大数据职业规划书(汇总16篇)

格式:DOC 上传日期:2023-12-01 05:04:07
大数据职业规划书(汇总16篇)
时间:2023-12-01 05:04:07     小编:纸韵

议论文是表达观点和论证的一种方式,通过写议论文可以锻炼自己的观点清晰和论证能力。写出一篇较为完美的总结并非易事,需要我们不断地反思和修正。想要写一篇优秀的总结吗?不妨看看下面这些小编为大家精心收集的总结范文。

大数据职业规划书篇一

美国国家标准和技术研究院对大数据做出了定义:“大数据是指其数据量、采集速度,或数据表示限制了使用传统关系型方法进行有效分析的能力,或需要使用重要的水平缩放技术来实现高效处理的数据。”我们认为大数据价值链可分为:数据生成、数据采集、数据储存以及数据分析。数据分析是大数据价值链的最后也是最重要的阶段,是大数据价值的实现,是大数据应用的基础,其目的在于提取有用的值,提供论断建议或支持决策,通过对不同领域数据集的分析可能会产生不同级别的潜在价值。

虽然这些传统的分析方法已经被应用于大数据领域,但是它们在处理规模较大的数据集合时,效率无法达到用户预期,且难以处理复杂的数据,如非结构化数据。因此,出现了许多专门针对大数据的集成、管理及分析的技术和方法。

布隆过滤器:其实质是一个位数组和一系列hash函数。布隆过滤器的原理是利用位数组存储数据的hash值而不是数据本身,其本质是利用hash函数对数据进行有损压缩存储的位图索引。其优点是具有较高的空间效率和查询速率,缺点是有一定的误识别率和删除困难。布隆过滤器适用于允许低误识别率的大数据场合。

hash法,其本质是将数据转化为长度更短的定长的数值或索引值的方法。这种方法的优点是具有快速的读写和查询速度,缺点是难以找到一个良好的hash函数。

索引:无论是在管理结构化数据的传统关系数据库,还是管理半结构化和非结构化数据的技术中,索引都是一个减少磁盘读写开销、提高增删改查速率的有效方法。索引的缺陷在于需要额外的开销存储索引文件,且需要根据数据的更新而动态维护。

trie树:又称为字典树,是hash树的变种形式,多被用于快速检索,和词频统计。trie树的思想是利用字符串的公共前缀,最大限度地减少字符串的比较,提高查询效率。

并行计算:相对于传统的串行计算,并行计算是指同时使用多个计算资源完成运算。其基本思想是将问题进行分解,由若干个独立的处理器完成各自的任务,以达到协同处理的目的。

传统数据分析方法,大多数都是通过对原始数据集进行抽样或者过滤,然后对数据样本进行分析,寻找特征和规律,其最大的特点是通过复杂的算法从有限的样本空间中获取尽可能多的信息。随着计算能力和存储能力的提升,大数据分析方法与传统分析方法的最大区别在于分析的对象是全体数据,而不是数据样本,其最大的`特点在于不追求算法的复杂性和精确性,而追求可以高效地对整个数据集的分析。总之,传统数据方法力求通过复杂算法从有限的数据集中获取信息,其更加追求准确性;大数据分析方法则是通过高效的算法、模式,对全体数据进行分析。

[2]黄晓斌,钟辉新.基于大数据的企业竞争情报系统模型构建[j].情报杂志,20xx(03).

大数据职业规划书篇二

数据分析出现在新的计算技术实现以后,分析1.0时代又称为商业智能时代。它通过客观分析和深入理解商业现象,取缔在决策中仅凭直觉和过时的市场调研报告,帮助管理者理性化和最大化依据事实作出决策。首次在计算机的帮助下将生产、客户交互、市场等数据录入数据库并且整合分析。但是由于发展的局限性对数据的使用更多的是准备数据,很少时间用在分析数据上。

(二)数据2.0时代。

2.0时代开始于20xx年,与分析1.0要求的公司能力不同,新时达要求数量分析师具备超强的分析数据能力,数据也不是只来源于公司内部,更多的来自公司外部、互联网、传感器和各种公开发布的数据。比如领英公司,充分运用数据分析抢占先机,开发出令人印象深刻的数据服务。

(三)数据3.0时代。

又称为富化数据的产品时代。分析3.0时代来临的标准是各行业大公司纷纷介入。公司可以很好的分析数据,指导合适的商业决策。但是必须承认,随着数据的越来越大,更新速度越来越快,在带来发展机遇的同时,也带来诸多挑战。如何商业化地利用这次变革是亟待面对的课题。

随着顾客主导逻辑时代的到来以及互联网电商等多渠道购物方式的出现,顾客角色和需求发生了转变,世界正在被感知化、互联化和智能化。大数据时代的到来,个人的行为不仅能够被量化搜集、预测,而且顾客的个人观点很可能改变商业世界和社会的运行。由此,一个个性化顾客主导商业需求的时代已然到来,大数据冲击下,市场营销引领的企业变革初见端倪。

(一)大数据时代消费者成为市场营销的主宰者。

传统的市场营销过程是通过市场调研,采集目前市场的信息帮助企业研发、生产、营销和推广。但是在大数据以及社会化媒体盛行的今天,这种营销模式便黯然失色。今天的消费者已然成为了市场营销的主宰者,他们会主动搜寻商品信息,货比三家,严格筛选。他们由之前的注重使用价值到更加注重消费整个过程中的体验价值和情境价值。甚至企业品牌形象的塑造也不再是企业单一宣传,虚拟社区以及购物网站等的口碑开始影响消费者的购买行为。更有甚者,消费者通过在社交媒体等渠道表达个人的需求已经成为影响企业产品设计、研发、生产和销售的重要因素。

(二)大数据时代企业精准营销成为可能。

在大数据时代下,技术的发展大大超过了企业的想象。搜集非结构化的信息已经成为一种可能,大数据不单单仅能了解细分市场的可能,更通过真正个性化洞察精确到每个顾客。通过数据的挖掘和深入分析,企业可以掌握有价值的信息帮助企业发现顾客思维模式、消费行为模式。尤其在今天顾客为了彰显个性,有着独特的消费倾向。相对于忠诚于某个品牌,顾客更忠诚与给自己的定位。如果企业的品牌不能最大化地实现客户价值,那么即使是再惠顾也难以保证顾客的持续性。并且,企业不能奢望对顾客进行归类,因为每个顾客的需求都有差别。正是如此,大数据分析才能更好地把握顾客的消费行为和偏好,为企业精准营销出谋划策。

(三)大数据时代企业营销理念――“充分以顾客为中心创造价值”

传统的营销和战略的观点认为,大规模生产意味着标准化生产方式,无个性化可言。定制化生产意味着个性化生产,但是只是小规模定制。说到底,大规模生产与定制化无法结合。但是在今天,大数据分析的营销和销售解决的是大规模生产和顾客个性化需求之间的矛盾。使大企业拥有传统小便利店的一对一顾客关系管理,以即时工具和个性化推荐使得大企业实现与顾客的实时沟通等。

京东是最大的自营式电商企业。其中的京东商城,涵盖服装、化妆品、日用品、生鲜、电脑数码等多个品类。在整个手机零售商行业里,京东无论是在销售额还是销售量都占到市场份额一半的'规模。之所以占据这样的优势地位,得益于大数据的应用,即京东的jdphone的计划。

jdphone计划是依据京东的大数据和综合服务的能力,以用户为中心整合产业链的优质资源并联合厂商打造用户期待的产品和服务体验。京东在销售的过程中,通过对大数据的分析,内部研究出一种称为产品画像的模型。这个模型通过综合在京东网站购物消费者的信息,例如:年龄、性别、喜好等类别的信息,然后进行深入分析。根据分析结果结合不同的消费者便有诸如线上的程序化购买、精准的点击等营销手段,有效的帮助京东实现精准的营销推送。不仅如此,通过对于后续用户购物完成的售后数据分析,精确的分析商品的不足之处或者消费者的直接需求。数据3.0时代的一个特征便是企业不在单纯的在企业内部分析数据,而是共享实现价值共创。所以,京东把这些数据用于与上游供应商进行定期的交流,间接促进生产厂商与消费者沟通,了解市场的需求,指导下一次产品的市场定位。总的来说,这个计划是通过京东销售和售后环节的大数据分析,一方面指导自身精准营销,另一方面,影响供应商产品定位和企业规划,最终为消费者提供满足他们需求的个性化产品。

(一)数据分析要树立以人为本的思维。

“以人为本”体现在两个方面,一方面是数据分析以客户为本,切实分析客户的需求,用数据分析指导下一次的产品设计、生产和市场营销。另一方面,以人为本体现在对用户数据的保密性和合理化应用。切实维护好大数据和互联网背景下隐私保护的问题,使得信息技术良性发展。

(二)正确处理海量数据与核心数据的矛盾。

大数据具有数据量大、类型繁多、价值密度低和速度快时效高的特点。所以在众多海量的数据中,只有反映消费者行为和市场需求的信息才是企业所需要的。不必要的数据分析只会影响企业做出正确的决策。鉴于此,首先企业需要明确核心数据的标准;其次企业要及时进行核心数据的归档;最后要有专业的数据分析专业队数据进行分析,得出科学合理的结果以指导实践。

(三)整合价值链以共享数据的方式实现价值创造。

单纯的企业内部数据已经无法满足今天市场上顾客多样性的需求,大数据的共享已经迫在眉睫。首先,可以通过扩展常规上下游渠道的数据。例如京东与上游供应商的合作。其次,与社会化媒体数据建立联系。社会化媒体数据是外围数据的一个重要来源。但是如果只是搜集并没有把数据与企业本身营销策略或者数据发布者建立联系,那么数据就没有发挥其应有的价值。最后,虚拟人脉交换获取数据。比如建立企业自媒体收获粉丝获取数据等。

[1]岳占仁.大数据颠覆传统营销[j].it经理世界,20xx,17.

