组合图形的面积计算的数学教案(汇总17篇)

格式:DOC 上传日期:2023-12-03 13:34:18
组合图形的面积计算的数学教案(汇总17篇)
时间:2023-12-03 13:34:18     小编:LZ文人

教案是教师为了指导学生的学习,合理安排和组织教学活动而制定的一种特定形式的书面材料。编写教案时,首先要明确教学目标,确定学习内容和学习要求。范文中的教学资源使用合理,能够充分支持教学活动。

组合图形的面积计算的数学教案篇一

1、知识与技能:

(2)能正确地分析图形,并能正确地求组合图形的面积。

2、能力目标:

(1)通过实践操作、练习,提高观察、分析能力和解题的灵活性;

(2)培养学生的自主探索、合作学习的能力。

3、情感与态度:

(1)培养学生积极参与数学学习活动的习惯;

(2)在学习过程中让学生体验到成功的乐趣,增强学习数学的信心。

组合图形的面积计算的数学教案篇二

《组合图形的面积》是第五单元的第一课。学生在三年级已学习了长方形和正方形的面积计算,在教材第二单元又学习了平行四边形、三角形和梯形的面积计算,本课组合图形面积的计算是这些知识的延展,也是实际生活中需要解决的。问题。在已有知识基础上学习组合图形,一方面可以巩固基本图形的面积计算,另一方面还能将所学知识加以综合运用,提高学生解决实际问题的综合能力。

作为五年级的学生,通过之前的学习对于平面基本图形的感知和认识已有了一定的基础,也掌握了一些计算图形面积和解决图形问题的方法。但本班学生分析思考能力较差,基础较薄弱,所以应进一步提高知识的综合运用能力,加强团体合作精神,善于去交流思考,探索解决问题的策略。

教学目的:

1、在自主探索活动中,理解计算组合图形面积的多种方法。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,解决生活中组合图形的实际问题。

1、通过联系生活实际,使学生感受到计算组合图形面积的必要性。

2、学生通过参与探索活动,思维得到拓展,能力得到了提升,同时也掌握了多种解题策略。

3、通过小组探索研究,使学生认识到与人合作的重要性,从而加强合作意识。

1、在解决组合图形面积时,通过认真观察,独立思考、自主探索寻找解决问题的策略。

2、通过小组讨论交流,理解解决问题的多种策略,从而经过比较选择最好的解题方法。

重点:能正确计算组合图形的面积。

难点:能根据各种组合图形的条件,正确选择计算方法并解答。

组合图形的面积计算的数学教案篇三

通观整节课,学生在原有的平行四边形,三角形,梯形的面积计算的学习的基础上,本节课学生能够自主学习,从数树叶的方格上导入,到转化成相似的学过的平面图形求树叶的面积,不仅实现了对本节课学习目标的引入,还培养了学生的`动手能力。

在我们的日常生活中,会经常接触到各种不规则的图形,还要求学生有较强的估算能力,并能灵活应用所学的知识点尝试解决问题。但学生在应用估算解决实际问题的意识不强。

组合图形的面积计算的数学教案篇四

《组合图形面积》是义务教育课程标准实验教科书(北师大版)五年级数学上册第五单元中的一节内容(北师大版义务教育课程标准实验教科书五年级数学上册第7576页的内容),这一内容是在学生已经学习了长方形与正方形,平行四边形、三角形与梯形的面积计算的基础上,学习组合图形面积,一方面可以巩固已学的基本图形,另一方面则能将所学的知识进行综合,提高学生的综合能力,发展学生的空间观念,为以后立体图形的学习做好铺垫。

1、在自主探索的活动中,理解计算组合图形面积的多种方法。

2、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3、能运用所学的知识,解决生活中有关组合图形的实际问题。

让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

1、结合具体的题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。

2、渗透转化的数学思想和方法。

学生能够通过自己的动手操作,掌握用分割法和添补法求组合图形面积的计算方法。

理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的条件,分成已学过的图形,选择有效的方法求组合图形的面积。

教学准备:

多媒体课件和组合图形图片。

1、介绍笑笑和她家的新房子。

师:同学们,请看大屏幕,你们还记得她是谁吗?欢迎她今天和我们一起来学习吗?她还想把她家那漂亮的房子介绍给同学们呢!我们先听听她怎么说,好吗?(课件出示笑笑和她家的新房子,笑笑说:欢迎!欢迎!同学们,这是我家的新房子,漂亮吧?)。

2、引导学生观察,复习有关平面图形面积的计算公式。

师:从这座房子中可以找到哪些平面图形?会求它们的面积吗?

3、欣赏图片(课件出示一组图片)。

师:请观察这几个图形,它们有什么共同的特征呢?(指名回答)。

4、教师总结,揭示课题并板书。

师:说得真好!像这样由两个或两个以上的简单的图形组合而成的一种图形我们把它称为组合图形(板书:组合图形),今天我们就一起来探究组合图形面积的计算(板书:面积)。

笑笑家的新房正在装修,但却遇到了几个难题,需要同学们帮帮忙,你们愿意吗?那我们就一起来看看吧。(课件出示笑笑和她家客厅的平面图,笑笑说:这是我家的客厅,计划给它铺上地板。你们来得真巧,快来帮我算算,我家至少要买多大面积的地板呢?)。

1、估计地板的面积。

请同学们先估一估她家至少要买多大面积的地板呢?(学生说数据,师板书)。

同学们估的数据都不大一样,谁估得最接近呢?下面我们就一起来验证一下吧!请同学们观察这个图形,这是一个(组合图形),这样的图形的面积我们以前学过了吗?你会用什么方法来求它的面积呢?请把你的想法用虚线在客厅平面图中表示出来。再与同桌说说自己的想法。

(1)生动手画图。

(2)汇报交流:同学们做好了吗?现在谁来说说你的想法?

