编写教案有助于教师理清教学思路和步骤,提高教学效果。制定教案时应注意选择适宜的教学方法和手段,以提高学生的学习兴趣和积极性。以下是一些教案实例,供大家参考和借鉴。
定理与证明教案篇一
《动能和动能定理》是高中物理必修2第五章《机械能及其守恒定律》第七节的内容,我从:教材分析、目标分析、教法学法、教学过程、板书设计和教学反思六个纬度作如下汇报:
一、教材分析。
1.内容分析。
《动能和动能定理》主要学习一个物理概念:动能;一个物理规律:动能定理。从知识与技能上要掌握动能表达式及其相关决定因素,动能定理的物理意义和实际的应用。
通过例题2的探究,理解正负功的物理意义,初步从能量守恒与转化的角度认识功。在态度情感与价值观上,在尝试解决程序性问题的过程中,体验物理学科既是基于实验探究的一门实验性学科,同时也是严密数学语言逻辑的学科,只有两种方法体系并重,才能有效地认识自然,揭示客观世界存在的物理规律。
2.内容地位。
通过初中的学习,对功和动能概念已经有了相关的认识,通过第六节的实验探究,认识到做功与物体速度变化的关系。将本节课设计成一堂理论探究课有着积极的意义。因为通过“动能定理”的学习,深入理解“功是能量转化的量度”,并在解释功能关系上有着深远的意义。为此设计如下目标:
二、目标分析。
1、三维教学目标。
(一)、知识与技能。
1.理解动能的'概念,并能进行相关计算;
(二)、过程与方法。
1.掌握恒力作用下动能定理的推导;
2.体会变力作用下动能定理解决问题的优越性;
(三)、情感态度与价值观。
体会“状态的变化量量度复杂过程量”这一物理思想;感受数学语言对物理过程描述的。
简洁美;
2.教学重点、难点:
重点:对动能公式和动能定理的理解与应用。
难点:通过对动能定理的理解,加深对功、能关系的认识。
三、教法和学法。
学生的学法采取:任务驱动和合作探究;
选取多媒体展示、尝试练习题和“任务驱动问题”本节课为一课时。
四、教学过程。
设计成6个教学环节:提出问题,导入新课;任务驱动,感知教材;合作探究,分享交流;精讲点拨,释疑解惑;典例引领,内化反思;课堂总结,布置作业。
将本文的word文档下载到电脑,方便收藏和打印。
定理与证明教案篇二
1、通过拼图,用面积的方法说明勾股定理的正确性.
2、通过实例应用勾股定理,培养学生的知识应用技能.
一、学前准备:
1、阅读课本第46页到第47页,完成下列问题:。
2、剪四个完全相同的直角三角形,然后将它们拼成如图所示的'图形。大正方形的面积可以表示为_________________________,又可以表示为__________________________.对比两种表示方法,看看能不能得到勾股定理的结论。用上面得到的完全相同的四个直角三角形,还可以拼成如下图所示的图形,与上面的方法类似,也能说明勾股定理是正确的方法(请逐一说明)。
二、合作探究:
(一)自学、相信自己:
(二)思索、交流:
(三)应用、探究:
(四)巩固练习:
1、如图,64、400分别为所在正方形的面积,则图中字。
母a所代表的正方形面积是_________。
三.学习体会:
本节课我们进一步认识了勾股定理,并用两种方法证明了这个定理,在应用此定理解决问题时,应注意只有直角三角形的三边才有这样的关系,如果不是直角三角形应该构造直角三角形来解决。
2②图。
四.自我测试:
五.自我提高:
定理与证明教案篇三
知识与技能:
1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。
2、了解勾股定理的内容。
3、能利用已知两边求直角三角形另一边的长。
过程与方法:
1、通过拼图活动,体验数学思维的严谨性,发展形象思维。
2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。
情感与态度:
1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。
2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。
二教学重、难点。
重点:探索和证明勾股定理难点:用拼图方法证明勾股定理。
三、学情分析。
学生对几何图形的观察,几何图形的分析能力已初步形成。部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。
四、教学策略。
本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。
五、教学过程。
教学环节。
教学内容。
活动和意图。
创设情境导入新课。
以“航天员在太空中遇到外星人时,用什么语言进行沟通”导入新课,让孩子们尽情发挥他们的想象.而华罗庚建议可以用勾股定理的图形进行和外星人沟通,为什么呢?通过一段vcr说明原因。
[设计意图]激发学生对勾股定理的兴趣,从而较自然的引入课题。
新知探究。
毕达哥拉斯是古希腊著名的数学家。相传在2500年以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的三边的某种数量关系。
(1)同学们,请你也来观察下图中的地面,看看能发现些什么?
