初中数学函数教案范文(20篇)

格式:DOC 上传日期:2023-12-01 05:10:16
初中数学函数教案范文(20篇)
时间:2023-12-01 05:10:16     小编:HT书生

编写教案是教师不可或缺的一项职责,它对于促进教学质量的提高起到了重要作用。教师可以在编写教案之前进行教学设计思考,对教学过程进行全面规划。《英语》教案范文

初中数学函数教案篇一

2、能正确且较为熟练地运用去括号的符号法则去化简代数式过程与方法目标学习目标。

1、通过观察、合作交流、讨论总结等活动得出去括号的符号法则,培养学生观察、分析、总结的能力。

2、通过例题讲解,和巩固练习,培养学生的计算能力班级:初一四班nn。

1、数学知识:

2、数学思想方法:布置作业:板书设计nn教学反思nn。

初中数学函数教案篇二

教学目标:

1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题。

3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。

教学重点、难点:

重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题。

教学过程:

一、情景创设:

为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请根据题中所提供的信息,解答下列问题:。

(1)药物燃烧时,y关于x的函数关系式为:________,自变量x的取值范围是:_______,药物燃烧后y关于x的函数关系式为_______.

二、新授:

(1)如果小明以每分种120字的.速度录入,他需要多少时间才能完成录入任务?

(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?

例2某自来水公司计划新建一个容积为的长方形蓄水池。

(1)蓄水池的底部s与其深度有怎样的函数关系?

(2)如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?

(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数)。

三、课堂练习。

1、一定质量的氧气,它的密度(kg/m3)是它的体积v(m3)的反比例函数,当v=10m3时,=1.43kg/m3.(1)求与v的函数关系式;(2)求当v=2m3时求氧气的密度.

2、某地上年度电价为0.8元度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)(元)成反比例,当x=0.65时,y=-0.8.

(1)求y与x之间的函数关系式;

3、如图,矩形abcd中,ab=6,ad=8,点p在bc边上移动(不与点b、c重合),设pa=x,点d到pa的距离de=y.求y与x之间的函数关系式及自变量x的取值范围.

四、小结。

五、作业。

30.31、2、3。

初中数学函数教案篇三

今天小编为大家精心整理了一篇有关初中数学教案之函数的相关内容,以供大家阅读!函数教学目标:

1、进一步理解函数的概念,能从简单的实际事例中,抽象出函数关系,列出函数解析式;

2、使学生分清常量与变量,并能确定自变量的取值范围.3、会求函数值,并体会自变量与函数值间的对应关系.4、使学生掌握解析式为只含有一个自变量的简单的整式、分式、二次根式的函数的自变量的取值范围的求法.5、通过函数的教学使学生体会到事物是相互联系的.是有规律地运动变化着的.教学重点:了解函数的意义,会求自变量的取值范围及求函数值.教学难点:函数概念的抽象性.教学过程:(一)引入新课:

第1页/共6页式中的自变量与函数吗?

刚才所举例子中的函数,都是利用数学式子即解析式表示的.这种用数学式子表示函数时,要考虑自变量的取值必须使解析式有意义.如第一题中的学生数n必须是正整数.例1、求下列函数中自变量x的取值范围.(1)(2)(3)(4)(5)(6)。

第2页/共6页数大于、等于零.的被开方数是.。

(2)若估计前来停放的3500辆次自行车中,变速车的辆次。

收入在1225元至1330元之间。

总结。

:对于反映实际问题的函数关系,应使得实际问题有意义.这样,就要求联系实际,具体问题具体分析.对于函数,当自变量时,相应的函数y的值是.60叫做这个函数当时的函数值.例3、求下列函数当时的函数值:(1)(2)(3)(4)。

注:本例既锻炼了学生的计算能力,又创设了情境,让学生体会对于x的每一个值,y都有唯一确定的值与之对应.以此加深对函数的理解.(二)小结:

第5页/共6页往学的词语、生活经验联系起来,在发展想象力中发展语言。如啄木鸟的嘴是长长的,尖尖的,硬硬的,像医生用的手术刀―样,给大树开刀治病。通过联想,幼儿能够生动形象地描述观察对象。

作业:习题13.2a组2、3、5死记硬背是一种传统的教学方式,在我国有悠久的历史。但随着素质教育的开展,死记硬背被作为一种僵化的、阻碍学生能力发展的教学方式,渐渐为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。其实,只要应用得当,“死记硬背”与提高学生素质并不矛盾。相反,它恰是提高学生语文水平的重要前提和基础。今天的内容就介绍到这里了。

第6页/共6页。

初中数学函数教案篇四

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用。

(1)能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象。

(2)能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题。

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力。

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性。

(1)对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的。故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸。它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础。

(2)本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质。难点是利用指数函数的图象和性质得到对数函数的图象和性质。由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点。

(3)本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开。而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点。

(1)对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质。

(2)在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向。这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣。

初中数学函数教案篇五

3.探究发现任意角 与 的三角函数值的关系.