3、师生归纳方法并比较。

(1)观察找特点。

根据学生的汇报小结四种基本方法(课件演示)(师小结:分成的图形越简洁,其解题的方法也将越简单。所以我们以后在计算组合图形的面积时要学会选择简便的方法进行计算。)。

(2)引导比较,对方法进行分类,找出最简单的。方法。

师:请同学们观察这三种方法,它们有什么相同的特点呢?像这样的方法我们把它称为分割法添补法(板书)它们都是计算组合图形常用的方法。(师小结:其实不管是分割法还是添补法,我们都是为了一个共同的目的,那就是把这个组合图形转化成已学过的图形,就容易计算出它的面积了。)。

(3)现在,你能计算这个客厅地板的面积了吧!请根据下面的提示求出这个客厅地板的面积。(课件出示,学生齐读:要算每个小图形的面积分别需要哪些条件?请找一找,并标出来,再列式计算。)。

(4)学生独立计算,四人板演。

(5)汇报交流,集体订正。

(6)引导比较(同学们现在我们已经计算出了这个组合图形的面积,请把计算出的正确答案与刚才同学们估计的数据比较一下,谁估得最接近呢?(表扬最接近的同学)。

4、归纳算法。

刚才我们帮笑笑计算出了客厅的面积即组合图形的面积。现在一起来回忆一下计算组合图形面积的计算过程。

师生齐说:刚才我们先用分割或添补的方法把组合图形转化成了以前学过的平面图形,然后找出计算每个小图形所需的条件,再计算出组合图形的面积。

1、画一画:你能用最少的线段把下面各个图形分成已学过的图形吗?(课件出示)。

(1)学生拿出先准备好的图形,动手画。

(2)展示交流。

观察图形选择方法独立计算汇报交流。

(1)需要粉刷的面积一共是多少平方米?

(2)如果每平方米需要0.15千克涂料,一共要用多少千克涂料?

观察图形选择方法独立计算汇报交流。

3、求门油漆的面积。

师:同学们以自己的聪明才智帮笑笑又解决了一个难题,咱们再听听她怎么说。课件出示:笑笑说,同学们,你们个个都是好样的。可还得请你们再帮我一个忙,我家要油漆6扇门的外面(门的形状如图,单位:米)。

(1)需要油漆的面积一共是多少?

(2)如果油漆每平方米需要药费5元,那么我家共要花费多少元?

这节课你学会了什么?

(师小结:这节课我们学会了计算组合图形的面积,这部分知识在实际生活中是经常会用到的,相信同学们都能很好的运用这些知识,解决一些实际问题。)。

师:请同学们课后在身边的事物中找一个组合图形,并想办法求出它的面积。

1.6m4m10。

板书设计:

s=ab分割。

s=aas=ah转化。

基本图形。

s=ah2s=(a+b)2添补。

组合图形的面积计算的数学教案篇五

我校是白银市白银区的一所城区中心小校,多媒体设施比较齐全,可以进行课件演示及实物投影多媒体辅助教学,而且是北师大版五年级教材的使用学校。

组合图形面积是由直观走向抽象的一节内容,重在方法的挖掘。在教学中,不能以教师为中心来死搬硬套教材,应合理地利用了教材资源。使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力,然后逐步展开有层次的思维训练,开阔学生的思维空间,鼓励学生积极探索。

组合图形面积是在长方形、正方形、平行四边形、三角形和梯形这五个基本图形的面积公式学习之后,进行的一种由形象到抽象的学习。解题的基本理念是将组合图形转化为基本图形进行计算,需要发散学生的思维,会分析图形的构成,能够正确分析图形的隐含数据条件,鼓励学生算法多样化。

1、知识与技能。

(1)、在自主探索的活动中,理解计算组合图形面积的多种方法。

(2)、能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

(3)、能运用所学的知识,解决生活中组合图形的实际问题。

2、过程与方法:

让学生在自主探索的基础上进行合作交流,从而归纳组合图形面积的计算方法。

3、情感态度与价值观:

(1)、结合具体题例,感受计算组合图形面积的必要性,产生积极的数学学习情感。

(2)、渗透转化的数学思想和方法。

3、关键:学会运用“分割”与“添补”的方法计算组合图形的面积。

基本图形卡片、七巧板以及多媒体课件。

一课时。

(一)观察动画,复习旧知,引出新知。

1、观察动画,分析引入。

(媒体出示由基本图形拼成的太阳、狗、房子、小鸡、花草树木等)。

师:观察这幅图画,你发现了什么?

生:很多的基本图形,组成了很多的图形)[板书:基本图形]。

师:这些由基本图形组合而成的图形,就叫做组合图形。[板书:组合图形]。

2、复习基本图形面积公式。

师:还记得我们都学过哪些基本图形吗?

(随着学生回答,按学习的顺序贴各个基本图形)。

问:那谁还记得这些基本图形的面积公式?

(随着学生回答,在各个基本图形后面写公式)。

师:真不错,看来同学们对面积公式知识的掌握相当扎实。那像这些组合图形,怎么求面积呢?有同学已经有想法了。今天这节课,我们一起来探索组合图形面积的计算方法?(板书:在组合图形后面增加“面积”)。

(设计意图:通过拼图游戏,激发学生学习的兴趣,学生兴趣浓厚的动手操作,在操作过程中理解了组合图形的意义。使课堂一开始就进入了一种轻松的学习氛围。)。

(二)动手拼图,初探方法。

1、自拼图形,分析要素。

师:拿出你的学具袋和做题纸。请一位同学来给大家读读要求吧。

请你从学具中任选两个基本图形,拼出一个组合图形,粘在答题纸的方框内。

边做边思考:

师:你拼的组合图形由什么基本图形组成的?这些基本图形的要素是什么?

