四边形内角和的过程,你能得出五边形的内角和?六边形的内角和?
问题2:能否采用不同的分割方法来解决这些问题?
问题3:n边形的内角和是多少?
活动3:
尝试完成第五列n边形的探究。
但是学生有可能出现其它的解决问题的办法,比如:由四边形内角和求五边形内角和,由五边形内角和再求六边形内角和,依次类推,边数每增加1条内角和就增加180°。但是这种方法给活动3公式的得出带来困难。所以教师要因势利导,给学生正确的评价。在探索的过程中再一次培养学生的推理能力和表达能力,以及选择解决问题的最佳方法的能力。
练一练:为了使学生达到对知识的巩固与应用,我特地设计了一组(5个)即时抢答题,通过这些题目学生当堂训练、独立计算,并根据学生都喜好竞赛的特点,采用抢答式完成。运用所学公式解决问题并巩固、理解、记忆公式。
抢答:
(1)过一个多边形一个顶点有10条对角线,则这是边形.
(2)过一个多边形一个顶点的所有对角线将这个多边形分成五个三角形,则这是边形.
(3)多边形的内角和随着边数的增加而,边数增加一条时它的内角和增加度。
(4)十二边形的内角和等于度。
(5)一个多边形的内角和等于720度,那么这个多边形是边形.
3、环节三:例题讲解,知识巩固
在此,我设计了2个例题,并对教科书上的例题作了较小的改动,书上的例1简略讲解,这个例题就是对四边形的内角和的简单应用,对于学生来说比较简单;对于例2我把书后面的85页习题第9题变成例题,这一道题目具有较好的典型性,特别是知识间的融会贯通,主要要求学生掌握:三角形、五边形的内角和,正五边形等相关知识。
4、环节四:分组竞赛、情感升华
(1)智慧大比拼
内容:p87的练习分成2类。
通过新颖的形式激发学生的竞争意识和主动参与活动的热情。学生利用当堂所学的知识解决问题,巩固本节知识。
(2)拓展探究
小组合作探究,引导学生分析可能的每一种截取情况,根据不同截法得出不同结论。鼓励学生积极参与思考、大胆尝试、主动探讨、勇于创新。让学生深刻的感受到合作交流的重要性,体会成功的喜悦。
(3)情系世博
引导学生利用多边形的内角和公式解释小明的设想能否实现。让学生感受到数学的趣味性,以及与实际生活之间的密切联系,并激发学生的爱国之情。
5、环节五:畅所欲言、分享成果
请学生谈自己学习过程中的收获,并整理自己参与数学活动的经验,回味成功的喜悦,形成良好的学习习惯,同时也是给学生正确地评价自己和他人表现的机会,这也是给教者本身一个反思提高的机会。通过这个环节使学生这节课所学的知识系统化,从感性认识上升为理性认识。
6、环节六:布置作业、课后提升
(1)习题7.3第2题、第4题。
(2)选做题:用另外两种作辅助线的方法证明多边形内角和定理。
采用分层布置作业,让不同水平的学生得到不同的发展,培养学生的思维灵活性及成就感,从而贯彻因材施教的原则。
评价学生,不仅仅是一个手段和结果,它对学生的人格、个性的发展有着极其重要的作用。新课程对课程的评价应把握形成性、发展性评价和终结性评价相结合,在实践中我打算在课堂上从以下几个方面进行评价:
1、评价在学习中各种能力〈如表达、想象、动手、思维、自学能力等〉的发展情况。
2、评价学习过程中的创新表现。
3、评价在学习过程中对身边事物、社会现实的关注程度。
评价必须最大限度地考虑最终结果,要以培养学生的荣誉感、自尊心和进取心为目的,使其产生获取成功的动力。
最后,我的板书设计力求简洁明了,便于学生观察比较、归纳总结,并体现教师的示范作用,突出本堂课的重难点,及主要的思想方法。
多边形说课稿八年级篇八
《多边形的面积》是五年级的数学的内容!下面是由小编为大家带来的关于《多边形的面积》
说课稿
,希望能够帮到您!小学数学关于几何知识的安排,是按由易到难的顺序进行的。本册教材承担着让学生学会平行四边形、三角形、梯形面积计算的任务。平行四边形面积的计算,是在学生已经掌握并能灵活运用长方形面积计算公式,理解平行四边形特征的基础上,进行教学的。本节课主要让学生初步运用转化的方法推导出平行四边形面积公式,把平行四边形转化成为长方形,并分析长方形面积与平行四边形面积的关系,再从长方形的面积计算公式推出平行四边形的面积计算公式,然后通过实例验证,使学生理解平行四边形面积计算公式的推导过程,在理解的基础上掌握公式。同时也有利于学生知道推导方法,为三角形、梯形的面积公式推导做准备。由此可见,本节课是促进学生空间观念的发展,扎实其几何知识学习的重要环节。
依据以上分析和新课标的要求,确定本节课要达到的教学目标如下:
(一)知识与能力目标:使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。
(二)过程与方法目标:培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。