利用诱导公式(二),口答下列三角函数值.

(1). ;(2). ;(3). .

喜悦之后让我们重新启航,接受新的挑战,引入新的问题.

由sin300= 出发,用三角的定义引导学生求出 sin(-300),sin1500值,让学生联想若已知sin = ,能否求出sin( ),sin( )的值.

1.探究任意角 与 的三角函数又有什么关系;

2.探究任意角 与 的三角函数之间又有什么关系.

遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题-观察发现-到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战.而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战.彼此相信,彼此信任,产生了师生的默契,师生共同进步.

诱导公式(三)、(四)

给出本节课的课题

三角函数诱导公式

标题的后出,让学生在经历整个探索过程后,还回味在探索,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结.

的三角函数值,等于 的同名函数值,前面加上一个把 看成锐角时原函数值的符合.(即:函数名不变,符号看象限.)

设计意图

简便记忆公式.

求下列三角函数的值:(1).sin( ); (2). co.

设计意图

本练习的设置重点体现一题多解,让学生不仅学会灵活运用应用三角函数的诱导公式,还能养成灵活处理问题的良好习惯.这里还要给学生指出课本中的“负角”化为“正角”是针对具体负角而言的.

学生练习

化简: .

设计意图

重点加强对三角函数的诱导公式的综合应用.

1.小结使用诱导公式化简任意角的三角函数为锐角的步骤.

2.体会数形结合、对称、化归的思想.

3.“学会”学习的习惯.

1.课本p-27,第1,2,3小题;

2.附加课外题 略.

设计意图

加强学生对三角函数的诱导公式的记忆及灵活应用,附加题的设置有利于有能力的同学“更上一楼”.

八.课后反思

对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,针对教材的内容,编排了一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来,通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到了一定的预期效果,尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。

然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。

在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。用全新的理论来武装自己,让自己的课堂更有效。

初中数学函数教案篇六

这一节的重点就是钠的化学性质——与水反应,还有钠的物理性质——颜色。难点就是钠与氧气在充足及过量时候的反应,还有就是实验,由于反应速度快,难以观察,最后就是反应的化学方程式。

三教学理念及其方法。

对反应速度快这个问题可以通过慢放实验的动化,使学生能看清楚过程。

2涉及原子等微观粒子的结合过程,需要很强的空间想象力,可以通过计算机动画演示,使反应变得直观,更容易理解。

3对于钠与水的反应,具有一定的危险性,可以通过动画来展示实验不当造成的后果。

四教学过程。

2再以水灭火图片给学生观看,然后以钠放入水中为参比,激发学生的兴趣。

3再通过一些趣味性实验演示,能更进一步激发学习的积极性,例如用一装有半瓶水的塑料瓶,瓶塞上扎一黄豆大的钠的大头针,瓶倒置使钠和水充分反应,取下塞子、点燃火柴靠近瓶口有尖锐的爆鸣声,效果得到大大改进。

五学法分析。

通过这节课的教学教给学生对金属钠的认识,掌握金属钠的性质,透过现象看本质,分析、归纳物质的性质,培养学生观察、分析问题的能力,调动学生积极性,激发学生的学习兴趣。

五总结性质,得出结论,布置作业。

列出来,这样条理就清晰了,然后再总述一下这节所学的内容,讲述的重点及难点。最后布置2个思考题:

(1)钠为什么保存在煤油中?

(2)把钠投到苯和水的混合液中钠在水和苯间跳上“水上芭蕾”,为什么?

再讲一下钠的用途。

六板书设计。

板书设计第一节钠。

一、钠的物理性质。

二、钠的化学性质。

1钠的原子结构。

2钠与氧气反应(条件不同,产物不同)。

3钠与水反应(重点)。

初中数学函数教案篇七

投影仪

自学研究与启发讨论式.