(学生活动,教师巡视,指导画高。)。

2、展示图形,分析条件。

(学生分别介绍所拼的组合图形后,教师选择其中的一个作重点分析。)。

师:现在,我们来看右面的组合图形(见右下图),它是由一个三角形和一个长方形组成的。有一条边既做三角形的底又做长方形的长,是公共边。

(强调公共边:既做长方形的长,又作三角形的底。)。

3、打开思路,探索面积。

生:分另计算三角形与长方形的面积,然后相加。

组合图形的面积计算的数学教案篇六

教科书第90页的例题,完成例题下面的”做一做“和练习二十一的题目。

使学生初步了解组合图形面积的计算方法,会计算一些比较简单的组合图形的面积。

将复习中的图画在小黑板上,再将教学例题时所用的图也画在小黑板上。

一、复习。

问:第一个图形是什么形?它的面积怎样计算?(学生回答,教师在长方形下面板书:s=ab,其他图形,学生分别回答后,教师在每个图的下面写出相应的计算面积的公式。)。

二、新授。

1、教学例题。

教师:组合图形就是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。在实际生活中有进需要计算这些组合图形的面积。例如有些房子侧面墙的形状是这样的:(出示小黑板)。

问:这个图形的面积我们过去学过吗?(让学生仔细观察一下)。

我们虽然没有学过计算这个图形面积的计算公式,可是能不能把这个图形分成几个我们已经学过的图形呢?怎样分?(指名学生到黑板前画一画,教师标出相关尺寸。)。

现在把这个图形分成了一个三角形和一个正方形,它的面积怎样计算?(学生看教科书第90页上的例题,把书上的算式填完整。)。

:在实际生活中我们见到的物体表面,有很多图形是由我们已经学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。计算这些图形的面积,一般是先把它们分成已学过的简单图形,分别计算出各个简单图形的面积,然后再把它们合起来,便可以求整个组合图形的面积。)。

2、做例题下面”做一做“中的题目。

先让学生读题。

问:“这块菜地可以看成是由哪些图形组合而成?”

让每个学生在练习本上列式计算。做完后集体核对。

三、巩固练习。

做练习二十一中的题目。

第3题,投影片出示一面少先队的中队旗。

问:要计算这面中队旗的面积,怎样分成几个我们已经学过的图形呢?你是怎样做的?(让几个学生说一说自己的想法。

第4题,先让学生读题,再问:

“这个机器零件的横截面图的面积怎样计算?”(让几个学生说一说自己的想法)。

“根据题目中标出的长度,怎样计算比较简便?”(用长方形的面积减去梯形缺口的面积。)。

学生在练习本上列式计算,再集体订正。

四、作业。

练习二十一的第1题和第2题。

组合图形的面积计算的数学教案篇七

教学目标:

2、培养学生的识图能力和分析能力。

3、培养学生交流合作及创新精神。

教学重难点:把组合图形分割成已学过的平面图形。

教学准备:多媒体课件、剪刀、纸片。

教学过程:

一、复习导入:

二、参与活动,学习新知:

1、认识组合图形。

师:组合图形在日常生活中比较常见,那你说一说所见到的组合图形由那些图形组合而成。

生1:教室的窗户是由长方形和正方形组合而成。

生2:房子的屋山由三角形和长方形组合而成。

生3:地面由正方形组合而成。

生4:梯子由一个一个的梯形组合而成。

师:我也带来了一些组合图形,请同学们看一下。(展示多媒体3房子、风筝、少先队队旗、七巧板)。

多媒体4展示,让学生理解题意。

师:拿出准备好的纸片、剪刀,用纸片代表侧面墙,现在请同学们动手操作一下,可以把它分成那些图形?(师巡回指导)。

师:那位同学到前面展示一下,并说说你的想法。

生1:把它分成一个三角形和一个正方形,然后把三角形和正方形的面积相加。

生2:把它分成两个完全一样的梯形,然后把它们的面积相加。

师:找两位同学把刚才两位同学的想法解答出来。

(二生板书并订正)。

师:你喜欢哪种方法。

生:第一种或第二种并说明原因…………。

师:通过刚才的学习,你认为应该怎样计算组合图形的面积呢?

生:…………。

师:同学们刚才都做得很好,你愿意接受新的挑战吗?

生:愿意。

多媒体5展示,让学生弄清题意,思考一下。

教师展示习题,学生巩固强化多媒体6、7、8。

四、小结。

今天这节课你学到了那些知识?哪位同学起来说一下。

五、布置作业。

练习十八1、3、

组合图形的面积计算的数学教案篇八

1,认识组合图形,会把组合图形分解成已经学过的平面图形。

2,通过找一找,分一分,拼一拼,培养学生识图能力和综合运用知识的能力,能合理运用“割”“补”方法来计算组合图形的面积。

3,培养学生的观察能力和动手操作能力。

一,复习引入。

1,师:大家知道哪些简单的平面图形?

生:长方形,正方形,平行四边形,三角形-------。

师:今天老师是也带来了一些简单的平面图形,请看。

(课间出示长,正,平,三,梯)。

师:大家知道他们的面积计算公式马吗?

生说公式,同时师课间出示。

师:老师把这些简单的平面图形组合在一起,拼成了生活中的美丽图形,请看!

(课间出示;风筝房屋的侧面七巧板中队旗)。

师:你能看到那些简单的平面图形?同桌之间说说看。

汇报:重点说中队旗分成两个梯形。

引出“组合图形”的定义,课件出示定义。

2,寻找身边的组合图形。

师:其实我们身边还有很多这样的组合图形,大家找找看。

(教师窗户,防盗窗)。

板书:的面积。

二,探究新知。

教学例4:房屋侧面。

1,先出示没有数字的图形。

师:可以直接利用我们学过的面积公式来计算吗?