[2]单华.大数据营销带给我国网络自制剧的思考――以《纸牌屋》为例[j].青年记者,20xx,26.

[3]魏伶如.大稻萦销的发展现状及其前景展望.辽宁大学新华国际商学院.

大数据职业规划书篇三

美好愿望:在事业上有所成就,找到属于自己的另一半。

方向:企业高级程序设计员。

总体目标:完成大学期间的学习,找到一份满意的工作,成为企业高层程序设计人才。

已进行情况:读完大专,想继续参加专升本考试或者考研。

1、家庭环境分析

我家住在河南漯河市的郊区,是家里的独生子女。家里世代以种地为主,爸妈在私人企业上班。本来家庭就不富裕,再加上我就读大学,,因此家庭负担比较困难。因此父母对我的期望比较高,希望我毕业后能找到一份收入比较高的好工作。

2、学校环境分析

我就读于郑州轻工业大学,听名字就知道她是一所以工为主的大学。近几年来,郑州轻工业大学在保证优势学科不断提升的情况下,正在不断向一所综合性大学发展,因此学校对我们这个计算机专业相当重视并投入了大量的经费用于发展壮大。在这种大好机遇下我们的计算机专业得到了迅速的发展并取得了巨大的成就。除此之外,我们学校还经常组织学生开展社会实践活动,这样不尽锻炼了我们的实际能力还使我们所学的知识得以充分利用做到学以智用。

3、社会一般环境:

中国政治稳定,经济持续发展。在全球计算机事业发展迅速的形势下,中国计算机事业也在突飞猛进的发展,所以我国高素质的it人才也层层辈出。

4、计算机职业特殊社会环境:

当今社会的计算机已经达到非常普及的程度,随处都可以看见计算机的身影。对于它的发展,人们充满信心。硬件的发展为软件提供了良好的发展平台,而软件的发展也让硬件有用武之地。不仅在军事领域、金融场所以及学校的机房,学生的宿舍和大街上的网吧,我们随处可见。由于中国的管理科学发展较晚,尤其是计算机的发展更是很迟,因此对计算机的专业人员需求量很大尤其是对经过系统培训的高级专业人才,计算机的前景依然是非常乐观的!

1、行业分析:

中国计算机事业发展有强劲的势头,加入wto后,会有大批的外国企业进入中国市场,中国的企业也将走出国门。这样就会增加对专业计算机人员的需求量,这样对于我们从事于计算机行业的人来说是挑战但更是一种机遇!

2、企业分析

在中国,联想个人电脑产品的市场份额达近三分之一。凭借其领先的技术,易用的功能、个性化的设计以及多元化的解决方案而广受中国用户欢迎。联想已连续8年保持中国排名第一。联想还拥有针对中国市场的丰富的产品线,包括移动手持设备、服务器、外设和数码产品等,因此联想电脑公司具有非常好的发展前景。除此之外,联想电脑公司的员工都具有良好的职业素质和道德素质,工作氛围也好,因此是我良好的选择地。

(1)自身现状

计算机专业基础扎实,不仅掌握各种计算机办公软件如word、excel等,还会使用五笔打字,并且熟悉计算机的操作、应用和系统维护等,对photoshop有所了解,有良好的硬件知识基础和较强的语言表达能力,接受过全方位的大学基础教育,受到良好的专业训练和能力的培养,对数据库有良好的理论基础和实践经验,有较强的动手能力和研究分析能力。

(2)角色建议:

父亲:“能继续学习就继续上,艺多不压身!”;“工作要努力,有发展,要能吃苦耐劳!”

母亲:“工作要上进,生活上省吃俭用,存点积蓄,以备急时之需“。

同学:“可以继续考研!”

1、职业目标:企业高级程序设计人员。

2、目标分析:

在中国,联想个人电脑产品的市场份额达近三分之一。凭借其领先的技术,易用的功能、个性化的设计以及多元化的解决方案而广受中国用户欢迎。联想已连续8年保持中国排名第一。联想还拥有针对中国市场的丰富的产品线,包括移动手持设备、服务器、外设和数码产品等,联想电脑公司具有非常好的发展前景。因此能够到联想电脑公司当一名技术主管是我梦寐以求的事业。

我的成功标准是事业与家庭并驾齐驱。只要自己努力了,能力得到发挥,人生的每一个阶段都有了切实的自我提高,即使目标没有实现我也不会懊恼!

一个不能靠自己的能力改变命运的人,是不幸的,也是可怜的,因为这些人没有把命运掌握在自己的手中,反而成为命运的奴隶。而人的一生中究竟有多少个春秋,有多少事是值得回忆和纪念的。生命就像一张白纸,等待着我们去描绘,去谱写。目标有长远的,也有近期的,但只有完成近期的计划,才可以向长远的目标奋斗、拼搏。

现制定我大学毕业后十年内计划如下:

前三年:如今大学专科生的就业形势严峻,压力很大,能找到满意工作的最好途径我认为莫过于学习更多的知识,掌握更多的本领。更重要的是对社会的了解程度。因此大学毕业后我选择走考研之路。在校学习期间我要与社会多接触,尽可能多的了解本专业行情及就业情况。

第四年至第七年:研究生毕业后找一份月薪不低于两千的程序设计方面的工作,踏实工作。工作期间通过各种途径去了解一个企业的创办与发展的流程,大量的学习关于管理、创业方面的知识,并筹集资金为创业做基础。工作目标是能做到单位的高级程序员。

后三年:利用四年的工作管理经验创业,目标是把以前积累的理论知识付诸实践,

不论成败,争取能够在自己的管理过程中学到更加宝贵的经验。

十年后计划还有待制定,相信在前十年的基础上,后面会有很大的成就。

1、差距

由于我还未真正进入企业工作,因此对其某些方面的要求还不太了解,如:“高级程序设计人员必备的技能”及“自身的潜力,身体适应能力”和“人际关系的处理能力”等问题。

2、、教育培训方法

(1)充分利用在校学习的.时间,为自己补充所需的知识和技能。包括参与社会团体活动、广泛阅读电脑方面相关的书籍、选修、旁听相关课程、报考技能资格证书等。

(2)充分利用公司给员工提供的培训机会,争取更多的培训机会。

(3)攻读研究生。

3、讨论交流方法

(1)在校期间多和老师、同学讨论交流,毕业后选择和有工作经验经的前辈经常进行交流。

(2)在工作中积极与直接上司沟通、加深了解。

4、实践锻炼方法

(1)锻炼自己思考问题缜密的能力。

(2)养成良好的锻炼、饮食、生活习惯。

(3)充分利用自身的工作条件扩大社交圈、重视同学交际圈、重视和每个人的交往。。

选择这家还是那家公司?选择这一行还是那一行?应该离职还是留下?面对职业的困惑,或许我们都看过一些书,听了无数建议,经过一天的思考,仍然一头雾水!感觉工作不如意,却又不知道什么职业适合自己?努力了很多年,却突然发现可能是方向错了!开始埋怨自己为什么到现在一事无成,到底合适的职业方向在哪里?因此有一份职业规划书是必不可少的,也是对自己的人生负责!

时间过的非常的快,从呱呱落地演变成一个大学生,我已生活了十八年了,却看似是一眨眼的工夫。时间悄然过去,从指间流过的痕迹中,我得到过什么?又学会了什么?即使我不曾花时间去思考,但着眼于现在和将来,作为一个大学生,一个即将面临社会考验的大学生来说,我必须对自己的学业,自己的生涯进行规划。给自己定下目标,确定方向,好让以后的路走得顺畅,有目标。

首先,现在最重要的对自己的学习负责。由于我学习的专业是关于国际方面的贸易,因此,对于英语这门学科,我必须花最多的时间,花最大的精力去学习。更何况现在需要的人才都是英语很好的。那么,朝着最低英语六级的目标进发,当然得花时间去学习。除此之外,关于贸易方面的理论,实践,心理,交际关系才能方面,都要从书本上去吸纳知识,从日常生活中训练才能,锻炼能力。在一些会计证,报关证,营销证等的考核上,也应该尽自己的努力去考取,毕竟这是贸易的基本。这就要求我花时间,心思去认真学习。

其次,我应该了解这个专业的发展方向与及这个专业的职业知识。现在,越来越多的外国人到中国发展商业,也越来越多的中国人到外企或**发展事业,特别是我这个专业,更加要求我与外国人的接触和交流。那么,英语是基础,也进一步要求我必须学好英语这一门学科。而且,在贸易方面最注意的是诚信和人际。那么,我应该对自己所说的负责任,做到诚实,诚信。至于人际,在日后的工作中,我应该与不同层次,不同阶层,不同文化背景的人打交道,建立优良的人脉网络。这样对自己的事业发展有着良好的影响。

再次,一个人的成功与否关键在于自身的综合素质。综合素质过硬,那么事业的发展也会顺畅。那么,我应该做到以下:

1、准时,守时。因为贸易在时间的观念上看得很重,迟到一秒或许会导致整盘生意的失败。

2、学会在低谷中求生。每个人都会经历风浪,都会有不如意的时候。我必须迎着风浪,奋力求生。别气馁,风雨过后总会有晴天。

3、管住自己的嘴巴。谈论自己往往会自大,背后议论别人总会提及别人的短处。这样往往会惹来非议和不屑的对待。

最后,对自己日后发展的道理必须明确。我的目标是一个生意人,姑且先不谈成功与否。既然选择了这么一个方向,我就应该从现在开始做起,从点滴做起。这样做是为了培养自己各方面的能力,务求做得更好。创业是一个艰辛的过程,要求我从低做起。因为这样可以了解不同阶层的需要和想法,和不同的人建立人际关系网络,培养成功必须的才能,锻炼强健的体魄。从事贸易生意,人际才是硬道理,因此我必须努力建立我的人际关系网。

大数据职业规划书篇四

有人说生活像一团乱麻,剪不断理还乱;我说生活像一团乱码,尽管云山雾罩惝恍迷离,最后却总会拨云见日雨过天晴。维克托迈尔舍恩伯格就把这团乱码叫做大数据,在他的这本书里,试图给出的就是拨开云雾见青天的玄机。