(2)你能找出图18.1-1中正方形1、2、3面积之间的关系吗?
通过讲述故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态。
如图,每个小方格代表1个单位面积,我们分别以a,b,c三边为边长作正方形。
回答以下内容:
(1)想一想,怎样利用小方格计算正方形a、b、c面积?
(2)怎样求出正方形面积c?
(3)观察所得的各组数据,你有什么发现?
(4)将正方形a,b,c分别移开,你能发现直角三角形边长a,b,c有何数量关系?
引导学生将边不在格线上的图形转化为边在格线上的图形,以便于计算图形面积.
问题是思维的起点”,通过层层设问,引导学生发现新知。
探究交流归纳。
拼图验证加深理解。
如图,每个小方格代表1个单位面积,我们分别以a,b,c三边为边长作正方形。
回答以下内容:
(1)想一想,怎样利用小方格计算正方形p、q、r的面积?
(2)怎样求出正方形面积r?
(3)观察所得的各组数据,你有什么发现?
(4)将正方形p,q,r分别移开,你能发现直角三角形边长a,b,c有何数量关系?
由以上两问题可得猜想:
直角三角形两直角边的平方和等于斜边的平方。
而猜想要通过证明才能成为定理。
活动探究:
(1)让学生利用学具进行拼图。
(2)多媒体课件展示拼图过程及证明过程理解数学的严密性。
从特殊的等腰直角三角形过渡到一般的直角三角形。
渗透从特殊到一般的数学思想.为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互欣赏、争辩、互助中得到提高。
通过这些实际操作,学生进行一步加深对数形结合的理解,拼图也会产生感性认识,也为论证勾股定理做好准备。
利用分组讨论,加强合作意识。
1、经历所拼图形与多媒体展示图形的联系与区别。
2、加强数学严密教育,从而更好地理解代数与图形相结合。
应用新知解决问题。
在应用新知这个环节,我把以往的单纯求解边长之类的题目换成了几个运用勾股定理来解决问题的古算题。
把生活中的实物抽象成几何图形,让学生了解丰富变幻的图形世界,培养了学生抽象思维能力,特别注重培养学生认识事物,探索问题,解决实际的能力。
回顾小结整体感知。
在最后的小结中,不但对知识进行小结更对方法要进行小节,还可向学生介绍了美丽的图案毕达哥拉斯树,让学生切身感受到其实数学与生活是紧密联系的,进一步发现数学的另一种美。
学生通过对学习过程的小结,领会其中的数学思想方法;通过梳理所学内容,形成完整知识结构,培养归纳概括能力。。
布置作业巩固加深。
必做题:
1.完成课本习题1,2,3题。
选做题:
针对学生认知的差异设计了有层次的作业题,既使学生巩固知识,形成技能,让感兴趣的学生课后探索,感受数学证明的灵活、优美与精巧,感受勾股定理的丰富文化。
定理与证明教案篇四
《余弦定理》选自人教a版高中数学必修五第一章第一节第一课时。本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。
知识与技能:1、理解并掌握余弦定理和余弦定理的推论。
2、掌握余弦定理的推导、证明过程。
3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。 过程与方法:1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。
2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。
情感态度与价值观:1、在交流合作的过程中增强合作探究、团结协作精神,体验 解决问题的成功喜悦。
2、感受数学一般规律的美感,培养数学学习的兴趣。 三、教学重难点
重点:余弦定理及其推论和余弦定理的运用。
难点:余弦定理的发现和推导过程以及多解情况的判断。
四、教学用具
普通教学工具、多媒体工具 (以上均为命题教学的准备)
定理与证明教案篇五
各位老师大家好!