生:不能。

师:那可以怎样计算呢?同桌之间说说看?

汇报:可以分成两个梯形,可以分成一个三角形和一个长方形。

师:同学们有这么多想法啊?作业纸上又提供的数据,大家在作业纸上分一分,画一画,算一算。

学生做,师巡视指导,搜集作品。,

2,投影展示学生作品:

方法一:转化成三角形+长方形。

让学生说一说他的做法,重点问转化成了什么图形?

问:大家看懂了吗?每一步表示什么意思呢?

掌声送回学生一。

方法二:转化成两个相同的梯形。

(多让其他学生说一说分发)。

3,比较两种方法。

课件同时出示两种做法。

生:都是把组合图形分成成了已经学过的简单的平面图形。

师:像这种分发在数学上叫分割法。板书:分割法。

分割。

求和。

小结:在求组合图形的面积时,我们可以把它利用分割法转化成已学过的简单平面图形的面积,再求和。

师:大家会求组合图形的面积了吗?那我们就去做一些练习吧。

三:练习。

1,“做一做”

让学生独立完成,找一学生上黑板板演,找另一学生评价。

在图上加一条变成一个梯形和一个三角形能求出组合图形的面积吗?(发现条件不够)。

教授:分割时不能随便分,要根据已知条件来分,这样才能求出组合图形的面积。

2,中队旗。

先让同桌讨论方法,比一比谁找到的方法多,然后再作业纸上做一做。

先讲两种分割法,重点讲解“填补法”

师:这位同学的想法真独特,想这种方法叫填补法。

板书:填补法。

师:我们把组合图形通过填补法转化成简单的平面图形,然后再(求差),就求出了组合图形的面积。

板书:求和。

强调:转化优化。

四:小结:这节课你有什么收获?

组合图形的面积计算的数学教案篇九

知识与技能:结合生活实际认识组合图形,并掌握用分解法或添补法求组合图形的面积。

过程与方法:根据各种组合图形的自身条件,选择有效的计算方法进行面积计算。

情感、态度与价值观:能运用组合图形的知识,解决生活中组合图形的实际问题。

理解组合图形的多种面积计算方法,会找出计算每个简单图形所需的条件。

根据组合图形的条件,有效地选择汁算组合图形面积的方法。

动手实践、自主探索、合作交流。

师:多媒体、各种平面图形。

生:七巧板、简单图形学具、少先队中队旗实物。

1.创设情境导入:同学们都玩过七巧板吧,在七巧板里都有哪些图形呢?(长方形、三角形、平行四边形……)。

2.你能用七巧板拼出什么图形来?指几名学生用七巧板拼出图形,并展示。

通过学生拼出的图形引出组合图形的定义:由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

3.这节课我们就一起来学习求组合图形的面积。(板题:组合图形的面积)。

1.谈话:在实际生活中,有许多图形都是由几个简单的图形组合而成的。出示教材第99页的各种图形。

这些组合图形里有哪些是学过的图形?同学们试着找一找。

小组合作,尝试找出情境图中的组合图形是哪些图形组成的,并交流汇报。

2.说一说:在生活中还有哪些地方有组合图形?请同学们说一说。

学生可能会想到:厨房里的三角架、房子的分布图、桌子等。

3.引导思考:关于组合图形,你还想研究它的什么知识?

4.出示教材第99页例4:一间房子侧面墙的形状图。

引导学生观察图并思考:怎样计算出这个组合图形的面积?

组织学生小组合作学习,说一说是怎样分的,然后再算一算。集体汇报。

1.完成教材第101页“练习二十二”第1题。

2.完成教材第101页“练习二十二”第2题。

3.完成教材第101页“练习二十二”第3题。

师:这节课你学会了什么?有哪些收获?

由两个或两个以上的简单图形组成的大的不规则图形叫组合图形。

5×5+5×2÷2(5+5+2)×(5÷2)÷2×2。

=25+5=12×2.5÷2×2。

=30(2)=30(2)。

组合图形的面积计算的数学教案篇十

《课程标准》对于图形计算的要求是注重使学生探索现实世界中有关空间与图形的问题;注重使学生通过观察、操作、推理等手段,逐步认识简单几何体和平面图形的形状、位置、大小关系及变化,发展学生的空间观念。计算组合图形面积的基础是已学的各种平面图形的特征和它们的面积计算公式。在组合图形中,有的已知条件是隐蔽的,需要学生运用已学的知识,根据图形特点,先把它找出来或推算出来,再计算面积。使学生通过观察、操作、推理等手段,感受生活中空间与图形的问题。本节课并不是要教会学生求几个组合图形的面积,而是让学生体会到割补、转化的方法是求未知平面图形面积的重要策略。当学生真正获得了策略的知识、方法的知识的时候,就能举一反三、触类旁通。

通过这一堂课的教学,我感受最深的是:课堂教学是由学生、教师和教材组成的整体,只有发挥这个整体中各个部分及其相互关系的功能,才能取得最佳课堂教学效果。在教学中不能以教师为中心来死搬硬套教材,而应把学生推到学习活动的中心。本堂课创造性地对教材实施了“由静态的信息变为动态的过程”的再加工重组,较合理地利用了教材资源。在教学中,通过让学生观察几个组合图形,再说说分别是由哪几个基本图形组成的,从而理解什么叫组合图形。在此基础上,给出小明家的客厅,然后让学生想一想、画一画,动一动,把这个组合图形割补成我们学过的几个基本的图形。在这个教学环节中,我给学生留下充足的想象空间,使学生更宽泛地理解什么是组合图形,更大限度地激活每个学生寻求组合图形面积计算的思维动力。然后再紧紧围绕“最佳求面积的方法”这个思维策略思想,逐步展开有层次的思维训练。尽管还是课本的内容,但却演绎出别样的精彩,学生也在其中品尝了学习的欢悦和成功。教材在这儿已经完全成为学生驾驭学习的'工具和成长的阶梯了,真正是为学生的学习服务,这也许就是教材重组的意义所在吧!