(三)情感态度与价值观目标:培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。
(四)教学重点、难点:
教学重点:探究并推导平行四边形面积的计算公式,并能正确运用
教学难点:平行四边形面积公式的推导方法—转化与等积变形。
关键点:通过实践——理论——实践来突破掌握平行四边形面积计算的重点。利用知识迁移及剪、移、拼的实际操作来分解教学难点平行四边形面积公式的推导。关键是平行四边形与长方形的等积转化问题的理解,通过“剪、移、拼”找出平行四边形底和高与长方形长和宽的关系,及面积始终不变的特点,归纳出平行四边形等积转化成长方形。
通过平时的学情观察,我发现学生已经掌握了平行四边形的特征和长方形面积的计算方法,并且有些学生对平行四边形的面积内容并不陌生,已经有了一定的认识,但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此, 这是学生学习这一内容的重点和难点。同时,学生的认识水平存在着差异性,如何让不同层次的学生都有一定程度的发展和提高,也是教学中要考虑的重点。为突破重难点,关键要遵循小学生认识事物的一般规律,充分发挥现代技术的作用,运用多媒体辅助教学,为学生提供生动、形象、直观的材料,激发学生学习的积极性和主动性。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。我打算为本节课准备的教具(学具)有多媒体
课件
、自制长方形框架、方格纸、课件、平行四边形纸片、剪刀、直尺等。运用迁移规律,注意从旧到新、引导学生在整理旧知的基础上学习新知,体现“温故知新”的教学思想。
针对几何知识教学的特点、本节课的教学内容以及小学生以形象思维为主,我打算主要采用动手操作,自主探索,合作交流的学习方式,通过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习积极性。通过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、老师为主导的教学原则。
为了体现学生的主体性和创新性,在教学中,采用反馈教学法进行教学,给学生提供一个参与平行四边形面积公式形成和运用的机会,使学生不仅“学会”而且“会学”。
自主探究与合作交流是小学数学新课程标准倡导的学生学习数学的重要方式。学生的学习活动不仅是为了获得知识,而更重要的是掌握获得知识的方法。本节课我以培养学生的实践能力、探索能力和创新精神为目标。在教学过程中,我培养学生初步感知和运用转化的方法,引导学生自主探究与合作交流,通过观察、比较、操作、概括等行为来解决新问题,通过一系列活动,培养学生动手、动口、动脑的能力,使学生的观察能力、操作能力、抽象概括能力逐步提高,教会学生学习。
小学生学习的数学应该是生活中的数学,是学生“自己的数学”。让学生在生活情境中“寻”数学,在实践操作中“做”数学,在现实生活中“用”数学。
为了能更好地凸显“自主探究”的教学理念,高效完成教学目标,我设计如下课堂教学环节:
(一)巧设情境,铺垫导入
(二)合作探索,迁移创造
(三)层层递进,拓展深化
(四)总结全课,提高认识
下面我就分别从这四个方面说一说:
新课开始,我先拿出一个长方形框架,让学生回忆长方形的面积计算公式,以唤取学生对旧知识的回忆,为新知识的学习做好铺垫。
随后我把长方形框架拉成了平行四边形框架,并让学生比较周长是否发生变化?面积是否发生变化?通过这些问题,促使学生积极动脑猜想,平行四边形的面积和它的什么东西有关系。
为说明面积发生变化,引出数方格求面积的方法。数方格的时候注意提醒学生先数整格、后数半格,并提示数半格的方法。通过数方格,学生很容易知道拉成后的平行四边形的面积比原来长方形的面积要小了。这时我启发学生平行四边形的面积计算和长方形是不一样的,不可能等于相邻两条边的乘积了。那么拉成后的平行四边形的面积为什么会变小呢?平行四边形的面积究竟和什么有关呢?从而引出本节课的课题:平行四边形的面积计算(板书)
心理学家皮亚杰指出:“活动是认知的基础,智慧从动作开始”。动手操作过程是学生学习的一种循序渐进的探索过程。学生只有具备了较强的动手操作能力,才能充分感知和建立表象,为分析和解决问题创造良好的条件。
由于前面在数格子时已经有同学提到用割补的方法来求面积,所以我顺水推舟,让学生动手操作,想办法将平行四边形转化为长方形。操作之后进行汇报,交流自己的验证过程。汇报的时候,我引导学生有序按照三个步骤——怎么画、怎么剪、怎么拼来说。同时,我及时抛给学生这样一个问题:“拼成的长方形面积变了没有?”引发学生积极开动脑筋思考。之后,请学生展示不同方法。