这玄机说来也简单,就是放弃千百年来人们孜孜追求的因果关系转而投奔相关关系。说来简单,其实却颠覆了多少代人对真理探求的梦想。我觉得作者是个典型的实用主义者,在美帝国主义万恶的压迫下,始终追逐性价比和利益最大化,居然放弃了追求共产主义真理最基本的要求!不像我们在天朝光芒的笼罩下,从小就开始学习和追求纯粹的共产主义唯心科学历史文化知识啦!这或许就是我们永远无法获得诺贝尔奖、永远无法站在科技最前沿的根本原因吧。其实小学时候,我就想过这个问题,相信所有的人都问过类似的问题,例如现在仍然很多人在问,妈的从来没人知道我每天摆摊赚多少钱,你们他妈的那人均收入四五千是怎么算出来的。中国是抽样的代表,因为中国人最喜欢用代表来表现整体,最典型的例子莫过于公布的幸福指数满意指数各种指数永远都高于你的预期,你完全不清楚他是怎么来的,一直到最后汇总成三个代表,真心不清楚它到底能代表了啥。说这么多显得自己是个愤青,其实只是想表达“样本=总体”这个概念在科技飞速发展的今天,在世界的不同角落,还是会体现出不同的价值,受到不同程度的对待及关注。在大数据观念的冲击下,我们是不是真的需要将平时关注的重点从事物内在的发展规律转移到事物客观的发生情况上。

大数据的出现,必然对诸多领域产生极大的冲击,某些行业在未来十年必将会得到突飞猛进的发展,而其他一些行业则可能会消失。这是废话,典型的三十年河东三十年河西的道理,就像三十年前的数理化王子们,现在可能蜷缩在某工厂的小角落里颤颤巍巍的修理机器;就像三十年前职业高中的学生才学财会学银行,如今这帮孙子一个个都开大奔养小三攒的楼房够给自己做墓群的了;当然也不乏像生物这种专业,三十年前人们不知道是干啥的,三十年后人们都知道没事别去干,唯一可惜的是我在这三十年之间的历史长河中却恰恰选了这么一个专业,这也是为什么我现在在这写读后感而没有跟姑娘去玩耍的原因。其实乍一看这个题目,我首先想到的是精益生产的过程控制,比如六西格玛,这其实就是通过对所有数据的分析来预测产品品质的变化,就已经是大数据的具体应用了。而任何事物都会有偏差,会有错误,也就是说,这全部的数据中,肯定是要出现很多与总体反应出的规律相违背的个体,但是无论如何这也是该事件中一般规律的客观体现的一种形式,要远远好过从选定的样本中剔除异常值然后得到的结论。换句话说,也大大减少了排除异己对表达事物客观规律的影响。就好比是统计局统计中国人民的平均收入一样,这些数怎么这么低啊,这不是给我们国家在国际社会上的形象抹黑么,删掉删掉;这些数怎么这么高啊,这还不引起社会不满国家动荡啊,删掉删掉。所以说,大数据至少对反应客观事实和对客观事实做预测这两个方面是有非常积极地意义的。而这个新兴行业所体现的商机,既在如何利用数据上,又在如何取得数据上。

先说数据的利用,这里面表达的就是作者在通书中强调的对“相关关系”的挖掘利用。相关关系与因果关系便不再赘述,而能够对相关关系进行挖掘利用的企业其实缺不多,因为可以相信未来的大数据库就像现在的自然资源一样,必将因为对利益的追逐成为稀缺资源,而最终落在个别人或企业或部门的手中。想想无论当你想要做什么事情的时候,都有人已经提前知道并且为你做好了计划,还真是一件甜蜜而又令人不寒而栗的事情。

而对于数据的获取,我觉得必然是未来中小型企业甚至个人发挥极致的创造力的领域。如何在尽可能降低成本的情况下采集到越多越准确的数据是必然的发展趋势,鉴于这三个维度事实上都无法做到极致,那么对于数据获取方式的争夺肯定将成就更多的英雄人物。

现在回头从说说作者书中的观点中想到的,p87中关于巴斯德的疫苗的事件,描述了一个被疯狗咬伤的小孩,在接种了巴斯德的狂犬疫苗后成功幸存,巴斯德成了英雄的故事。这是个非常有意思的案例,因为小孩被狗咬伤而患病的概率仅为七分之一,也就是说,本事件有85%的概率是小孩根本就不会患病。那么小孩的生命到底是不是巴斯德救的,而这疫苗到底是有效没效,通过这个事件似乎根本就没有办法得到验证。这就好比某人推出个四万亿计划,但实际上国际经济形势就是好转,哪怕你只推出个二百五计划,gdp都会蹭蹭的往上涨,而且又不会带来四万亿导致的严重通胀、产能过剩、房价泡沫等问题。那你说这四万亿到底是救了国还是误了国?回到我自己的工作领域上来,安全工作,我们一直遵循的方向都是寻找因果关系,典型的从工作前的`风险评估,到调查事故的taproot或者五个为什么,无一不是逻辑推理得到结果的产物。而事实上,如果能做到信息的丰富采集和汇总的话,找出事物之间的相关性,对提高工作环境的安全系数是极为有利的。这个点留着,看看可不可以在未来继续做进一步研究。

p89说了常用的两种因果推理方式,分别是凭直觉的快速推理和经过分析的慢速推理。有意思的是很多时候直觉反而比分析来得成功率要更高。作者是想利用这个例子来说明因果关系是多么的不可靠,也想表达出靠分析试验得到结果的过程成本有多高。其实我是想说,因果关系更多面向的是未来,是没有对新鲜事物发展做出的预测,而相关关系更多的是对已经存在的事物未来发展的预测,侧重点不同而已。

p135里面关于山上小球的描述,它的能量是隐藏的、潜在的。这个观点我很喜欢,也很悲观。这正说明了社会上的一种现象。很多人,虽然没有站在巨人的肩膀上,但是当他们站在亲爹干爹的路虎上保险箱上高背椅上时,就是拥有别人无法企及的力量。最近一直在背马丁老兄的i have a dream,真真切切体会到自由、公正、平等对一个社会,一个国家繁荣发展的重要性。实干兴邦、空谈误国,那就先从建立一个公平的社会秩序开始吧!

p163里面大概讲述了商家是怎么通过大数据获得的信息来进行商业推广的。这里我只想用我的三张信用卡发卡银行做一下比较。首先是交通银行,这张卡最近半年几乎没怎么用,交行也从来都无声无息,我考虑已经可以把这张卡扔掉了;去年因为国航里程申请了一张中信的信用卡,但是今年开始也已基本停用,因为之前一段时间一直使用,中信银行这几个月频繁与我联系,推荐各种业务,多次要给我提供贷款或者提高透支额度,我几次都想要不然就换回来继续用它好了;招商银行的卡也是我用得比较久的一张,近期每月的消费基本都稳定在几千,偶尔也有一万多快两万的时候,当然这不是因为我消费,只是因为出差比较多自己垫钱多而已,但是招商银行从未与我联系给我提升额度,尽管我的月消费额度都已经基本达到信用卡的上限了,有时候甚至不得不使用别家的信用卡。最差的自然是中行,首先是预约了国航金卡的信用卡,结果联系了两次我都在出差,就再也不与我联系了,半年多了我还没有拿到我的卡,而作为工资卡的借记卡,多年来仍然是每天网上付款最多2000,我的使用记录明明经常一个月有好几天都达到2000的顶值,甚至我都主动打过电话要求更改,都给我答复是必须到柜台办理。说完这几个例子,我想中国的银行业与欧美发达国家银行的差距就已经是显而易见了。真的很难以想象这种企业能在世界500强中排名那么靠前,是因为黑了中国人民多少钱。而通过对visa和mastercard的案例描述,则清晰的说明了一个成功的银行是怎么通过对数据收集进行行为预测,最终改变消费者消费习惯的。

然后想说说关于免费导航等应用的使用。天下没有免费的午餐,这是亘古不变的真理。你以为你可以只花点流量费就能舒服方便的使用卫星导航了么,你去过的每一个地方,时间,逗留市场都已经被人家记录下来卖给商家啦,哪天你打车找到一家麦当劳,刚停下车服务员就送上一套板烧鸡腿汉堡套餐可乐换阳光橙不加冰的时候你可千万不要惊讶,因为你已经无时无刻不暴露在别人的监视之下了。

最后想用文中引用的莎士比亚的一句话作为结尾,凡是过去,皆为序曲。

大数据职业规划书篇五

最近看了《大数据》一书,有一点感想,在这里和大家分享。

作者在后序中写 道,这不是一本纯粹谈技术的书,而是以技术背景探讨人和社会关系的书。今天的中国,是一个人口大国、互联网大国、手机大国,却不是一个数据大国。书中有这 样一组调查数据——“麦肯锡公司以20xx年度各国新增的存储器为基准,对全世界大数据的分布做了一个研究和统计,中国20xx年新增的数据量为250 拍,不及日本的400拍、欧洲的2000拍,和美国的3500拍相比更是连十分之一都没有达到。国内的大数据步伐急需加快。

《大数据》一书对美国大数据的应用进行了十分详细的介绍与分析,我印象最深的为两点。

第一,以海量数据的处理作为政策制定的依据。看这本书的时候,我想到了这两年很火的一个美国人——斯诺登。在其曝光的“棱镜”计划中美政府直接从包括微软、谷歌、雅虎、facebook、aol、skype以及苹果在内的国际公司服务器收集信息。美国政府从这些海量数据中寻找自己需要的数据,并以此作为所谓安全政策制定的依据之一。姑且不论媒体对此计划的口诛笔伐及相应的道德风险,仅从政策制定方面来说,依据于海量数据的政策制定科学性肯定比一般计划要高得多。