组合图形的面积计算的数学教案篇十一

目的:1、使学生能够熟练的计算组合图形的面积。2、培养学生的想象力,发展学生的空间想象思维能力。3、培养学生思维的灵活性以及解决实际问题的能力。教学重难点:重点是学会计算组合图形的面积。难点是理解什么是组合图形以及怎样灵活的计算组合图形的面积。教学准备:电脑课件、学生准备各种图形的.卡片若干。教学过程:一、创设情境,激励参与。同学们看:老师给大家带来了什么礼物?课件出示学过的各种平面图形(出示):你会计算这些图形的面积吗?学生回答。逐步出示各种平面图形的面积计算公式。基础知识同学们掌握的很好!下面我们一起做拼图游戏。二、探究新知,主动建构。1、拼图游戏:每组有一个信封,信封里有咱们学过的各种平面图形,你们可以通过充分的商量,利用这些图形拼成最美丽的图案。学生拼图形,教师巡视指导。学生到前面展示自己拼出的图案。学生分别汇报是拼成的是什么图形,是用哪些图形拼的?师揭示课题:像这样由两个或两个以上的基本图形组成的图形,还有很多,我们把它叫做组合图形,今天我们就来研究组合图形面积的计算。(板书课题:组合图形的面积的计算)(指黑板上某一个的图形)怎么计算这些图形的面积呢?小组同学可以商量一下。学生讨论后进行汇报。让贴图形的部分同学汇报怎么计算自己拼成的组合图形的面积。2、尝试例题。例一块棉花地形状如右图。它的面积是多少平方米?让学生独立计算,指生板演后集体订正,并让学生说一说怎样想的。(多指学生说一说)巩固提高,拓展创新。1、求图中阴影部分的面积。右图是一种机器零件的横截面图,求出涂色部分的面积。学生独立计算后说说自己的想法。2、要求少先队中队旗的面积,你能设计出几种解答方案?让同组的同学讨论后进行汇报,比一比哪组想的方法多,方法好。展示学生的不同想法。3、计算草坪的面积。右图是一块正方形的草地,在正方形草地的中间建一个正方形的花园,求草坪的面积。四、。这节课的学习,你的收获是什么?五、布置作业。1、课堂作业:练习十三的第1题的部分。2、怎样求这个鱼塘的面积。

组合图形的面积计算的数学教案篇十二

1.在自主探索的活动中,理解计算组合图形面积的多种方法。

2.能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

3.能运用所学的知识,解决生活中组合图形的实际问题。:教学重点:能根据条件求组合图形的面积。

理解分解图形时简单图形的差。

多媒体课件和长方体、正方体、平行四边形、梯形、三角形纸片。

先学后教,当堂训练。

教师指导与教学过程学生学习活动过程设计意图。

一、在拼图活动中认识组合图。

1、同学们,我们已经认识了长方形、正方形、平等四边形以及三角形,下面请同学们拿出长方形、正方形,请你用这些图形拼一个复杂的图形,并说一说像什么。

2、请学生将拼出的各式各样的图形,介绍给大家:你拼的图形什么?二、在探索活动中寻找计算方法。

1、教师出示图形。

学生拿出课前准备的图形,进行拼图操作活动。

学生拼出各种各样的图形,选出贴在黑板上。

指名回答:我拼的图形像我家楼梯的台阶,像一张方桌、客厅地面……。

学生观察老师出示的图形,这幅图形象一张客厅的平面图。

学生讨论怎样算买多少平方米的地板?

通过这一操作活动,使学生从中体会到组合图形的组成特点。

让学生感受计算组合图形的必要性,并让探索的基础上,讨论得出计算组合图形。

请大家看一看,老师也准备了一个图形。对,像一张客厅的平面图,现在要在上面铺地板。

2、提出问题。

你们知道应该买多少平方米的地板吗?

只要求主面积,就知道买多少平方米的地板了。那么能直接算出来吗?