一、复习与引入

(要求学生尽量用自己的话描述初中函数的定义,并试举出各类学过的函数例子)

提问1.是函数吗?

(由学生讨论,发表各自的意见,有的认为它不是函数,理由是没有两个变量,也有的认为是函数,理由是可以可做.)

二、新课

现在请同学们打开书翻到第50页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)

提问2.新的函数的定义是什么?能否用最简单的语言来概括一下.

(板书)2.2函数

一、函数的概念

问题3:映射与函数有何关系?(函数一定是映射吗?映射一定是函数吗?)

引导学生发现,函数是特殊的映射,特殊在集合a,b必是非空的数集.

2.本质:函数是非空数集到非空数集的映射.(板书)

然后让学生试回答刚才关于是不是函数的问题,要求从映射的角度解释.

此时学生可以清楚的看到满足映射观点下的函数定义,故是一个函数,这样解释就很自然.

教师继续把问题引向深入,提出在映射的观点下如何解释是个函数?

从映射角度看可以是其中定义域是,值域是.

3.函数的三要素及其作用(板书)

以下关系式表示函数吗?为什么?

(1);(2).

解:(1)由有意义得,解得.由于定义域是空集,故它不能表示函数.

(2)由有意义得,解得.定义域为,值域为.

由以上两题可以看出三要素的作用

(1)判断一个函数关系是否存在.(板书)

(1);(2) (3);(4).

解:先认清,它是(定义域)到(值域)的映射,其中

再看(1)定义域为且,是不同的;(2)定义域为,是不同的;

(4),法则是不同的;

而(3)定义域是,值域是,法则是乘2减1,与完全相同.

(2)判断两个函数是否相同.(板书)

4.对函数符号的理解(板书)

已知函数试求(板书)

分析:首先让学生认清的含义,要求学生能从变量观点和映射观点解释,再进行计算.

含义1:当自变量取3时,对应的函数值即;

含义2:定义域中原象3的象,根据求象的方法知.而应表示原象的象,即.

计算之后,要求学生了解与的区别,是常量,而是变量,只是中一个特殊值.

三、小结

1.函数的定义

2.对函数三要素的认识

3.对函数符号的认识

四、作业:略

五、

2.2函数例1.例3.

一.函数的概念

1.定义

2.本质例2.小结:

3.函数三要素的认识及作用

4.对函数符号的理解

答案:

初中数学函数教案篇八

在函数教学中,我们不仅要在教会函数知识上下功夫,而且还应该追求解决问题的“常规方法”——基本函数知识中所蕴含的思想方法,要从数学思想方法的高度进行函数教学。在函数的教学中,应突出“类比”的思想和“数形结合”的思想。

2.注重“数学结合”的教学。

数形结合的思想方法是初中数学中一种重要的思想方法。数学是研究现实世界数量关系和空间形式的科学。而数形结合就是通过数与形之间的对应和转化来解决数学问题。它包含以形助数和以数解形两个方面,利用它可使复杂问题简单化,抽象问题具体化,它兼有数的严谨与形的直观之长。

(1)让学生经历绘制函数图象的具体过程。

(2)切莫急于呈现画函数图象的简单画法。

(3)注意让学生体会研究具体函数图象规律的方法。

目标。

1、理解直线y=kx+b与y=kx之间的位置关系;。

2、会选择两个合适的点画出一次函数的图象;

3、掌握一次函数的性质.

过程与方法目标。

2、通过一次函数的图象总结函数的性质,体验数形结合法的应用,培养推理及抽象思维能力。

2、在探究一次函数的图象和性质的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神。

一次函数的图象和性质。

由一次函数的图像归纳得出一次函数的性质及对性质的理解。

初中数学函数教案篇九

教学目标:在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

教学方法:多媒体授课。

学法指导:借助列表与图像法。

教具:多媒体教学设备。

教学过程:

初中数学函数教案篇十

数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.

本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.

(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;。

(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.

理解并掌握诱导公式.

正确运用诱导公式,求三角函数值,化简三角函数式.

“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.

数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.

在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.

“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.

在本节课的教学过程中,本人引导学生的学法为思考问题共同探讨解决问题简单应用重现探索过程练习巩固.让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.

1.复习锐角300,450,600的三角函数值;。

2.复习任意角的三角函数定义;。

3.问题:由,你能否知道sin2100的值吗?引如新课.

自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.

1.让学生发现300角的终边与2100角的终边之间有什么关系;。

2100与sin300之间有什么关系.

由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫.