今天我说课的内容是余弦定理,本节内容共分3课时,今天我将就第1课时的余弦定理的证明与简单应用进行说课。下面我分别从教材分析。教学目标的确定。教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。
一、教材分析。
本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。
在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
二、教学目标的确定。
基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:
三、教学方法的选择。
基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。
四、教学过程的设计。
为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。具体过程如下:
1、创设情境,引入课题。
利用多媒体引出如下问题:
a地和b地之间隔着一个水塘现选择一地点c,可以测得的大小及,求a、b两地之间的距离c。
【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。
2、探索研究、构建新知。
(1)由于初中接触的是解直角三角形的问题,所以我将先带领学生从特殊情况为直角三角形()时考虑。此时使用勾股定理,得。
(3)考虑到我们所作的图为锐角三角形,讨论上述结论能否推广到在为钝角三角形()中。
通过解决问题可以得到在任意三角形中都有,之后让同学们类比出……这样我就完成了对余弦定理的引入,之后总结给出余弦定理的内容及公式表示。
在学生已学习了向量的基础上,考虑到新课改中要求使用新工具、新方法,我会引导同学类比向量法证明正弦定理的过程尝试使用向量的方法证明余弦定理、之后引导学生对余弦定理公式进行变形,用三边值来表示角的余弦值,给出余弦定理的第二种表示形式,这样就完成了新知的构建。
根据余弦定理的两种形式,我们可以利用余弦定理解决以下两类解斜三角形的问题:
(1)已知三边,求三个角;
(2)已知三角形两边及其夹角,求第三边和其他两个角。
3、例题讲解、巩固练习。
本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握使用余弦定理解决问题的方法。其中例题先以学生自己思考解题为主,教师点评后再规范解题步骤及板书,课堂练习请同学们自主完成,并请同学上黑板板书,从而巩固余弦定理的运用。
例题讲解:
例1在中,
(1)已知,求;
(2)已知,求。
【设计意图】例题1分别是通过已知三角形两边及其夹角求第三边,已知三角形三边求其夹角,这样余弦定理的两个形式分别得到了运用,进而巩固了学生对余弦定理的运用。
例2对于例题1(2),求的大小。
【设计意图】已经求出了的度数,学生可能会有两种解法:运用正弦定理或运用余弦定理,比较正弦定理和余弦定理,发现使用余弦定理求解角的问题可以避免解的取舍问题。
例3使用余弦定理证明:在中,当为锐角时;当为钝角时,
【设计意图】例3通过对和的比较,体现了“余弦定理是勾股定理的推广”这一思想,进一步加深了对余弦定理的认识和理解。
课堂练习:
练习1在中,
(1)已知,求;
(2)已知,求。
【设计意图】检验学生是否掌握余弦定理的两个形式,巩固学生对余弦定理的运用。
练习2若三条线段长分别为5,6,7,则用这三条线段()。
a、能组成直角三角形。
b、能组成锐角三角形。
c、能组成钝角三角形。
d、不能组成三角形。
【设计意图】与例题3相呼应。
练习3在中,已知,试求的大小。
【设计意图】要求灵活使用公式,对公式进行变形。
4、课堂小结,布置作业。
先请同学对本节课所学内容进行小结,教师再对以下三个方面进行总结:
(3)余弦定理的可以解决的两类解斜三角形的问题。
通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。
布置作业。
必做题:习题1、2、1、2、3、5、6;
选做题:习题1、2、12、13。
【设计意图】。
作业分为必做题和选做题、针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。
各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的临时发挥而随机生成。预设效果如何,最终还有待于课堂教学实践的检验。
本说课一定存在诸多不足,恳请老师提出宝贵意见,谢谢。
定理与证明教案篇六
2、两点之间线段最短。
3、同角或等角的补角相等。
4、同角或等角的余角相等。
5、过一点有且只有一条直线和已知直线垂直。
6、直线外一点与直线上各点连接的所有线段中,垂线段最短。
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行。