20xx年,雅虎 首席执行沃兹博士在《自然》上发表的《21世纪的科学》中提到,得益于计算机技术和海量数据库的发展,我们每个人在现实世界中的活动得到前所未有的记录, 这种记录也更为细致,为社会科学的定量分析提供了极为丰富的数据。打个比方,从你的qq空间、微博、微信中一个普通朋友都能了解到你在哪儿、做了哪些事 情、现在的状态是什么,而新闻的跟帖、网站的下载记录、社交平台的互动记录等等都为社会行为的研究提供了大量的数据。我想到最近比较火爆的穿戴设备,如果 该技术得到普及过后,拥有穿戴设备的人群的生活轨迹、生理各项指标都能轻而易举地得到,相信这些大量的原始数据如能安全有效利用定能为卫生政策的制定提供 科学依据。

第二,万事万物, 凡存在,皆联网,凡联网,皆计算。20xx年起,美国食品与药品管理局开始在药品上推行配备rfid做法即每个食品包装上安装一个薄如纸张或小如豆粒的无 线传感器。通过这个移动传感器,对食品进行连续跟踪,一旦相应的安全事故爆发,就能通过数据库追踪溯源,快速确定传染源与影响范围。这一技术相对于国内尚 在起步阶段的食品追溯具有极强的借鉴性。上面提到的穿戴设备其实就可以视为一个穿戴在人身上的rfid。

20xx年的时 候,美国国家气象局在全国2000两客运大巴上装备了传感器,随着大巴的移动,沿途手机所有地点的温度、湿度、露水、光照度等数据,并立即传给国家气象局 数据中心。数据的采集是每10秒中一次,每天采集10万次以上的数据,这些实时的、高精度的数据意味着天气预报将不再仅仅是”预“,将逐渐走向“实”报、 “精”报。

作者涂子沛在书里 引用胡适与黄仁宇的话。胡适说中国人习惯于当“差不多先生”,凡是马马虎虎、不求精确。黄仁宇认为,中国不懂得用数字来管理国家。作者引用这两位先生的名 言,当然是要彰显传统中国和今天美国之间的差异。但是我们也必须认识到:这两位先生身经当时中国的混乱,激愤而出此言。在大数据浪潮迅猛而来的时候,中国 与100年前已经完全不一样了,我们已经有足够的能力与自信来面对各项挑战。20xx年中国开始着手制定医疗系统的最小数据集,3年之后卫生部出台了第一 版中国医院最小数据集的标准。也是在20xx年,中国创立了第一个全国性的大型社会调查项目,开始对社会的发展和变迁进行全方位、综合性、纵贯性的问卷访 谈调查,即“杨文昊在kod里面穿的裤子”。可以看到,中国政府和企业已经投入到了大数据时代的浪潮之中了。我个人也有几点应对的想法。

一是鼓励、扶持基 于数据的创新创业。书中提到,政策扶持的传统方法,可能是以政府主导建立大数据产业园,对新兴企业提供办公场所等便利条件或者现金支持,这固然有效,但更 为有效的是调动全社会的力量。调动全社会的力量来支持可以包括扶植民间团体,快速推进新技术、新理念在全社会的传播。现在云技术大众基本上都耳熟能详了, 而这主要是各大互联网服务上都相继推出了相应的云服务以及各大媒体对这项技术的关注,促进了大众对新技术的了解与支持。

二是政府机构要建 立专门机构来统筹管理数据工作。在大数据时代不同的数据需要整合,公安、消防、民政、社保等等数据都需要进行联动,将沉睡在数据库内的数据唤醒,为政府制 定政策所用,避免各自为政、多头管理的情况发生。数据的联通也能在一定程度上减少群众的“办证”问题,相信在大数据时代,大家可能只需要一张身份卡就能满 足绝大部分的数据需要。

三是围绕个人数据安全,加强管理。任何技术都是双刃剑,耍得好可以披荆斩棘,耍得不好则会害人伤己,大数据也不列外。如何保障个人隐私也成为了大数据时代面临的一个重大挑战。

大数据职业规划书篇六

而数据分析也越来越受到领导层的重视,借助报表告诉用户什么已经发生了,借助olap和可视化工具等分析工具告诉用户为什么发生了,通过dashboard监控告诉用户现在在发生什么,通过预报告诉用户什么可能会发生。数据分析会从海量数据中提取、挖掘对业务发展有价值的、潜在的知识,找出趋势,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业内部的科学化、信息化管理。

我们举两个通过数据分析获得成功的例子:

(1)facebook广告与微博、sns等网络社区的用户相联系,通过先进的数据挖掘与分析技术,为广告商提供更为精准定位的服务,该精准广告模式收到广大广告商的热捧,根据市场调研机构emarketer的数据,facebook年营收额超过20亿美元,成为美国最大的在线显示广告提供商。

(2)hitwise发布会上,亚太区负责人john举例说明:亚马逊30%的销售是来自其系统自动的产品推荐,通过客户分类,测试统计,行为建模,投放优化四步,运营客户的行为数据带来竞争优势。

此外,还有好多好多,数据分析,在营销、金融、互联网等方面应用是非常广泛的:比如在营销领域,有数据库营销,精准营销,rfm分析,客户分群,销量预测等等;在金融上预测股价及其波动,套利模型等等;在互联网电子商务上面,百度的精准广告,淘宝的数据魔方等等。类似成功的案例会越来越多,以至于数据分析师也越来越受到重视。

然而,现实却是另一种情况。我们来看一个来自微博上的信息:在美国目前面临14万~19万具有数据分析和管理能力的专业人员,以及150万具有理解和决策能力(基于对海量数据的研究)的管理人员和分析人员的人才短缺。而在中国,受过专业训练并有经验的数据分析人才,未来三年,分析能力人才供需缺口将逐渐放大,高级分析人才难寻。也就是说,数据分析的需求在不断增长,然而合格的为企业做分析决策的数据分析师却寥寥无几。好多人想做数据分析却不知道如何入手,要么不懂得如何清洗数据,直接把数据拿来就用;要么乱套模型,分析的头头是道,其实完全不是那么回事。按俗话说就是:见过猪跑,没吃过猪肉。

为此,我对自己的规划如下:

第一步:掌握基本的`数据分析知识(比如统计,概率,数据挖掘基础理论,运筹学等),掌握基本的数据分析软件(比如,vba,matlab,spss,sql等等),掌握基本的商业经济常识(比如宏微观经济学,营销理论,投资基础知识,战略与风险管理等等)。这些基础知识,在学校里尽量的学习,而且我来到了和君商学院,这样我可以在商业分析、经济分析上面领悟到一些东西,增强我的数据分析能力。

第二步:参与各种实习。研一开始我当时虽然有课,不过很幸运的找到一份一周只需去一两天的兼职,内容是为三星做竞争对手分析,当然分析框架是leader给定了,我只是做整合资料和往ppt里填充的内容的工作,不过通过兼职,我接触到了咨询行业,也向正式员工学习了很多商业分析、思考逻辑之类的东西。之后去西门子,做和vba的事情,虽然做的事情与数据分析无关,不过在公司经常用vba做一些自动化处理工作,为自己的数据分析工具打好了基础。再之后去了易车,在那里兼职了一个多月,参与了大众汽车销量数据短期预测的项目,一个小项目下来,数据分析的方法流程掌握了不少,也了解了企业是如何用一些时间序列模型去参与预测的,如何选取某个拟合曲线作为预测值。现在,我来到新的地方实习,也非常幸运的参加了一个央企的码头堆场优化系统设计,其实也算数据分析的一种吧,通过码头的数据实施调度,通过码头的数据进行决策,最后写成一个可操作的自动化系统。而这个项目,最重要的就是业务流程的把握,我也参与项目最初的需求调研,和制定工作任务说明书sow,体会颇多。

第三步:第一份工作,预计3-5年。我估计会选择咨询公司或者it公司吧,主要是做数据分析这块比较强的公司,比如fico,埃森哲,高沃,瑞尼尔,ibm,ac等等。通过第一份工作去把自己的知识打得扎实些,学会在实际中应用所学,学会数据分析的流程方法,让自己成长起来。

第四步:去自己喜欢的一个行业,深入了解这个行业,并讲数据分析应用到这个行业里。比如我可以去电子商务做数据分析师。我觉得我选择电子商务,是因为未来必将是互联网的时代,电子商务必将取代传统商务,最显著的现象就是传统零售商老大沃尔玛正在受到亚马逊的挑战。此外,电子商务比传统的零售商具有更好的数据收集和管理能力,可以更好的跟踪用户、挖掘潜在用户、挖掘潜在商品。

第五步:未知。我暂时没有想法,不过我希望我是在一直的进步。

能力:

1、一定要懂点战略、才能结合商业;。

2、一定要漂亮的presentation、才能buying;。

3、一定要有globalview、才能打单;。

4、一定要懂业务、才能结合市场;。

5、一定要专几种工具、才能干活;。

6、一定要学好、才能有效率;。

7、一定要有强悍理论基础、才能入门;。

8、一定要努力、才能赚钱;最重要的:

大数据职业规划书篇七

职业规划的目的绝不仅是帮助个人按照自己的资历条件找到一份合适的工作,达到与实现个人目标,更重要的是帮助个人真正了解自己,为自己定下事业大计,筹划未来,拟定一生的发展方向,根据主客观条件设计出合理且可行的职业生涯发展方向。

一、为什么要做数据分析师?