3、请同学们想一想,为什么要将图形进行分割,图形割后,可以转化为我们学过的图形进行计算。

学生动手算一算,想一想,不能直接算怎么办,动手画图,怎样他割。

学生介绍自己探索中采用的分割方法。

学生分别按照黑板上的方法计算主客厅的地板的'面积。

学生发独立观察图并且解决问题,然后,集体汇报、订正。

面积的基本方法。从中体会到组合图形的特点。

让学生感受计算组合图形的必要性。并让学生自主探索的基础上,讨论得出计算组合面积的基本方法。

组合图形的面积计算的数学教案篇十三

教学目的:1、使学生能够熟练的计算组合图形的面积。2、培养学生的想象力,发展学生的空间想象思维能力。3、培养学生思维的灵活性以及解决实际问题的能力。教学重难点:重点是学会计算组合图形的面积。难点是理解什么是组合图形以及怎样灵活的计算组合图形的面积。教学准备:电脑课件、学生准备各种图形的.卡片若干。教学过程:一、创设情境,激励参与。同学们看:老师给大家带来了什么礼物?课件出示学过的各种平面图形(出示):你会计算这些图形的面积吗?学生回答。逐步出示各种平面图形的面积计算公式。基础知识同学们掌握的很好!下面我们一起做拼图游戏。二、探究新知,主动建构。1、拼图游戏:每组有一个信封,信封里有咱们学过的各种平面图形,你们可以通过充分的商量,利用这些图形拼成最美丽的图案。学生拼图形,教师巡视指导。学生到前面展示自己拼出的图案。学生分别汇报是拼成的是什么图形,是用哪些图形拼的?师揭示课题:像这样由两个或两个以上的基本图形组成的图形,还有很多,我们把它叫做组合图形,今天我们就来研究组合图形面积的计算。(板书课题:组合图形的面积的计算)(指黑板上某一个的图形)怎么计算这些图形的面积呢?小组同学可以商量一下。学生讨论后进行汇报。让贴图形的部分同学汇报怎么计算自己拼成的组合图形的面积。2、尝试例题。例一块棉花地形状如右图。它的面积是多少平方米?让学生独立计算,指生板演后集体订正,并让学生说一说怎样想的。(多指学生说一说)三、巩固提高,拓展创新。1、求图中阴影部分的面积。右图是一种机器零件的横截面图,求出涂色部分的面积。学生独立计算后说说自己的想法。2、要求少先队中队旗的面积,你能设计出几种解答方案?让同组的同学讨论后进行汇报,比一比哪组想的方法多,方法好。展示学生的不同想法。3、计算草坪的面积。右图是一块正方形的草地,在正方形草地的中间建一个正方形的花园,求草坪的面积。四、总结。这节课的学习,你的收获是什么?五、布置作业。1、课堂作业:练习十三的第1题的部分。2、怎样求这个鱼塘的面积。

组合图形的面积计算的数学教案篇十四

新世纪小学数学教材(北师大版)五年级上册第五单元第一课时。

教学目标。

1、知识目标:

2、能力目标:

能根据各种组合图形的条件,有效地选择计算方法并进行正确的计算。

能运用所学的知识,解决生活中组合图形的实际问题。

3、德育目标:

体会数学与自然及人类社会的密切联系。

教学重点。

求组合图形的面积就是求几个简单图形面积的和或差的计算。

教学难点。

能正确地分析图形。

教材分析。

在三年级时,学生已经学习了长方形与正方形的面积计算,在本册的第二单元,学生又学习了平行四边形、三角形与提醒的面积计算,本课时的组合图形面积的计算是这两方面知识的发展,也是日常生活中经常需要解决的问题。

教学思想。

教材设计本活动的目的旨在通过让学生在自主探索的活动中,理解计算多种组合图形的多种方法。能正确地分析图形,并能正确地求组合图形的面积。能运用所学的知识,解决生活中组合图形的实际问题。

教具准备。

课本75页的客厅平面图、剪刀、彩笔等每人一个。多媒体课件。

1、回忆学习了哪几种简单平面图形及面积的计算方法。

2、学生分组用简单图形任意摆、拼图形,并说出它们分别是由什么形和什么形拼成的。

3、多媒体显示一组组合图形,让学生结合自己刚才的实践说一说,这些图形有什么共同特点。

4、教师小结:虽然拼出的图形的形状不同,但都是由几个简单的图形拼出来的,所以我们把这样的图形叫做组合图形。(引出课题,教师板书:组合图形)。今天这节课,我们就来学习组合图形面积的计算。

1、多媒体出示课本75页小华家的客厅平面图。

这也一个组合图形,那么你知道怎样求这个组合图形的面积?

请同学们利用自己手上的材料,算一算。

2、学生独立操作,可能有的把图形用剪刀剪成两个长方形;有的把它剪成两个梯形;有的直接往图上画线等。

3、学生基本完成后,教室组织学生交流。

因为在探索面积的活动中,教师并没有提出具体的探索要求,所以在学生的探索结果中有的把图形剪成两部分;有的直接往图上画分割线。面对这一现象,教师不要急于否定,应该继续询问学生探索的思路,此时,教师应用鼓励性的语言,保护学生探索的积极性。

4、学生尝试计算该组合图形的面积,教师让学生说出怎样列式计算的并根据学生的回答,多媒体演示。

2、想一想,你刚才自己拼的组合图形,该怎样计算?同桌之间相互说一说。

3、归纳方法:

(1)、提出问题:你认为求组合图形面积的一般方法是什么?

(2)、学生分小组进行讨论:先把组合图形分成几个简单的图形,再把每个简单图形的面积相加,就是所求的组合图形的面积。

(3)、通过学生一系列实践活动,让学生总结出,求组合图形的面积可以把简单图形面积相加,也可以进行相减。

1、多媒体出示课本76页试一试的组合图形,让学生寻求多种解法。

学生完成后,全班交流做法。

3、想一想,生活中还有哪些物体的表面或物体的某部分的平面是组合图形,你可以怎样计算它们的面积。

这节课学习了什么内容?

1、有一面墙,粉刷这面墙每平方米需用0.15千克涂料,一共要用多少千克涂料?(见课本76页练一练第2题图)。

2、学校要油漆60扇教室的门的正面(门的形状如图,单位:米)。(见课本76页练一练第3题图)。

(1)需要油漆的面积一共是多少?

(2)如果油漆每平方米需要花费5元,那么学校共要花费多少元?

图内分解求和图外添补求差。

修改意见。

组合图形的面积计算的数学教案篇十五

我说课的内容是《组合图形面积》。下面我和大家汇报一下我的设想,我从教材;教法学法;教学流程;板书设计;学习评价这几个方面来谈一谈。

一、说教材。

1.教材分析:

《组合图形面积》是义务教育课程标准实验教科书北师大版五年级上册第五单元的第一课,学生在三年级已经学习了长方形与正方形的面积计算,在本册的第二单元又学习了平行四边形、三角形与梯形的面积计算,本课是这两方面知识的发展,也是日常生活中经常需要解决的实际问题。在此基础上学习组合图形,一方面可以巩固已经学过的基本图形,另一方面则能将所学的知识进行整合,注重将解决问题的思考策略渗透其中,提高学生的综合能力。教材在内容呈现上突出了两个部分,一是感受计算组合图形面积的必要性,二是针对组合图形的特点强调学生学习的自主探索性。