汇报后,我总结了预设的两种基本方法,并用媒体展示了过程,使学生更清楚地了解等积转化的过程。然后我又引导学生观察这两个图形并比较,进而讨论:拼出的长方形与原来平行四边形什么变了,什么没变?拼成长方形的长和宽与原来平行四边形的底和高有什么联系?通过上面问题的思考,学生对平行四边形公式的推导有了更深的认识,这时我顺势引导学生得出推导过程:将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底或高,拼成的长方形的宽相当于原来平行四边形的高或底。接着我让学生根据填空同桌互相说一说整个操作过程,使学生真正理解平行四边形转化成长方形的过程。
将一个平行四边形通过剪、拼后转化为一个长方形,拼成的长方形的长相当于原来平行四边形的底或高,拼成的长方形的宽相当于原来平行四边形的高或底,平行四边形的面积就等于长方形的面积,因为长方形的面积=长×宽,所以平行四边形的面积=底×高,公式用字母表示s=ah,并让学生齐读和书空。
刚才用数方格的方法算出了平行四边形的面积,现在让学生用公式计算并验证。同时,我及时让学生反馈用公式计算要知道什么信息。并让学生比较数方格和公式计算哪种方便。培养学生用心学习观察的情感。
例1:平行四边形花坛的底是6m,高是4m,它的面积是多少?引导学生写完整整个解题过程。
新课标指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。”这一环节的
教学设计
,我发挥教师的引导作用,倡导学生动手操作、合作交流的学习方式,进而建构了学生头脑中新的数学模型:转化图形——建立联系——推导公式。整个过程是学生在实践分组讨论中,不断完善提炼出来的,这样完全把学生置于学习的主体,把学习数学知识彻底转化为数学活动,培养了学生观察、分析、概括的能力。对于新知需要及时组织学生巩固运用,才能得到理解与内化。我本着“重基础、验能力、拓思维”的原则,设计四个层次的练习题:
有利于学生加深对公式的理解,举一反三,知道求高和求底的公式。
强化公式中对高的理解,知道高是底边上对应的高。
让学生自己动手作高,并量出平行四边形的底和高,再计算面积,这个过程也体现了“重实践”这一理念。
猜一猜:如果让你设计一个平行四边形的
黑板报
栏目,要求面积是24平方分米,那么底和高各是多少?(底和高都是整数)发散学生思维,在一定程度上对学生进行几何美的教育。
整个习题设计部分,虽然题量不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生面对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识和解决问题的能力。
小结:这节课你有什么收获?
有利于学生对本节课所学知识有个系统的认识,充分提高归纳和总结能力。
总之,以上教学程序的设计遵循学生的认知规律,我大胆放手让学生探究、交流,让学生感觉到数学的生动好玩,学生在一次次引导中操作、思考、解决问题,其外部活动逐渐转化为自身内部的智力活动,从而使学生获取了知识,发展了智力,培养了积极的学习情感,三维目标得到了有机的整合。
多边形说课稿八年级篇九
学生已经学完三角形的内角和,对内角和的问题有了一定的认识,加上八年级的学生好奇心、求知欲强,互相评价、互相提问的积极性高、因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,所以把这节课设计成一节探索活动课是切实可行的。
本节课是《义务教育课程标准实验教科书》北师大版八年级上册第四章第六节《探索多边形内角和与外角和》的第一课时、本节内容是七年级上册多边形相关知识的延展和升华,并且在探索学习过程中又与三角形相联系,从三角形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,联系性比较强,特别是教材中设计了现实情境,“想一想”,“议一议”等内容,体现了课改的精神、在编写意图上,编者强调使学生经历探索、猜想、归纳等过程,回归多边形的几何特征,而不是硬背公式,发展了学生的合情推理能力。
【知识与技能】掌握多边形内角和定理,进一步了解转化的数学思想
【过程与方法】经历质疑、猜想、归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。
【教学重点】多边形内角和定理的探索和应用。
【教学难点】多边形定义的理解。多边形内角和公式的推导。转化的数学思维方法的渗透。
本节课分成七个环节:
第一环节:创设现实情境,提出问题,引入新课。
第二环节:概念形成。
第三环节:实验探究。
第四环节:思维升华。
第五环节:能力拓展。
第六环节:课时小结。
第七环节:布置作业。
1、多媒体展示蜂窝,教师结合图片让学生发现生活中无处不在的多边形。
2、工人师傅锯桌面:一个四边形的桌面,用锯子锯掉一个角,还剩几个角?