在通信、互联网、金融等这些行业每天产生巨大的数据量(长期更是积累了大量丰富的数据,比如客户交易数据等等),据说到20,全球每年产生的数据量达到3500万亿gb;海量的历史数据是否有价值,是否可以利用为领导决策提供参考依据?随着软件工具、数据库技术、各种硬件设备的飞快发展,使得我们分析海量数据成为可能。

而数据分析也越来越受到领导层的重视,借助报表告诉用户什么已经发生了,借助olap和可视化工具等分析工具告诉用户为什么发生了,通过dashboard监控告诉用户现在在发生什么,通过预报告诉用户什么可能会发生。数据分析会从海量数据中提取、挖掘对业务发展有价值的、潜在的知识,找出趋势,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业内部的科学化、信息化管理。

我们举两个通过数据分析获得成功的例子:

(1)facebook广告与微博、sns等网络社区的用户相联系,通过先进的数据挖掘与分析技术,为广告商提供更为精准定位的服务,该精准广告模式收到广大广告商的热捧,根据市场调研机构emarketer的数据,facebook年营收额超过20亿美元,成为美国最大的在线显示广告提供商。

(2)hitwise发布会上,亚太区负责人john举例说明:亚马逊30%的销售是来自其系统自动的产品推荐,通过客户分类,测试统计,行为建模,投放优化四步,运营客户的行为数据带来竞争优势。

此外,还有好多好多,数据分析,在营销、金融、互联网等方面应用是非常广泛的:比如在营销领域,有数据库营销,精准营销,rfm分析,客户分群,销量预测等等;在金融上预测股价及其波动,套利模型等等;在互联网电子商务上面,百度的精准广告,淘宝的数据魔方等等。类似成功的案例会越来越多,以至于数据分析师也越来越受到重视。

然而,现实却是另一种情况。我们来看一个来自微博上的信息:在美国目前面临14万~19万具有数据分析和管理能力的专业人员,以及150万具有理解和决策能力(基于对海量数据的研究)的管理人员和分析人员的人才短缺。而在中国,受过专业训练并有经验的数据分析人才,未来三年,分析能力人才供需缺口将逐渐放大,高级分析人才难寻。也就是说,数据分析的需求在不断增长,然而合格的为企业做分析决策的数据分析师却寥寥无几。好多人想做数据分析却不知道如何入手,要么不懂得如何清洗数据,直接把数据拿来就用;要么乱套模型,分析的头头是道,其实完全不是那么回事。按俗话说就是:见过猪跑,没吃过猪肉。

对于数据分析,有一句话说的非常好:spss/sql之类的软件、决策树、时间序列之类的方法,这些仅仅就都是个工具而已,最重要的是对业务的把握。没有正确的业务理解,再牛的理论,再牛的工具,都是白搭。做一名合格的数据分析师,除了对数据需要有良好的敏感性之外,对相关业务的背景的深入了解,对客户或业务部门的需求的清晰认识。根据实际的业务发展情况识别哪些数据可用,哪些不适用,而不是孤立地在“真空环境”下进行分析。

为此,我对自己的规划如下:

第一步:掌握基本的数据分析知识(比如统计,概率,数据挖掘基础理论,运筹学等),掌握基本的数据分析软件(比如,vba,matlab,spss,sql等等),掌握基本的商业经济常识(比如宏微观经济学,营销理论,投资基础知识,战略与风险管理等等)。这些基础知识,在学校里尽量的学习,而且我来到了和君商学院,这样我可以在商业分析、经济分析上面领悟到一些东西,增强我的数据分析能力。

第二步:参与各种实习。研一开始我当时虽然有课,不过很幸运的找到一份一周只需去一两天的兼职,内容是为三星做竞争对手分析,当然分析框架是leader给定了,我只是做整合资料和往ppt里填充的内容的工作,不过通过兼职,我接触到了咨询行业,也向正式员工学习了很多商业分析、思考逻辑之类的东西。之后去西门子,做和vba的事情,虽然做的事情与数据分析无关,不过在公司经常用vba做一些自动化处理工作,为自己的数据分析工具打好了基础。再之后去了易车,在那里兼职了一个多月,参与了大众汽车销量数据短期预测的项目,一个小项目下来,数据分析的方法流程掌握了不少,也了解了企业是如何用一些时间序列模型去参与预测的,如何选取某个拟合曲线作为预测值。现在,我来到新的地方实习,也非常幸运的参加了一个央企的码头堆场优化系统设计,其实也算数据分析的一种吧,通过码头的数据实施调度,通过码头的数据进行决策,最后写成一个可操作的自动化系统。而这个项目,最重要的就是业务流程的把握,我也参与项目最初的需求调研,和制定工作任务说明书sow,体会颇多。

第三步:第一份工作,预计3-5年。我估计会选择咨询公司或者it公司吧,主要是做数据分析这块比较强的公司,比如fico,埃森哲,高沃,瑞尼尔,ibm,ac等等。通过第一份工作去把自己的知识打得扎实些,学会在实际中应用所学,学会数据分析的流程方法,让自己成长起来。

第四步:去自己喜欢的一个行业,深入了解这个行业,并讲数据分析应用到这个行业里。比如我可以去电子商务做数据分析师。我觉得我选择电子商务,是因为未来必将是互联网的时代,电子商务必将取代传统商务,最显著的现象就是传统零售商老大沃尔玛正在受到亚马逊的挑战。此外,电子商务比传统的零售商具有更好的数据收集和管理能力,可以更好的跟踪用户、挖掘潜在用户、挖掘潜在商品。

第五步:未知。我暂时没有想法,不过我希望我是在一直的进步。

能力:

1、一定要懂点战略、才能结合商业;。

2、一定要漂亮的presentation、才能buying;。

3、一定要有globalview、才能打单;。

4、一定要懂业务、才能结合市场;。

5、一定要专几种工具、才能干活;。

6、一定要学好、才能有效率;。

7、一定要有强悍理论基础、才能入门;。

8、一定要努力、才能赚钱;最重要的:

9、一定要务实、才有reputation;。

目标:

1-做过多少个项目?

2-业务背景有哪些,是否跨行业?

3-做过多少种类型的模型?做了多少个模型?

4-基于模型做过多少次完整的marketing闭环?

大数据职业规划书篇八

在当今激烈的社会竞争之中,相关知识体系和工作经验相对完备者更具有优势,而大学生活是我们进入社会之前的磨练和演习,在对自己所学专业对应的职业有所了解和定位,明确将来前进的方向,能让我们更有侧重点的学习。通过着眼于现学专业和个人所长来进行职业规划,可以分析自我,为将来的奋斗确立方向。如果只是混混度日或者盲目学习各门课程而忽略专业偏向和主次,怎么能够满足将来的工作需要?再者,职业规划可以让我们根据未来的理想制定可行的生活规划,评估当下和目标之间的差距,弥补自身不足,在反复的学习和实践中让之间更具竞争力,充实自我,了解自我,从而找到职场机遇。

就自身而言,我认为自己的兴趣与爱好其实是比较广泛的,具体的讲自己对计算机、文学、美术等方面比较感兴趣,同时还比较关心时事新闻。而我平时也喜欢看相关爱好的书籍博文,此外喜欢户外运动,喜欢打羽毛球、跑步。闲暇之余我喜欢画画、听音乐看电影。

1、性格的态度特征。

我的性格是比较诚实、正直的。在做事情时认真勤奋责任心强,往往尽力做到自己能达的,同时比较喜欢创新。喜欢用不同的角度来看待分析问题。在自己的生活与同学及其他人的交往中比较随和,很少跟人发生正面冲突,也基本能做到小事不计较不记仇,当我遇到没有接触的事情和不懂的地方时能向人虚心请教,但有时也会坚持己见按自己预先设想的来办。

就性格而言,我认为有待改善的地方是,有时缺乏自信,优柔寡断。

对于做事态度方面,有时比较急躁,没有细致地规划好,这也是我认为做一份职业规划非常必要的原因之一。还有,虽然我经常能够意识到问题的存在,忧患意识较强,也常会立刻付诸实践,但是恒心毅力不够,没有坚持到底,这也算是我性格的一个弱点。就此,在未来3年多的大学生活中我会主要到阻止自己做到更好的因素,并努力完善自我,让我在未来更具优势。

性格的理智特征在感知注意方面,我是属于那种主动观察的类型;在想象方面,我是属于主动想象的类型,是那种发散型的类型,同时我认为自己在做事情的时候是现实主义与幻想主义的结合。

如果按照美国霍兰德的职业兴趣理论的分析,我认为我是属于企业型的职业兴趣者,按照美国人才专家把人们的职业定位类型的五种划分方法的话,我认为我是管理型或者是创造型的人。

2、我的优点。

(1)我的兴趣比较广泛,对事物的接受能力较强。

(2)社会实践能力以及组织协调能力较强。

(3)对人诚恳,大方,喜欢与人交流社会交际能力强。

(4)特长是画画,有一定的素描基础。

(5)在学识上我喜欢看一些历史、人文、地理之类的书,对我们中国的历史文化有较强的认识,对国外的知识有较多的了解,同时还喜欢看一些感情色彩较浓的散文。

(6)在专业知识上虽然没有开始正式上课,但是自己已经在自我学习并通过社会实践了解到一些。

(7)忧患意识较强,喜欢多角度分析问题。

(8)我自问不是什么聪明的人,但相信我的智商是中等偏上的;在道德上虽然不是高尚的人,但起码我认为自己不会破坏社会道德,损人利己。

3、我的缺点。

(1)我的缺点还是比较多的,自己的缺点就是有时候做事情会比较粗心,有时可能会丢三落四,做事情有时候会比较冲动,考虑问题不全面,规划不细致。

(2)由于性格比较直,所以有的时候或许会不注意说话的方式。

(3)我的另一个大缺点是脾气有点倔强,认定的事情就一定要做到而且要做好。

(4)社会实践的经验还不丰富,对许多方面的知识了解不够,且没有积极的去学习。适合职业有:信贷顾问房地产经纪人法律从业者银行、税务从业者人事管理人员财务人员机械、电气、计算机工程师业务员营销师当然,测试不一定完全准确,根据我对自己的认识,我性格温和,喜欢独自思考,遇事冷静,讲求和谐。崇尚自由,尊重他人,乐意结交各种各样的朋友。乐观积极,比较有自信。

我所学的专业是信息与计算科学,该专业是以信息领域为背景数学与信息,管理相结合的交叉学科专业。毕业以后,可以在信息与计算科学、计算机信息处理、经济、金融等部门从事研究、教学、应用软件开发或者是管理部门从事一些实际应用、开发研究或者管理工作。