初中数学函数教案篇十一

1.质疑问难是学生自主学习的重要表现,优化课堂结构,激活学生的主体意识,必须鼓励学生质疑问难。教师要创造和谐融合的课堂气氛,允许学生随时“插嘴”、提问、争辩,甚至提出与教师不同的看法。

2.二次函数是初中阶段继一次函数、反比例函数之后,学生要学习的最后一类重要的代数函数,它也是描述现实世界变量之间关系的重要的数学模型。

3.学生有疑而问、质疑问难,是用心思考、自主学习、主动探究的可贵表现,理应得到老师的热情鼓励和赞扬。现在对学生的随时“插嘴”,提出的各种疑难问题,应抱欢迎、鼓励的态度给与肯定,并做出正确的解释。

4.初中阶段主要研究二次函数的概念、图像和性质,用二次函数的观点审视一元二次方程,用二次函数的相关知识分析和解决简单的实际问题。

初中数学函数教案篇十二

3.能够综合运用各种法则求函数的导数.。

函数的和、差、积、商的求导法则的推导与应用.。

1.问题情境.。

(1)常见函数的导数公式:(默写)。

(2)求下列函数的`导数:;;.。

(3)由定义求导数的基本步骤(三步法).。

2.探究活动.。

例1求的导数.。

思考已知,怎样求呢?

函数的和差积商的导数求导法则:

练习课本p22练习1~5题.。

点评:正确运用函数的四则运算的求导法则.。

函数的和差积商的导数求导法则.。

1.见课本p26习题1.2第1,2,5~7题.。

初中数学函数教案篇十三

(二)能画出简单函数的图象,会列表、描点、连线;。

(三)能从图象上由自变量的值求出对应的函数的近似值。

重点:认识函数图象的意义,会对简单的函数列表、描点、连线画出函数图象。

难点:对已恬图象能读图、识图,从图象解释函数变化关系。

1.什么叫函数?

2.什么叫平面直角坐标系?

3.在坐标平面内,什么叫点的横坐标?什么叫点的.纵坐标?

4.如果点a的横坐标为3,纵坐标为5,请用记号表示a(3,5).

5.请在坐标平面内画出a点。

6.如果已知一个点的坐标,可在坐标平面内画出几个点?反过来,如果坐标平面内的一个点确定,这个点的坐标有几个?这样的点和坐标的对应关系,叫做什么对应?(答:叫做坐标平面内的点与有序实数对一一对应)。

我们在前几节课已经知道,函数关系可以用解析式表示,像y=2x+1就表示以x为自变量时,y是x的函数。

这个函数关系中,y与x的函数。

这个函数关系中,y与x的对应关系,我们还可通知在坐标平面内画出图象的方法来表示。

初中数学函数教案篇十四

调查中,所要考察对象的全体称为总体,而组成总体的每一个考察对象称为个体。

例如,某班10名女生的考试成绩是总体,每一名女生的考试成绩是个体。

从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体中抽取的一部分个体叫做总体的一个样本。

例如,要调查全县农村中学生学生平均每周每人的零花钱数,由于人数较多(一般涉及几万人),我们从中抽取500名学生进行调查,就是抽样调查,这500名学生平均每周每人的零花钱数,就是总体的一个样本。

将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数。

一组数据中出现次数最多的数据就是这组数据的众数。

例如:求一组数据3,2,3,5,3,1的众数。

解:这组数据中3出现3次,2,5,1均出现1次。所以3是这组数据的众数。

又如:求一组数据2,3,5,2,3,6的众数。

解:这组数据中2出现2次,3出现2次,5,6各出现1次。

所以这组数据的众数是2和3。

【规律方法小结】。

(1)平均数、中位数、众数都是描述一组数据集中趋势的量。

(2)平均数反映一组数据的平均水平,与这组数据中的每个数据都有关,是最为重要的量。

(3)中位数不受个别偏大或偏小数据的影响,当一组数据中的个别数据变动较大时,一般用它来描述集中趋势。

(4)众数只与数据出现的频数有关,不受个别数据影响,有时是我们最为关心的统计数据。

探究交流。

1、一组数据的中位数一定是这组数据中的一个,这句话对吗?为什么?