2.学情分析:

根据学生已有的生活经验,通过直观操作,对组合图形的认识不会很难。所以在探索组合图形面积的计算方法时,我通过自主探索、合作交流等方式达到方法的多样化。重视让每个学生都积极地参与到活动中来,让活动有实效,真正让学生在数学方法、数学思想方面有所发展。因此我设计本节课的教学目标如下:

3.说教学目标:

(2)能根据各种组合图形的条件,有效地选择计算方法并进行正确的解答。

(3)能运用所学的知识,解决生活中有关组合图形面积的实际问题。感受计算组合图形面积的必要性,产生积极的数学学习情感。

4、说教学重、难点:

针对五年级年级学生的年龄特点和认知水平我确定本节课的教学重点为:

教学重点:学生能够通过自己的动手操作,掌握用割补法求组合图形面积的计算方法。

教学难点:理解计算组合图形面积的多种计算方法,根据图形之间的联系和一定的隐蔽条件,选择最适当的方法求组合图形的面积。

二、说教法、学法。

1.说教法。

(1)多媒体教学法。

在教学中,我充分利用多媒体教学课件引发学生的兴趣,调动学生的情感投入,激活学生原有知识和经验并以此为基础展开想象和思考,自觉地构建良好的知识体系,特别是分割图形的几种方法通过课件的演示,学生一目了然,直观形象,印象深刻,从而使计算方法水到渠成,更好的突出了教学重点、突破了教学难点。

(2)自主探索和合作交流教学法。

动手实践、自主探索、合作交流是学生学习数学的重要方式,转变教师角色,给学生较大的空间,开展探究性学习,让他们在具体的操作活动中进行独立思考,并与同伴交流,亲身经历问题提出、问题解决的过程,体验学习成功的乐趣。

2.说学法。

(1)自主观察思考。

学生是学习的主体,只有当学生真正自己主动、积极的参与到学习中时,才能最为有效地提高学生的学习效果。引导学生自己来观察组合图形的特点,思考解决问题的方法,逐步构建自己的知识体系,也有利于后面小组的合作学习以及更好地倾听他人的不同意见,进一步完善自己的知识体系。

(2)小组合作学习。

小组合作学习能够帮助学生在有限的时间里,通过与他人的合作获取更多的方法,找到合适、有效的解决问题的方法。本课让学生在自主观察思考的前提下,通过小组合作学习来进一步拓宽学生的思维空间,提升学生的.学习能力。

(3)学习归纳。

改变了以往的教师总结为学生自己归纳总结,相对来讲学生收获的不仅仅是知识还有更多的学习经验。

三、教学流程。

为完成本节教学目标,突出教学重点,突破教学难点,根据小学数学新课程标准强调的数学与现实生活的联系,我在教学本节课时从学生感兴趣的事物和熟悉的生活情境出发,让学生充分体会到数学就在身边,感受到组合图形的趣味性,体会到数学的魅力。所以制定了以下教学环节:

(一)课前测评。

(二)目标导学。

(三)达标练习。

(四)达标小结。

(一)课前测评。

1.说一说:

说出正方形、长方形、平行四边形、三角形、梯形的面积计算方法?

2.判断。

(1)三角形的面积是平行四边形面积的一半。

(2)两个三角形可以拼成一个平行四边形。

(3)等底等高的两个三角形面积一定相等。

(4)下面的平行四边形和长方形面积相等。

3.算一算:

王奶奶家有一块平行四边形的地(如下图),分成三块种蔬菜,计算3块地面积的大小?

(这一环节设计的目的是让学生在说一说,判断,算一算的过程中充分调动多种感官参与到学习中来,在浓厚的学习氛围中感受到知识来源于生活,而又服务于生活,明确生活中的很多问题都和组合图形的面积有关)。

(二)学习目标展示(多媒体课件出示)。

(三)目标导学。

1.学生独立与小组合作交流解决组合图形面积计算问题。

小华家新买了住房,计划在客厅铺地板(客厅平面图如下)。请你估计他家至少要买多大面积的地板,再实际算一算。设计让学生合作交流解决“小华家要买多少平方米的地板”这一生活问题.在这一环节中我真正的转变们了教师的角色,给学生足够的时间和空间,积极主动地参与到学习中,获取更多的解题方法。让他们都有成功的体验.)。

2.小组汇报学习情况。

汇报时用多媒体将学生的学习成果演示出来,会出现下面几种情况:。

(1)将组合图形分割成两个长方形。

(2)将组合图形分割成两个梯形。

(3)将组合图形分割成两个长方形和一个正方形。

(4)将组合图形填补上一个小正方形,使它成为一个大长方形,再用大长方形的面积减去小正方形的面积。

学生边汇报,教师利用多媒体演示后随即板书。其他同学能清楚地与自己的思路进行比较,并及时发现错误并纠正过来。

3.师生总结分割法填补法。

接下来让学生自主观察比较上面几种方法的不同之处后,再总结出求组合图形面积的计算方法,掌握“分割法”和”添补法”这两种计算方法.让学生明确分割图形越简洁,解题方法越简单。与此同时,教师要适时提醒学生们要考虑到分割的图形与所给条件的关系,有些图形分割后找不到相关的条件就是失败的。这样做有利于突破本节课的教学重点和难点。)。

(四)达标练习。

为了巩固新知,我设计了不同层次的练习,使不同层次的学生都有提高。

(这一环节的教学,我注重对学生自信心的培养,让不同的学生都有不同层次的提高,让他们充分体验到成功的快乐,从而信心百倍,勇于向困难发出挑战。同时我还注重对学生学习兴趣的培养和思维能力的培养。)。

数学与人类的生活息息相关,它来源于生活,又应用于生活。因此在这一环节中我又设计了课内延伸环节.