(一)前景分析。

(1)继续深造:由于信息与计算科学专业的毕业生不仅具有扎实的数学基础和良好的数学思维能力,而且掌握了信息与计算科学的方法与技能,受到科学研究的训练,因此继续深造的可选择领域将变得非常广泛,既可以继续攻读计算数学、计算力学、计算机应用与软件、信息与网络安全、信息科学、自动控制、金融信息等专业和研究方向的硕士学位,也可以攻读具有行业特色且与信息与计算关系比较紧密的某些专业的硕士学位,象地球物理、油藏数值模拟、试井、储运等方向都是继续深造的理想专业。

(2)高等院校、科研单位:信息与计算科学专业的毕业生可以在大专院校和科研单位从事教学和科研研工作,可以继续从事信息科学与计算数学的教学和研究工作,也可以凭借其出色的数学建模能力和计算能力解决实际应用问题。

(3)it企业:信息与计算科学专业的毕业生进入it企业是一个重要的就业方向,它们可以在这些企业非常高效的从事计算机软件开发、信息安全与网络安全等工作。信息产业对人才的需求首先是基本的“技能”,包括计算机编程的基本能力,要求具有良好的数据库和计算机网络的知识和使用技能,熟悉基本的软件开发平台。由于信息产业进入“应用”为主流的时代,高水平的从业人员不仅要掌握基本的“技能”,关键还要具备将实际问题提炼为计算问题以及求解该问题的能力,这正是信息与计算科学专业学生的优势所在,也是近几年来国内大型it企业“抢购”知名高校计算数学专业毕业生的原因所在。

(4)特色行业的就业:在前面的办学指导思想中曾经提到过一条是重实际,即各学校应紧紧结合本校的实际,努力使所办专业与所在学校的定位相适应、与本校教师的特长与发展目标相适应、与所在地区经济发展对人才的需求相适应。

(二)职位选择分析:精算师。

1、工作职能权限。

2、工作所需专业。

(1)分和线性代数。

(2)概率论与数理统计。

(3)应用统计方法。

(4)复利数学。

(5)精算数学。

(6)风险理论。

(7)生存模型。

(8)经济保障计划概论。

(9)精算实务概论。

(10)资产管理和公司财务概论。

(11)资产和负债管理原理。

(三)实现职业目标的具体行动计划(未来三学年)。

首先,要认真听课,保证学习成绩,拿到奖学金。但是,我认为,眼光应当放远一些,在我的大学时代多方面培养自己,丰富知识,提高综合素质,而不是急功近利,纯粹为了就业而学习。当然,学习中应当有所偏重,除了数学类必修课,还需要掌握精算实务和资产管理概论等方面知识。这就需要跨专业的学习。

其次,多参与活动,将所学知识运用于实践,初步积累编程和测试经验。平时利用网络与从业人员交流,多去软件测试的论坛、贴吧。让自己在加入工作之前个职业有更深更全面的认识,并且能在这个过程中积累人脉资源具体计划:

大一下学期,英语过四级。

人生犹如在大海里漂泊的船,如果找不到航行的方向,就会迷失自己。就像万吨巨轮没有罗盘掌控方向就不能远航。对自己的未来没有系统的规划,梦想只能遥遥无期,永远实现不了,只能导致自己找不到自己奋斗的目标,一切的理想都将成为空谈。

大学是人生最为重要的时期,能否成为祖国现代化建设的合格接班人,就看你大学四年如何度过了。为了能使自己充实的度过大学四年的美好时光,学有所成,因此制定如上学习计划,用以时刻提醒自己,勉励自己,为美好的明天而努力奋斗。

我相信在我的大学四年中,给自己制定一个合适的职业生涯规划会给我将来的发展起到一个灯塔的作用,将影响我的一生。现在的大学生处在一个纷繁复杂的社会环境,如果不给自己一个很好的方向,在各种社会的迷惑下很容易迷失自己。有压力才会有动力,此计划将作为我大学学习上的启明灯,照亮我前进的道路。

大数据职业规划书篇九

现在一般找工作都是在通过网络来找,因此一份良好的个人简历对于获得面试机会至关重要。以下是“数据分析师个人简历”,希望给大家带来帮助!

姓名:xxx。

性别:男。

年龄:25。

教育经历:

院校:蓝翔技校。

专业:计算机软件。

学历:专科。

主修课程:

数据库原理、软件工程。

获奖情况:

连续2年获得校三好学生、二等学习优秀奖学金。

全国大学生计算机竞赛市二等奖。

项目经验:

201x、1x-至今。

单位:翰威特咨询公司分公司。

筛选分析调研数据,使用excel处理超过2万个样本数据,具有丰富的数据处理经验;

自我评价:本人性格开朗,思想正直,诚信,稳重。工作认真踏实,责任心强,善于独立思考,分析问题,解决问题。

大数据职业规划书篇十

(赵元)。

最近闲暇之余我读了徐子沛先生的《大数据》一书,真是让我受益匪浅。《大数据》又叫做《大数据:正在到来的数据革命》。全书通过讲述美国在过去的半个世纪里所发生的关于信息、技术方面的典型案例,来为读者剖析出一个浅显易懂的“大数据”。

《大数据》一书,之所以珍贵、便于阅读,在于徐子沛先生在写作过程之中,将原本高、精、尖的数据专业的专业术语,转而用浅显易懂的话语来表现,使得本书成为了一本平易近人的科普读物。使得阅读此书的读者无论年龄、专业、学识,都能最大限度的接触到书中所阐释的基本知识。而我作为一个农行从业四年的员工,当然也有属于我自己的一些感想:

《大数据》一书之中,所提出的一个关键性的问题就是为什么在近几年出现了“大数据”这一词语?作者举出了美国在2009年的相关数据,我从中发现了对该问题给出的一些答案。书中举例,麦肯锡《大数据:下一代创新,竞争和生产率的前沿》报告中进行估算,政府848pb,传媒行业715pb,离散制造业966pb。正是针对相关数据指标的增长,以及当前以全球化为背景的数据信息开放化,各类信息的自由化等原因,导致了面对数据的分析,以及数据的处理,数据的预测和数据的决策都有了更高的要求。这些要求导致我们在针对经济全球化,交流多元扩大化,各个专业管理与发展的精细化必须有一个相对宏观的经济分析头脑。书中使我感触最深的是,针对美国目前发展中的大事件以及现象,例如,美国矿难的悲情历史,街头警察的创新创奇,美国最热的交友信息平台facebook与推特,以及美国纠结百年的统一身份证的问题等,都一一分析了其背后所蕴含的经济学、金融学道理,以及这些时间的背后数据对于美国政府,公民以及社会的种种挑战。书中针对美国半个世纪的发展历程,逐一的分析其内涵,并将美国的发展与进步的基本原因归结为开放和创新。正是因为在这个时代美国强调对于互联网的最大利用化,才有了即使面对压力和强大的经济困难还在稳步前进的现代美国。

这本书给了我最大的启迪,说实话不是那些经济学案例,也不是那些几年前的数据信息。而是一种如何发展的理念。美国正是有了开放和创新才有了如今不断发展中的世界第一强国。而我们中国对于开放和创新却还没有做出最好的诠释。虽然我国的改革开放,技术创新已经取得了一定的成绩,但是面对发达国家我相信其中的差距也是不言而喻的。大到一个国家,小到一个集体,都离不开开放和创新。读了徐子沛先生的《大数据》,我思考最深的不是国家的改革与创新,而是我身处的农行的发展与创新。

作为一个在农行工作了四年的员工,我热爱的着我的岗位,也热爱着我为之努力奋斗的中国农业银行。面对农行未来的创新与发展,在对了这本书以后我针对自身的岗位得出了一些不尽成熟的想法:一方面,我们农行有自己的理财产品,而我行主要的营销方法还是有些被动,我的一点想法是可以多做集中性质的营销,例如在浦口区农行网点附近繁华地段发放宣传单,或者针对有需要的企业可以进行集体宣传,使我行的优质产品深入人心,从而也可以提升我行的基本效益。例如去年举行了几场“新老客户答谢会”,如果举办的次数再多一点,我觉得效果会更好。

另一方面,对于我行的创新产品我也有一些想法。创新是任何个人,企业,乃至国家的发展原动力。那么,我行也应该响应时代的召唤。近日,正值旅游的黄金时期,很多人选择出境旅游,但是有很多国家不支持银联卡,所以很多人想办理visa或mc的信用卡,但是信用卡办起来需要至少半个月的时间,且要求比较高。所以现在有的银行正在发行visa或mc的借记卡,且申领条件比较简单、速度快。我行可以参照并大力开发这一领域。

以上两点只是我个人的一点想法,虽然还有些稚嫩,有些不成熟,但是这两点是我看了徐子沛先生的《大数据》一书以后,基于我对农行的热爱,有感而发,由心而生的。

2013年09月。

大数据职业规划书篇十一

【百度大数据交响乐揭秘百度大数据的来历】近日,百度推出大数据奏鸣曲,运用百度指数平台分析热搜事件的涨跌态势,科学绘制大数据生成一条年度热搜事件曲线,并由专业音乐家整理、谱写成曲。据了解,在过去的一年里,百度平均每天接收到超过50亿次搜索需求,用户的每一次搜索点击都成为这首奏鸣曲的音符,13亿人共同奏响了2015时代之音。

这首宏大的年度交响乐曲特别邀请国家著名作曲人张朝谱曲,中国国家交响乐乐团担纲演奏。据了解,这个乐团与新中国共同成长,曾演绎过《梁祝》、《黄河钢琴协奏曲》等经典作品,代表着中国交响乐的最高水平,这也是中国交响乐团首次与百度跨界合作。