解析:不对,一组数据的中位数不一定是这组数据中的一个,当这组数据有偶数个时,中位数由中间两个数的平均数决定,若中间两数相等,则这组数据的中位数在这组数据之中,反之,中位数不在这组数据之中。

总结:

(1)中位数在一组数据中是唯一的,可能是这组数据中的一个,也可能不是这组数据中的数据。

(2)求中位数时,先将数据按由小到大的顺序排列(或按由大到小的顺序排列)。若这组数据是奇数个,则最中间的数据是中位数;若这组数据是偶数个,则最中间的两个数据的平均数是中位数。

(3)中位数的单位与数据的单位相同。

(4)中位数与数据排序有关。当一组数据中的个别数据变动较大时,可用中位数来描述这组数据的集中趋势。

课堂检测。

基本概念题。

1、填空题。

(1)数据15,23,17,18,22的平均数是;

(4)为了考察某公园一年中每天进园的人数,在其中的30天里,对进园的人数进行了统计,这个问题中的总体是________,样本是________,个体是________。

基础知识应用题。

2、某公交线路总站设在一居民小区附近,为了了解高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,结果如下:20,23,26,25,29,28,30,25,21,23。

(1)计算这10个班次乘车人数的平均数;

(2)如果在高峰时段从总站共发车60个班次,根据前面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少。

初中数学函数教案篇十五

一、教学目标:

1、知识与技能:

(1)结合实例,了解正整数指数函数的概念.

(2)能够求出正整数指数函数的解析式,进一步研究其性质.

2、过程与方法:

(1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法.

(2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.

3、情感.态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.

二、教学重点:正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.

三、学法指导:学生观察、思考、探究.教学方法:探究交流,讲练结合。

四、教学过程。

(一)新课导入。

[互动过程1]:

(2)请你用图像表示1个细胞分裂的次数n()与得到的细胞个数y之间的关系;。

(3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用科学计算器计算细胞分裂15次、20次得到的细胞个数.

解:

分裂次数12345678。

细胞个数248163264128256。

(3)细胞个数与分裂次数之间的关系式为,用科学计算器算得,所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.

小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数.细胞个数与分裂次数之间的关系式为.细胞个数随着分裂次数的增多而逐渐增多.

[互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量q近似满足关系式q=q00.9975t,其中q0是臭氧的初始量,t是时间(年),这里设q0=1.

(1)计算经过20,40,60,80,1,臭氧含量q;。

(2)用图像表示每隔臭氧含量q的变化;。

(3)试分析随着时间的增加,臭氧含量q是增加还是减少.

(2)用图像表示每隔20年臭氧含量q的变化,它的图像是由一些孤立的点组成.

(3)通过计算和观察图形可以知道,随着时间的增加,臭氧含量q在逐渐减少.

小结:从本题中可以看出我们得到的臭氧含量q都是底数为0.9975的指数,而且指数是变量,取值为正整数.臭氧含量q近似满足关系式q=0.9975t,随着时间的增加,臭氧含量q在逐渐减少.

正整数指数函数的定义:一般地,函数叫作正整数指数函数,其中是自变量,定义域是正整数集.

说明:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

(二)、例题:某地现有森林面积为1000,每年增长5%,经过年,森林面积为.写出,间的函数关系式,并求出经过5年,森林的面积.

分析:要得到,间的函数关系式,可以先一年一年的增长变化,找出规律,再写出,间的函数关系式.

解:根据题意,经过一年,森林面积为1000(1+5%);经过两年,森林面积为1000(1+5%)2;经过三年,森林面积为1000(1+5%)3;所以与之间的函数关系式为,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2).

练习:课本练习1,2。

解:一个月后他应取回的钱数为y=2000(1+2.38%),二个月后他应取回的钱数为y=2000(1+2.38%)2;,三个月后他应取回的钱数为y=2000(1+2.38%)3,,n个月后他应取回的钱数为y=2000(1+2.38%)n;所以n与y之间的关系为y=2000(1+2.38%)n(nn+),一年后他全部取回,他能取回的钱数为y=2000(1+2.38%)12.