(五)达标小结。

学习这节数学课,你有什么收获,或者有什么心得?

(学生可以说知识上的收获,也可以说情感上的收获,既发挥了学生的主动性,又将本堂课的内容进行了总结.也可以评价他人的学习表现,生生互动评价,学生既认识自我,建立信心,又共同体验了成功,促进了发展。)。

四、板书设计。

组合图形的面积计算的数学教案篇十六

教学内容:教科书第90页的例题,完成例题下面的”做一做“和练习二十一的题目。

教学目的:使学生初步了解组合图形面积的计算方法,会计算一些比较简单的组合图形的面积。

教具准备:将复习中的图画在小黑板上,再将教学例题时所用的图也画在小黑板上。

教学过程:

一、复习。

问:第一个图形是什么形?它的面积怎样计算?(学生回答,教师在长方形下面板书:s=ab,其他图形,学生分别回答后,教师在每个图的下面写出相应的计算面积的公式。)。

二、新授。

1、教学例题。

教师:组合图形就是由我们已学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。在实际生活中有进需要计算这些组合图形的面积。例如有些房子侧面墙的形状是这样的:(出示小黑板)。

问:这个图形的面积我们过去学过吗?(让学生仔细观察一下)。

我们虽然没有学过计算这个图形面积的计算公式,可是能不能把这个图形分成几个我们已经学过的.图形呢?怎样分?(指名学生到黑板前画一画,教师标出相关尺寸。)。

现在把这个图形分成了一个三角形和一个正方形,它的面积怎样计算?(学生看教科书第90页上的例题,把书上的算式填完整。)。

:在实际生活中我们见到的物体表面,有很多图形是由我们已经学过的正方形、长方形、平行四边形、三角形或梯形组合而成的。计算这些图形的面积,一般是先把它们分成已学过的简单图形,分别计算出各个简单图形的面积,然后再把它们合起来,便可以求整个组合图形的面积。)。

2、做例题下面”做一做“中的题目。

先让学生读题。

问:“这块菜地可以看成是由哪些图形组合而成?”

让每个学生在练习本上列式计算。做完后集体核对。

三、巩固练习。

做练习二十一中的题目。

第3题,投影片出示一面少先队的中队旗。

问:要计算这面中队旗的面积,怎样分成几个我们已经学过的图形呢?你是怎样做的?(让几个学生说一说自己的想法。

第4题,先让学生读题,再问:

“这个机器零件的横截面图的面积怎样计算?”(让几个学生说一说自己的想法)。

“根据题目中标出的长度,怎样计算比较简便?”(用长方形的面积减去梯形缺口的面积。)。

学生在练习本上列式计算,再集体订正。

四、作业。

练习二十一的第1题和第2题。

课后:

组合图形的面积计算的数学教案篇十七

1、使学生进一步掌握求平面组合图形面积的计算方法,并能合理地把平面组合图形转化为简单图形,再进行面积的计算。

2、培养学生分析、判断能力,并发挥学生的主体作用,积极探索解决新问题,培养学生的创新意识。

进一步培养学生学会观察。

进一步学会找隐蔽条件。

一、复习基本知识。

1、我们已学过哪些平面图形?(请生回答,并出示图形)。

2、请生回答这些平面图形的面积怎样计算?用字母公式表示。

3、基本练习:求各图形面积。(单位:厘米)开火车。

4、导入:今天我们继续复习图形的面积――组合图形的面积(板书)。

二、变化练习。

1、小组讨论:从刚才的简单图形中挑选两个图形组成一个新的图形,你会计算他们的面积吗?你们有几种情况?(让生拼一拼,摆一摆。)。

2、学生汇报:(边出示,边板书)。

(1)三角形面积+正方形面积列式:4×4÷2+4×4(图略)。

(2)正方形面积-角形面积列式:4×4-4×4÷2。

(3)半圆的面积+梯形面积列式:3.14×22÷2+(3+5)×4÷2。

(4)梯形面积-半圆的面积列式:(3+5)×4÷2-3.14×22÷2。

(5)长方形面积+半圆的面积列式:3.14×22÷2+4×2。

(6)长方形面积-半圆的面积列式:4×2-3.14×22÷2。

3、,并回答以下问题:

(1)由几个简单图形组成的图形叫做()。

(2)在你拼摆的过程中,你发现图形的组合一般有几种情况?

三、强化练习。

1、如图:阴影部分平行四边行的面积是36平方厘米,求出三角形的面积。(单位:厘米)。

6(1)先让学生独立思考,然后再请生回答。

(2)你有几种解法?并在大屏幕出示。

9

2、求下列各个阴影部分的面积。(单位:厘米)。

(1)(2)。

6

6d=6。

a:先让学生做在自己的.本子上。

b:并让学生说一说你是怎样解答的?

c:核对,并在大屏幕演示。

d::如果组合图形不能直接拆成几个简单图形,那该怎么办呢?

3、计算阴影部分的面积。(单位:厘米)(图略,书本第127页练一练2中的第3小题)。

先让学生思考,说一说应该怎么办?然后借助多媒体演示,请生列式。并说一说有几种方法。

4、:通过图形的平移、翻转,可以使它成为两个或两个以上的简单图形。

四、发散练习。

(5分钟内看谁做得最多,方法最巧妙)。

五、板书设计。

(1)三角形面积+正方形面积(2)正方形面积-角形面积。

列式:4×4÷2+4×4列式:4×4-4×4÷2。

(3)半圆的面积+梯形面积(4)梯形面积-半圆的面积。

(5)长方形面积+半圆的面积(6)长方形面积-半圆的面积。

列式:3.14×22÷2+4×2列式:4×2-3.14×22÷2。

【本文地址:http://www.xuefen.com.cn/zuowen/17142937.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档