这部奏鸣曲信息量庞大,通过艺术的形式把原本冰冷的搜索数据多元化地展现出来。整部乐曲共分为五大部分,第一乐章,2015,从回家开始;第二乐章,重新出发;第三乐章,离别和考验;第四乐章,跋涉中的荣耀;以及第五乐章,永不止步。

乐曲根据搜索指数的曲线抑扬顿挫、婉转起伏,让我们随着音乐不自觉回想起2015共同经历的时代记忆。过去的2015,我们在行走中探索,在探索中改变,在改变中创新。科技的发展,让原本的绝无仅有逐渐变为生活中的习以为常。

大数据职业规划书篇十二

在大数据时代的大数据管理的人员管理形式,不断发展和改革的过程中,计算机的软件和硬件都得到了有效的提高,磁盘、磁鼓等储存软件,得到了全面的普及和发展。同时,在在不断发展的过程中,计算机将大数据的组成形式,叫做大数据文件,并且在大数据文件上就可以直接的取名字,直接的进行查看,这对大数据的管理,无疑不是一个新的发展的起点。在大数据时代的大数据文件管理的过程中,由于大数据长期的保存在外面的,这样在对的大数据处理、分析、查找、删除、修改等操作的过程中,提供了极大程度上的'便利,其对其操作的程序,也具有特点的要求。但是,在文件管理的过程中,由于共享性能较大,数据与数据之间缺乏一定的独立性,对其管理和维护的费用和时间较大,这样往往工作效率提高,不能被广泛的使用。

大数据职业规划书篇十三

短短几天把涂子沛先生的《大数据》这本书浏览一遍,结合去年北大继续教育学院进行现代管理学科学习时,老师介绍这本书时的精髓、内涵时的情景,写这篇。

心得体会。

现将浅薄体会与老师同学们一起交流,部分内容参考了书内容和涂子沛先生的观点,希望老师同学给予批评指正。

“一个真正的信息社会,首先是一个公民社会”,这是全书的一个出发点,这个出发点就是说,“信息社会最大的特点就是,信息的自由流动。”涂子沛在书中的观点是:如果没有人的平等,没有人的自由,信息能够自由流动吗?如果没有人的平等,我们这个社会彼此另外压抑另外一个人,我们的创造力怎么迸发出来?我们每个人都面临大数据时代思维变革的挑战。

涂先生在书中说出“大数据时代的公民生活”,题目他在书中来演绎公民生活的时候,它的背景是“大数据”时代。首先他讲了“什么是大数据时代”,在研究一个现象的时候,首先要研究它的定义,研究它的内涵,咱们就先把数据给它抽走,看看代表是什么。数据不是数字,数据是有跟列的数字,当他在书中谈到数据的时候,我们想到的是它代表计算,代表精确,代表理性,代表科学,代表事实。大家说姚明很高,到底有多高,你最后说两米多左右,这就是一个精确的事实。数据的出现也是人类认识这个世界,不断地向前推进的需要,人类发现需要精确的数字,就好像回到刚才的例子,你说很高很高,到底有多高,我们看,人类历史上很多重大的文明推进和演进都跟数据离不开,比如说度量衡的发明,货币的发明,再比如二进制的发明最后导致计算机的发明,最背后就是数据。

他在书中有一个新的词叫database--数据库。这个词完全是一个外来的词,1。

计算机最早是计算数字和处理数字,那时候就存在database,后来随着计算机能力的不断增强,它可以处理文字、图片、视频、声音等等,但所有这些都放在database,所以他在书中把这所有的一切都称为数据,这时候数据的内涵扩大了。其实大家要知道数据的内涵在扩大,还有一些其他的事情也在发生变化,就是说数据的容量在增大。八十年代的时候就有人提出bigdata这个概念,那时候的“大数据”的还不是现在“大数据”的概念。“大数据”这个概念不断的演变,最早有人就预见到说有一天数据会比程序更加重要,比软件更加重要,它是指重要性。所以我们往大了说,可以说这是一个大的机器,一个大的房子,也可以说是一个大容物。书中说的:到2000年的时候,宾夕法尼亚大学有一个教授出来定义,那时候企业的数据已经到泰了,他说200泰的数据就是大数据了,那泰到底是什么样的单位呢?比如全世界最大的图书馆是美国国会图书馆,美国国会图书印刷品的含量,不包括电子图书加起来是15泰,北师大应该是2个泰或者更少,这个数据就叫“泰”。

2代公民的生活。data在五年的时候,应该有一个创始人,他发现一个东西:同一个计算机芯片,同一个面积上晶体管的数量每一到两年就要增加一倍,这意味着什么?意味着计算机处理的能力越来越强,存储的能力也越来越强,同一个面积上东西越来越多,越来越密,一到两年就增加一倍,物力存在器的性能不断上升,价值不断的下降。有一个考证说,从五十年代起最早的存储器发明到现在,存储器的价格下降了300万倍,大家可以想想,历史上还有什么商品它的价格能在半个世纪下降300万倍?而摩尔定律也成为了一个代名词,呈指数形发展的变化,急剧变化的状态,剧变的变化。我们可以看看,这个图代表摩尔定律,是条直线,为什么是直线呢?因为没办法画,如果严格按刻度来画的话应该是一条横轴的曲线。涂先生在书中分析了:“1988年一个科学家提出了普适计算,普适计算提的不多,大家都提物联网。物联网是普适计算一个子概念,人家计算机的浪潮是分阶段的:第一个阶段是主机阶段,到80年代由于微软、苹果一直到个人电脑的阶段,88年互联网之后,科学家说这不是结果”。

“一个主动你就能改变的时代,因为资源就在那里,你不能去等其他的人”这是涂先生的观点。他说说影响公民的第一点:公民最主要的精神是什么?是积极地介入,积极地改变。影响我们公民的第二点,书里面有很多关于“大数据”时代的隐私文化,有的专家说87%都不能定位,只要通过“大数据”挖掘就会定位,这是影响我们公民生活的一个巨大的挑战,就是隐私权的挑战,而隐私权是一个非常重要的问题,是对个人自由的凭照。他为什么用这么大的篇幅来写隐私权利呢?也是因为我觉得,我们中国社会特别需要隐私权利,不仅是政府在侵犯公民的隐私权利,我们公民彼此之间也在不停地侵犯隐私权,而且大家习以为常。但是隐私权是一个文明社会的标志,越文明的社会,越注重隐私权,个人才越有自由,隐私权是把自己跟公共生活划分开的一条界线,保障个人的自由。社交媒体让我们进入一个前所未有人文相连的时代,这影不影响我们的公民生活?这是最大的隐患,为什么?它把我们人跟人连接起来,我们知道人跟人一旦连接起来,1+1大于2的作用。

总之,使我感受到当前我们正生活在,每天都不同、都高速度发展、激烈竞。

4争和大数据时代。我们每个人都必须面对大数据时代、结合实际面对挑战,要相信“想不到事情会发生,想不到的速度会发生”。要及时更新知识、广纳信息、梳理思维及时做出正确判断、做好工作学习生活中的精准决策。

大数据职业规划书篇十四

有些人感觉身体不舒服,但到医院进行西医体检,各项指标都是正常。为此,很多人开始接受中医体检。昨天,南京市中西医结合医院在膏方文化节启动仪式上,发布南京首个中医体质检测大数据报告:在该院对1000名参与中医体检的市民中,比较健康的人群只占33%,其余67%市民都处于亚健康状态。据介绍,通俗来说,亚健康状态,就是身体出现了不适,但还未到某些诊断的标准,因此体检指标是正常的。

中医将身体状态分为9种体质。根据这份大数据报告,平和体质排在第一位,占比33%。平和体质也就是常说的健康状态。其余8种体质人群,按照从高到低的顺序排序依次为气虚体质(约占12.7%)、阴虚体质(约占10.8%)、气郁体质(约占9.3%)、阳虚体质(约占8.3%)、痰湿体质(约占8.1%)、湿热体质(约占7.6%)、血瘀体质(约占6%)和特禀体质(约占4.2%)。

从主要人群分布分析,没有明显的职业和学历差异,但是与测试者的生活习惯密切相关。比如,喜欢高热量高脂肪饮食的人群,在痰湿体质的人群占比中最高;喜欢熬夜的人群,在阴虚体质的人群中占比最高;不爱户外活动的人群,在气郁体质的人群中占比较高。

南京市中西医结合医院治未病中心夏公旭副主任中医师说,平和体质人群的总体特征是阴阳气血调和,体态适中、面色红润、精力充沛,这个样本的.数据主要以体检中心和治未病中心的数据为主,大部分参与测试的人群都不是患者,而是以体检为主的人群。但大部分没有因为疾病到医院就诊的人群中,接近七成的人都是亚健康人群。

在亚健康的8种体质中,气虚高居榜首。夏公旭说,气虚常常是身体出现问题的最开始预警信号,不良生活习惯易致亚健康。针对亚健康状态,选择膏方调理身体,越来越受到人们的欢迎。但是,膏方进补不能盲目,否则不仅不能达到调理身体的目标,甚至事与愿违。今年,针对开具膏方的人群,南京市中西医结合医院均免费提供价值120元一次的中医体质辨识检测,让市民根据不同体质有针对性地选择相应的膏方。

对照一下,你可能属于哪种体质?