(三)、小结:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数。

初中数学函数教案篇十六

如果从中考的角度看,初中函数部分可以说是为了函数而函数,只是先把函数的概念填进大脑再说。

三种主要函数的解析式的形式和求解方法,正比例和一次函数就当一种,二次函数解析式的三种形式,三种解析式的求解方法及各个常数的意义、对图像的影响。三种函数的图像,一次函数和二次函数,一次函数和反比例函数的结合。

直接求解析式,或者求出解析式再求上面的点坐标,是很常见的考题,这类题了解基本概念就行。利用二次函数求最值是一类应用。二次函数和方程的联系也是考点,需要对所学概念熟记于心、融会贯通,多练习,形成对数学的敏感性,做到看到什么类型,就想到脑中的哪个知识点和基本概念。

还有一种所谓大题,平面几何和函数综合题,别被唬住了,往往也包括了送分的球解析式小题,但其实更多的只是平面几何的问题,只是批了层函数的外衣,单纯来看,比一般的平面几何更简单,只是因为批了这么层外衣,就把人迷惑了。所以遇到这种题,首先别被它吓住了,只要基本概念清楚,剥掉函数的外衣,其实质就是平面几何。

应付中考,这就够了,虽然初中函数引入时,教材就几乎明示,函数作为一种工具,要把你带了研究变量数学的领域,让你更关注运动和联系。但于此相矛盾的是,在应试上,学函数还是为了函数本身,这或许是初中阶段对函数学习的教学要求所致――了解函数,但是这却造成了机械地学习函数,脱离函数本质。

静止地、孤立地学习函数,应付中考还真没问题,但任何事物是运动的,事物之间是普遍联系的,函数就是揭示运动规律和内在联系的一个数学工具。同样,人也是运动发展的,知识也是有连续性的。很多人在初中时可以用机械的方法把函数“学得很好”,一进高中,不到一个学期,集合、映射、函数,一下就晕了,以至到后面脱节越来越严重。

初中数学函数教案篇十七

2.通过对抽象符号的认识与使用,使学生在符号表示方面的能力得以提高.。

难点:重点是在映射的基础上理解的概念;

难点是对抽象符号的认识与使用.。

投影仪。

自学研究与启发讨论式.。

(要求学生尽量用自己的话描述初中的定义,并试举出各类学过的例子)。

提问1.是吗?

(由学生讨论,发表各自的意见,有的认为它不是,理由是没有两个变量,也有的认为是,理由是可以可做.)。

现在请同学们打开书翻到第50页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)。

提问2.新的的定义是什么?能否用最简单的语言来概括一下.。

(板书)2.2。

一、的概念。

问题3:映射与有何关系?(一定是映射吗?映射一定是吗?)。

引导学生发现,是特殊的映射,特殊在集合a,b必是非空的数集.。

2.本质:是非空数集到非空数集的映射.(板书)。

然后让学生试回答刚才关于是不是的问题,要求从映射的角度解释.。

此时学生可以清楚的看到满足映射观点下的定义,故是一个,这样解释就很自然.。

教师继续把问题引向深入,提出在映射的观点下如何解释是个?

从映射角度看可以是其中定义域是,值域是.。

3.的三要素及其作用(板书)。

例1以下关系式表示吗?为什么?

(1);(2).。

解:(1)由有意义得,解得.由于定义域是空集,故它不能表示.。

(2)由有意义得,解得.定义域为,值域为.。

由以上两题可以看出三要素的作用。

(1)判断一个关系是否存在.(板书)。

例2下列各中,哪一个与是同一个.。

(1);(2)(3);(4).。

解:先认清,它是(定义域)到(值域)的映射,其中。

再看(1)定义域为且,是不同的;(2)定义域为,是不同的;

(4),法则是不同的;

而(3)定义域是,值域是,法则是乘2减1,与完全相同.。

(2)判断两个是否相同.(板书)。

4.对符号的理解(板书)。

例3已知试求(板书)。

分析:首先让学生认清的含义,要求学生能从变量观点和映射观点解释,再进行计算.。

含义1:当自变量取3时,对应的值即;

含义2:定义域中原象3的象,根据求象的方法知.而应表示原象的象,即.。

计算之后,要求学生了解与的区别,是常量,而是变量,只是中一个特殊值.。

1.的定义。

2.对三要素的认识。

3.对符号的认识。

五、

2.2例1.例3.。

一.的概念。

1.定义。

2.本质例2.小结:

3.三要素的认识及作用。

4.对符号的理解。

探究活动。

答案:

初中数学函数教案篇十八

1、知识与技能:

(1)结合实例,了解正整数指数函数的概念.

(2)能够求出正整数指数函数的解析式,进一步研究其性质.

2、过程与方法:

(1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法.

(2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫.

3、情感.态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心.

正整数指数函数的定义.教学难点:正整数指数函数的解析式的确定.