1、通过现实情境的展示,调动学生的情绪,激发起进一步学习的兴趣。
2、把学生的注意力自然的引入研究方向,为课题的研究做铺垫。
1、借助多媒体显示一多边形,学生类比三角形的有关知识对多边形定义、并表示出相应的元素。
2、教师再给出严格规范的定义,特别借助学具说明“在平面内”的必要性、此外,说明正多边形的定义以及多边形可分为凸多边形和凹多边形。
1、对于边角这些能在图形中识别而又不要求学生掌握的描述性定义,采取学生类比三角形的表示方法来归纳,渗透类比的数学思想。
2、借助于自制的直观教具,说明多边形定义中“在平面内”这一条件,易于学生理解,化解了难点。
(以四人小组为单位展开探究活动)
提出问题:三角形的内角和为180°,那么多边形的内角和是多少度呢?从四边形开始研究。
活动一:利用四边形探索四边形内角和
要求:先独立思考再小组合作交流完成)
(师巡视,了解学生探索进程并适当点拨)
(生思考后交流,把不同的方案在纸上完成)
多边形说课稿八年级篇十
从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。
学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。
【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想
【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。
【教学重点】多边形内角和及外角和定理
【教学难点】转化的数学思维方法
本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。
【课堂组织策略】利用学生的好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。
【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。
【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。
整个教学过程分五步完成。
1,创设情景,引入新课
首先解决四边形内角的问题,通过转化为三角形问题来解决。
2,合作交流,探索新知。
更进一步解决五边形内角和,乃至六边形,七边形直到n边形的内角和,都能用同样的方法解决。学生分组讨论。
3,归纳总结,建构体系。
多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。
4,实际应用,提高能力。
5,分组竞赛,升华情感
四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。
板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理
本节课在知识上由简单到复杂,学生经历质疑,猜想,验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。
多边形说课稿八年级篇十一
林老师在整节课中一直是学生学习活动的组织者、指导者和合作者,而学生则是一个发现者、探索者,有效地发挥他们的学习主体作用,是一节成功的新授课。
在本节课上林老师有效引导学生通过类比三角形的内角和,结合图像引导学生进行探索多边形的内角和,及时将发散思维进行集中化,培养学生及时思考归纳方法的习惯,都给我留下了深刻的印象。以下是我对本节课的一些体会。
1.利用已有知识,渗透类比思想及转化思想(化未知为已知,化四边形的问题为三角形的问题)
本节课教学设计,充分尊重学生的已有经验,密切联系了学生的已有的旧知识,巧妙地利用学生熟悉的三角形的内角和知识,产生正向的知识迁移,使学生感觉到所学的新知识与以前所学的旧知识是有很大联系的,两者之间有很多相同点,更加深了他们对两者之间的不同点的关注,这对于解决这节课的学习,起到了潜移默化的作用,同时也增进学习数学的积极情感。
2.巧妙引导,在探究中构建新知
本节课的教学设计的核心部分就是多边形内角和的探究,新课程理念下的数学教学,数学知识的教育已经不是教学的全部内容了,如何在知识教育的同时培养学生的观察、探究、合作、归纳等方面的能力才是新课程改革的主导方向,这节课的教学设计在这一方面做了良好的尝试,并完美的呈现。多边形的内角和公式并不是老师直接给出或是由老师的推导出来的,老师通过组织学生分组探究,交流,提问,验证等形式,由学生自主地归纳出多边形的内角和公式,利用这种方法学生既可以获得相关的'数学知识,同时也能培养出相应的数学技能,这也正是新课标的要求。也是整节课的精彩所在。
3.尊重学生,并适时的对学生进行情感教育。
在课上我们看到教师在尽量做到让每个学生都有表现自己的机会,让学生在数学活动中获得到一种积极的成功体验的同时不忘对学生进行情感教育。如在本节课即将结束之时问学生:“你们认为本节课谁最值得我们学习?”既是教师对学生的肯定,也是教师对学生的希望。因此课堂上教师对学生进行的适时且有效的情感教育,这对学生的心理成长和学习都有很大帮助。
多边形说课稿八年级篇十二
各位领导,各位老师:
大家下午好,很高兴有机会参加这次教学研究活动。
我的教学设计是华师大版七年级数学(下)第八章第三节"多边形的内角和与外角和"。根据新的课程标准,我从以下七个方面说一下本节课的教学设想:
从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些"想一想""试一试""做一做"等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。
学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。
新的课程标准注重学生所学内容与现实生活的联系,注重学生经历观察,操作,推理,想象等探索过程。根据新课标和本节课的内容特点我确定以下教学目标及重点,难点。
【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想
【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。
【教学重点】多边形内角和及外角和定理
【教学难点】转化的数学思维方法
本次课改很大程度上借鉴了美国教育家杜威的"在做中学"的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"及初一学生的特点,我确定如下教法和学法。
【课堂组织策略】利用学生的好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。
【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。
【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。
整个教学过程分五步完成。
1,创设情景,引入新课
首先解决四边形内角的问题,通过转化为三角形问题来解决。
2,合作交流,探索新知。
更进一步解决五边形内角和,乃至六边形,七边形直到n边形的内角和,都能用同样的方法解决。学生分组讨论。
3,归纳总结,建构体系。
多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。
4,实际应用,提高能力。
"木工师傅可以用边角余料铺地板的原因是什么"这既是对本节所学知识在现实生活中的应用,又是本章第一节的延伸,同时也为下节打下了一个铺垫。
5,分组竞赛,升华情感
四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。
板书本节课学生所需掌握的知识目标:即多边形内角和与外角和定理。
本节课在知识上由简单到复杂,学生经历质疑,猜想,验证的同时,在情感上,由好奇到疑惑,由解决单个问题的一点点快感,到解决整个问题串的极大兴奋,产生了强烈的学习激情。这时,一次有效的教学竞赛活动,使学生的学习激情得到释放,学科个性得以张扬,教师稍加点拨,适可而止,把更多的思考空间留给学生。
多边形说课稿八年级篇十三
从教材的编排上,本节课作为第八章的第三节是承上启下的一节,在内容上,从三角形的内角和到四边形的内角和到多边形的内角和环环相扣,前面的知识为后边的知识做了铺垫,知识联系性比较强,特别是教材中设计了一些“想一想”“试一试”“做一做”等内容,体现了课改的精神。在编写意图上,编者有意从简单的几何图形入手,让学生经历探索,猜想,归纳等过程,发展了学生的合情推理能力。
二,学生情况
学生上节课刚刚学完三角形的内角和,对内角和的问题有了一定的认识,加上七年级的学生具有好奇心,求知欲强,互相评价互相提问的积极性高。因此对于学习本节内容的知识条件已经成熟,学生参加探索活动的热情已经具备,因此把这节课设计成一节探索活动课是切实可行的。
三,教学目标及重点,难点的确定
【知识与技能】掌握多边形内角和与外角和定理,进一步了解转化的数学思想
【过程与方法】经历质疑,猜想,归纳等活动,发展学生的合情推理能力,积累数学活动的经验,在探索中学会与人合作,学会交流自己的思想和方法。
【情感态度与价值观】让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。
【教学重点】多边形内角和及外角和定理
【教学难点】转化的数学思维方法
四,教法和学法
本次课改很大程度上借鉴了美国教育家杜威的“在做中学”的理论,突出学生独立数学思考活动,希望通过活动使学生主动探索,实践,交流,达到掌握知识的目的,尤其是本节课更是一节难得的探索活动课,按新的课程理论和叶圣陶先生所倡导的“解放学生的手,解放学生的大脑,解放学生的时间”及初一学生的特点,我确定如下教法和学法。
【课堂组织策略】利用学生的'好奇心,设疑,解疑,组织活泼互动,有效的教学活动,鼓励学生积极参与,大胆猜想,积极思考,使学生在自主探索和合作交流中理解和掌握本节课的有关内容。
【学生学习策略】明确学习目标,在教师的组织,引导,点拨下进行主动探索,实践,交流等活动。
【辅助策略】利用多媒体课件展示三角形内角和向多边形内角和转化,突破这一教学难点,另外利用演示法,归纳法,讨论法,分组竟赛法,使不同学生的知识水平得到恰当的发展和提高。
五,教学过程设计
整个教学过程分五步完成。
1,创设情景,引入新课
首先解决四边形内角的问题,通过转化为三角形问题来解决。
2,合作交流,探索新知。
更进一步解决五边形内角和,乃至六边形,七边形直到n边形的内角和,都能用同样的方法解决。学生分组讨论。
3,归纳总结,建构体系。
多边形内角和已得出,对外角和更是水到渠成,这时要适当的总结,让学生自己得到零散的知识体系。
4,实际应用,提高能力。
5,分组竞赛,升华情感
四组不同难度的电子试卷,既巩固本节课所学的知识,又使学生本节课产生的激情得以释放。
【本文地址:http://www.xuefen.com.cn/zuowen/17152576.html】