为了让市民了解亚健康状态的8种体质,南京中西医结合医院进行了一些临床特征的总结,市民不妨自我对照一下。

气虚质。

性格内向,不喜冒险。不耐受风、寒、暑、湿邪。

阳虚质。

阳气不足,以畏寒怕冷、手足不温等虚寒表现为主要特征。耐夏不耐冬;易感风、寒、湿邪。

阴虚质。

阴液亏少,以口燥咽干、手足心热等虚热表现为主要特征。手足心热,口燥咽干,鼻微干,喜冷饮,大便干燥,舌红少津,脉细数。

痰湿质。

痰湿凝聚,以形体肥胖、腹部肥满、口黏苔腻等痰湿表现为主要特征。面部皮肤油脂较多,多汗且黏,胸闷,痰多,口黏腻或甜,喜食肥甘甜黏,苔腻,脉滑。

湿热质。

湿热内蕴,以面垢油光、口苦、苔黄腻等湿热表现为主要特征。面垢油光,易生痤疮,口苦口干,身重困倦,大便黏滞不畅或燥结,小便短黄,男性易阴囊潮湿,女性易带下增多,舌质偏红,苔黄腻,脉滑数。

血瘀质。

血行不畅,以肤色晦黯、舌质紫黯等血瘀表现为主要特征。肤色晦黯,色素沉着,容易出现瘀斑,口唇黯淡,舌黯或有瘀点,舌下络脉紫黯或增粗,脉涩。

气郁质。

气机郁滞,以神情抑郁、忧虑脆弱等气郁表现为主要特征。神情抑郁,情感脆弱,烦闷不乐,舌淡红,苔薄白,脉弦。

特禀质。

以过敏反应等为主要特征。常见哮喘、风疹、咽痒、鼻塞、喷嚏等。

大数据职业规划书篇十五

每年的年终盘点往往让营销人头疼,需旁征博引、海纳百川,还要有“亮点”,从创意到制作都颇费心力,但最终效果往往却差强人意。

那么究竟如何做,才能让年终盘点营销玩出新意?让我们通过一个鲜活的例子来分解看看怎么玩转年终盘点吧。

创意是灵魂,眼球只为新鲜事停留。

20岁末,百度再次秀了一把“高难度动作”。百度汇总全年天文数字般的用户搜索数据,由搜索指数的高低起伏联想到五线谱的律动,将全年搜索热词“连接”,形成旋律。此外,百度邀请著名作曲家张朝进行谱曲、中国国家交响乐团演奏,共同创作了一支只属于2015的交响乐。

冬奥会、屠呦呦获诺奖、习马会谈、天津港爆炸、火星液态水……旋律响起,一幕幕重回眼前,每天50亿次搜索,带来全网最真实的2015记忆。那么,就让我们来感受下这首回响2015的时代之音:

让品牌占据消费者的心,最容易的方法无疑是打“情感”牌。而打好“情感”牌,却没那么容易。百度以“音乐”为情感表达载体,通过“回忆”激发情感,为看似平凡无奇的搜索指数的高低起伏注入情怀,把冷冰冰的搜索数字变成悠扬动人的交响乐曲。

想与做,艺术与大数据的有机结合。

对于营销人而言,执行力体现的是一种全面的策划和落地能力。这个项目对其创作者考验极大。百度平均每天接收50亿次的搜索请求,创造者要从这些庞大的数据中诞生搜索曲线;再以曲线为基础谱曲一首由五大部分组成、抑扬顿挫、婉转起伏的宏大乐章,大数据与艺术的跨界执行难度不可小觑。(据了解,该交响乐的五大乐章分别为:第一乐章,2015,从回家开始;第二乐章,重新出发;第三乐章,离别和考验;第四乐章,跋涉中的荣耀;以及第五乐章,永不止步。)。

我们听到的是华彩乐章,感受到的是创意之美,而其背后的协调、组织、制作这些创意所需的跨界执行难度可见一斑。优秀创意的实现,必须有强大的执行力来落实。

触摸科技品牌的体温。

大数据对于大多数网民而言,始终带有冷冰冰的距离感。百度这部大数据奏鸣曲的出现打破了科技的冰冷感,赋予了时代温度和律动。数据不再是冰冷庞大的数字,而是以音乐的形式与用户亲密互动的艺术,看似科技文艺跨界,实则也是融合。

而这些事件触动用户的内心情感,百度从情感上与用户产生联结,以此拉近品牌与用户之间的距离,借时代情怀为用户心中的品牌温度升温。

这首奏鸣曲来源于其中全网13亿网民的搜索行为。科技和艺术的跨界,让交响乐不再是音乐家曲高和寡的狂欢,13亿网民,每一个人都可以说是这首乐曲的作曲家,每一个音符都是凝聚了用户每一次参与搜索与点击的力量。这样一首用户全情参与、有温度的时代乐章,那么用户会自发去传播,营销自然事半功倍。

“结合自身具备的能力和特点,将科技温度化,同时以创意吸引网民,引发广泛传播”,或许这就是百度大数据奏鸣曲将品牌温度化想要达到的效果。

大数据职业规划书篇十六

但没人做过。

每个人都以为其他人做过,

因为每个人都声称自己做过。

这个比喻为尚处在萌芽幼齿阶段的大数据蒙上了一层有趣且暧昧的意味。

在本次sdcc(中国软件开发者大会)上,一些真枪实弹地做过大数据的高中生行业精英,向小伙伴们普及了一些有趣的冷知识。

大数据的隐秘魅力就在于,他比你都了解你。你以为你每次按下手机按键的动作都是一样的吗?哈哈图样图森破。

来自今日头条的技术副总裁杨震原告诉童鞋们,他们正在测试的“黑科技”,恰恰能从你点击按键的时间和手指面积,推测出你当时的情绪。你的漫不经心、愤怒或者感动,都能够成为后台为你推送何种消息的依据。未来,如下场景可期:

那么这种“恰到好处“的情绪拿捏和大数据有什么关系呢?实际上对你情绪的推测是建立在对你多次正常点击的记录之上的。这种行为数据甚至在你还未意识到的时候,就“出卖”了你的情绪。

今日头条技术副总裁杨震原在分析一个按钮的平均触摸时间。

银行每天的交易账目流水的统计数据,并不是大数据,而每个用户在拿号之后等待了多久才排到,有多少用户骂娘,有多少用户过于焦急愤而离去,这些真正的行为才是大数据。

杨震原又举了今日头条在应用中的另一个例子。

实际上,你在一篇文章的什么位置停留多久,然后划动了多远,在新的位置停留了多久,是否看了评论,看了几条评论,都可以按顺序被记录下来。接下来就是通过算法评估读者的兴趣所在。

csdn创始人蒋涛也特别提到,美国电商平台wish正是用大数据的方法,根据每个人的数据不同,“看人下菜碟”地推荐你可能喜欢的货品,三年时间已经发展成北美最大的电商之一。

所以,一个悲伤的消息是:未来如果你要隐藏自己的身份,不仅仅要变装易容伪造指纹,甚至连点击手机,查看文章的习惯都要改变了。

如果要想知道有多大比例的人喜欢gv,那么只需要做好抽样调查就可以了,没有必要对所有人进行调查。但是如果你想要推销宅腐的周边智能硬件产品,则需要逐个排查每个人“独特”的兴趣爱好。

所有数据一个都不能少,这就是所谓的“全量加工”,这些数据的制造者正是各大厂商利润的源泉。

360商业产品首席架构师刘鹏是一名网红,他在很多场合都强调:全量加工才是大数据。他说,涉及到个性化推荐、计算广告、个人征信这些场景,大规模的计算就是无法避免的。

从技术角度来说,之所以大数据可以做到这么精准,也主要得益于技术的进步。感知设备被丰富地用在五花八门的硬件上,使得以前无法记录的数据,现在都可以被记录了。

大数据应该交给机器做决策,而不是交给人做决策。

这种洋溢着对人类深深不信任感的论断同样来自于刘鹏。在他眼中,大数据是为机器提供的食粮。而能够驾驭大数据的人类基本只有两种:数据科学家和统计工作者。

it企业中养一群科学家的可能性为零。而人类的判断往往基于宏观、战略,不可能有精力做到“因事而异”。相比之下机器的判断比人类更加细致。比如为每个用户比如画像、贴标签。所以,要想把大数据利用透彻,愚蠢的人类还是暂时靠边站吧。

“数据”这两个字,天然给人一种完美而且精准的感觉。在这方面,大数据要挑战你的底线。作为数字广告领域的大牛,刘鹏强调,大数据可以存在半一致性这样模棱两可的属性。换句话说,允许数据错误和丢失。

纳尼?错误的数据也是好数据吗?没错。由于数据量巨大,而且分析半天往往没什么有用的收获(价值密度低),分析者往往需要选取一些特征数据做加工,而对于这些特征数据,也许还要简化之后再加工。所以最终大数据要达到的结果是难得糊涂,却一针见血。

所以,如果有人向喜爱人民网的你推荐草榴的时候,先不要发火,你可能只是大数据的一个错误罢了。

如果你是一个鲁莽的人,最想知道这个情况的无疑是你的汽车保险公司,想必你的保费会居高不下;如果你是一个谨小慎微的人,最想知道的也是保险公司,因为它可以用打折的保费吸引你投保。

在你身上,甚至存在一个精确的“岀险率”数字。这个听上去很惊悚的数字恰恰是保险公司利润的来源。因为不掌握这样大数据的个人,是无法计算自己的岀险率的。保险公司恰恰利用这种信息不对称,给一个岀险率是万分之一的人开出了千分之一的保价,相当于赚了十倍的利润。

数据比它看上去的样子更险恶,这是大数据业内人士的普遍共识。即使隐去了你的姓名电话等等敏感信息,只保留你和其他人联系的记录,熟悉你的人完全可以猜到你的身份。目前大数据的安全性,在他人的恶意之下,显得力不从心。

隐私问题,制度只能解决20分,剩下的80分要靠技术进步来解决。

刘鹏如是说。期待市场倒退到前大数据时代,似乎没有希望了。

如何精确统计出有多少人喜爱苍井空,有多少人喜欢武藤兰,但是又不泄露到底是谁喜欢苍老师,谁喜欢武老师,这是目前大数据的最前沿研究。

有关大数据的政策再严格,没有一套可靠的保密技术,数据的安全都是无从谈起的。隐私算法、数据脱敏、数据隔离。都是研究的方向。在此之前,各位的大数据还都在相对危险的状态。这也是为什么目前法律没有禁止数据买卖,而各大巨头却不敢将数据出售的原因。当然,大数据库市场价目前比较低也是一个重要的原因。

【本文地址:http://www.xuefen.com.cn/zuowen/16827317.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档