:学生观察、思考、探究.教学方法:探究交流,讲练结合。

(一)新课导入。

[互动过程1]:

(1)请你用列表表示1个细胞分裂次数分别。

为1,2,3,4,5,6,7,8时,得到的细胞个数;。

(2)请你用图像表示1个细胞分裂的次数n()与得到的细。

胞个数y之间的关系;。

(3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用。

科学计算器计算细胞分裂15次、20次得到的细胞个数.

解:。

(1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3,。

4,5,6,7,8次后,得到的细胞个数。

分裂次数12345678。

细胞个数248163264128256。

(3)细胞个数与分裂次数之间的关系式为,用科学计算器算得,。

所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576.

小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数.细胞个数与分裂次数之间的关系式为.细胞个数随着分裂次数的增多而逐渐增多.

[互动过程2]:问题2.电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量q近似满足关系式q=q00.9975t,其中q0是臭氧的初始量,t是时间(年),这里设q0=1.

(1)计算经过20,40,60,80,100年,臭氧含量q;。

(2)用图像表示每隔20年臭氧含量q的变化;。

(3)试分析随着时间的增加,臭氧含量q是增加还是减少.

(2)用图像表示每隔20年臭氧含量q的变化如图所。

示,它的图像是由一些孤立的点组成.

(3)通过计算和观察图形可以知道,随着时间的增加,。

臭氧含量q在逐渐减少.

探究:从本题中得到的函数来看,自变量和函数值分别。

又是什么?此函数是什么类型的函数?,臭氧含量q随着。

时间的增加发生怎样变化?你从哪里看出?

小结:从本题中可以看出我们得到的臭氧含量q都是底数为0.9975的指数,而且指数是变量,取值为正整数.臭氧含量q近似满足关系式q=0.9975t,随着时间的增加,臭氧含量q在逐渐减少.

正整数指数函数的定义:一般地,函数叫作正整数指数函数,其中是自变量,定义域是正整数集.

说明:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

(二)、例题:某地现有森林面积为1000,每年增长5%,经过年,森林面积为.写出,间的函数关系式,并求出经过5年,森林的面积.

分析:要得到,间的函数关系式,可以先一年一年的增长变化,找出规律,再写出,间的函数关系式.

解:根据题意,经过一年,森林面积为1000(1+5%);经过两年,森林面积为1000(1+5%)2;经过三年,森林面积为1000(1+5%)3;所以与之间的函数关系式为,经过5年,森林的面积为1000(1+5%)5=1276.28(hm2).

练习:课本练习1,2。

解:一个月后他应取回的钱数为y=20xx(1+2.38%),二个月后他应取回的钱数为y=20xx(1+2.38%)2;,三个月后他应取回的钱数为y=20xx(1+2.38%)3,,n个月后他应取回的钱数为y=20xx(1+2.38%)n;所以n与y之间的关系为y=20xx(1+2.38%)n(nn+),一年后他全部取回,他能取回的钱数为y=20xx(1+2.38%)12.

(三)、小结:1.正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集.2.在研究增长问题、复利问题、质量浓度问题中常见这类函数.

(四)、作业:课本习题3-11,2,3。

初中数学函数教案篇十九

一、教学目标:

知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。

过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。

情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教学重点、难点:

教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。

三、教学过程:

(一)创设情景。

学生回答:y与x之间的关系式,可以表示为y=2x。

问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%。求出这种物质的剩留量随时间(单位:年)变化的函数关系。设最初的质量为1,时间变量用x表示,剩留量用y表示。

学生回答:y与x之间的关系式,可以表示为y=0.84x。

引导学生观察,两个函数中,底数是常数,指数是自变量。

问题:指数函数定义中,为什么规定“a?0且a?1”如果不这样规定会出现什么情况?

(1)若a0会有什么问题?

x1则在实数范围内相应的函数值不存在)2(2)若a=0会有什么问题?(对于x0,a无意义)。

(3)若a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要。)。

师:为了避免上述各种情况的发生,所以规定a?0且a?1。

1(1)y4x(2)yx4(3)y4x(4)y4(5(于:,n的大小:

设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。

(五)课堂小结。

(六)布置作业。

初中数学函数教案篇二十

函数与方程是中学数学的重要内容,是衔接初等数学与高等数学的纽带,再加上函数与方程还是中学数学四大数学思想之一,是具体事例与抽象思想相结合的体现,在教学过程中,我采用了自主探究教学法。通过教学情境的设置,让学生由特殊到一般,有熟悉到陌生,让学生从现象中发现本质,以此激发学生的成就感,激发学生的学习兴趣和学习热情。在现实生活中函数与方程都有着十分重要的应用,因此函数与方程在整个高中数学教学中占有非常重要的地位。

本节课是《普通高中课程标准》的新增内容之一,选自《普通高中课程标准实验教课书数学i必修本(a版)》第94—95页的第三章第一课时3、1、1方程的根与函数的的零点。

本节通过对二次函数的图象的研究判断一元二次方程根的存在性以及根的个数的判断建立一元二次方程的根与相应的二次函数的零点的联系,然后由特殊到一般,将其推广到一般方程与相应的函数的情形、它既揭示了初中一元二次方程与相应的二次函数的内在联系,也引出对函数知识的总结拓展。之后将函数零点与方程的根的关系在利用二分法解方程中(3、1、2)加以应用,通过建立函数模型以及模型的求解(3、2)更全面地体现函数与方程的关系,逐步建立起函数与方程的联系、渗透“方程与函数”思想。

总之,本节课渗透着重要的数学思想“特殊到一般的归纳思想”“方程与函数”和“数形结合”的思想,教好本节课可以为学好中学数学打下一个良好基础,因此教好本节是至关重要的。

知识与技能:

1、结合方程根的几何意义,理解函数零点的定义;

2、结合零点定义的探究,掌握方程的实根与其相应函数零点之间的'等价关系;

3、结合几类基本初等函数的图象特征,掌握判断函数的零点个数和所在区间的方法。

情感、态度与价值观:

2、培养学生锲而不舍的探索精神和严密思考的良好学习习惯;

3、使学生感受学习、探索发现的乐趣与成功感。

教学重点:函数零点与方程根之间的关系;连续函数在某区间上存在零点的判定方法。

教学难点:发现与理解方程的根与函数零点的关系;探究发现函数存在零点的方法。

导学案,自主探究,合作学习,电子交互白板。

(一)、问题引人:

请同学们思考这个问题。用屏幕显示判断下列方程是否有实根,有几个实根?

学生活动:回答,思考解法。

学生活动:思考作答。

设计意图:通过设疑,让学生对高次方程的根产生好奇。

(二)、概念形成:

预习展示1:

学生活动:观察图像,思考作答。

教师活动:我们来认真地对比一下。用投影展示学生填写表格。

一元二次方程。

方程的根。

二次函数。

函数的图象。

(简图)。

图象与轴交点的坐标。

函数的零点。

问题1:你能通过观察二次方程的根及相应的二次函数图象,找出方程的根,图象与。

轴交点的坐标以及函数零点的关系吗?

学生活动:得到方程的实数根应该是函数图象与x轴交点的横坐标的结论。

教师活动:我们就把使方程成立的实数x称做函数的零点、(引出零点的概念)。

根据零点概念,提出问题,零点是点吗?零点与函数方程的根有何关系?

学生活动:经过观察表格,得出(请学生总结)。

2)函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标、

3)方程有实数根函数的图象与轴有交点函数有零点。

教师活动:引导学生仔细体会上述结论。

再提出问题:如何并根据函数零点的意义求零点?

学生活动:可以解方程而得到(代数法);

可以利用函数的图象找出零点、(几何法)、

设计意图:由学生最熟悉的二次方程和二次函数出发,发现一般规律,并尝试的去总结零点,根与交点三者的关系。

(三)探究性质:

(四)探索研究(可根据时间和学生对知识的接受程度适当调整)。

讨论:请大家给方程的一个解的大约范围,看谁找得范围更小?

[师生互动]。

师:把学生分成小组共同探究,给学生足够的自主学习时间,让学生充分研究,发挥其主观能动性。也可以让各组把这几个题做为小课题来研究,激发学生学习潜能和热情。老师用多媒体演示,直观地演示根的存在性及根存在的区间大小情况。

生:分组讨论,各抒己见。在探究学习中得到数学能力的提高。

第五阶段设计意图:

一是为用二分法求方程的近似解做准备。

二是小组探究合作学习培养学生的创新能力和探究意识,本组探究题目就是为了培养学生的探究能力,此组题目具有较强的开放性,探究性,基本上可以达到上述目的。

(五)、课堂小结:

零点概念。

零点存在性的判断。

零点存在性定理的应用注意点:零点个数判断以及方程根所在区间。

(六)、巩固练习(略)。

【本文地址:http://www.xuefen.com.cn/zuowen/16829193.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档