8、如果两条直线都和第三条直线平行,这两条直线也互相平行。
9、同位角相等,两直线平行。
10、内错角相等,两直线平行。
11、同旁内角互补,两直线平行。
12、两直线平行,同位角相等。
13、两直线平行,内错角相等。
14、两直线平行,同旁内角互补。
15、定理三角形两边的和大于第三边。
16、推论三角形两边的差小于第三边。
17、三角形内角和定理三角形三个内角的和等于180°。
18、推论1直角三角形的两个锐角互余。
19、推论2三角形的一个外角等于和它不相邻的两个内角的和。
20、推论3三角形的一个外角大于任何一个和它不相邻的内角。
21、全等三角形的对应边、对应角相等。
22、边角边公理(sas)有两边和它们的夹角对应相等的两个三角形全等。
23、角边角公理(asa)有两角和它们的夹边对应相等的两个三角形全等。
24、推论(aas)有两角和其中一角的对边对应相等的两个三角形全等。
25、边边边公理(sss)有三边对应相等的两个三角形全等。
26、斜边、直角边公理(hl)有斜边和一条直角边对应相等的两个直角三角形全等。
27、定理1在角的平分线上的点到这个角的两边的距离相等。
28、定理2到一个角的两边的距离相同的点,在这个角的平分线上。
29、角的平分线是到角的两边距离相等的所有点的集合。
定理与证明教案篇七
动能定理是一条适用范围很广的物理定理,但教材在推导这一定理时,由一个恒力做功使物体的动能变化,得出力在一个过程中所作的功等于物体在这个过程中动能的变化。然后逐步扩展到几个力做功和变力做功以及曲线运动的情况。这个梯度很大,为了帮助学生真正理解动能定理,我设置了一些具体的问题,逐步深入地进行研究,让学生寻找物体动能的变化与哪些力做功相对应,从而使学生能够顺利的准确的理解动能定理的含义。
探究式教学是实现物理教学目标的重要方法之一,()同时也是培养学生创新能力、发展学生非智力因素的重要途径。因此,本节课我在教学设计时从动能的概念入手就注重对学生的引导,使学生在探究中提出问题、设计方案、解决问题。在操作上本节教学我注重为学生创设一个和谐自由的课堂氛围,让每一位同学都积极参与课堂教学。在动能公式及动能定理的推导过程中,有师生间的讨论、分析,甚至是相互质疑。本节课我运用实验探究法,通过质量相同的物体高度的不同和高度相同质量不同的两种情况,得出动能和质量速度的关系。用演绎推理法由动能公式进一步推导得出动能定理。在探究过程中,重点引导学生从外力做功和物体的动能变化量两个方面思考,选择受力情况较为简单,动能变化量比较容易得到的具体形式。在解题过程中,让学生采用对比的方法,体会到了运用动能定理解决问题的优点和方法、步骤。让学生采用这种自主探究式的学习方法进行学习,能够有效得提高学生的学习兴趣,提高课堂教学的效率。
定理与证明教案篇八
教学目标1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.
2.会综合运用平行四边形的判定方法和性质来解决问题。
教学重点:平行四边形的判定方法及应用。
教学难点:平行四边形的判定定理与性质定理的灵活应用。
引
二.探。
阅读教材p44至p45。
利用手中的学具——硬纸板条,通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:
(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?
(2)你怎样验证你搭建的四边形一定是平行四边形?
(3)你能说出你的做法及其道理吗?
(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?
(5)你还能找出其他方法吗?
从探究中得到:
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
平行四边形判定方法2对角线互相平分的四边形是平行四边形。
证一证。
平行四边形判定方法1两组对边分别相等的四边形是平行四边形。
证明:(画出图形)。
平行四边形判定方法2一组对边平行且相等的四边形是平行四边形。
证明:(画出图形)。
三.结。
两组对边分别相等的四边形是平行四边形。
对角线互相平分的四边形是平行四边形。
四.用。
定理与证明教案篇九
学会观察图形,勇于探索图形间的关系,培养学生的空间观念。
2、过程与方法。
(1)经历一般规律的探索过程,发展学生的抽象思维能力。
(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想。
3、情感态度与价值观。
(1)通过有趣的问题提高学习数学的兴趣。
(2)在解决实际问题的过程中,体验数学学习的实用性。
教学重点:
探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题。
教学难点:
利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题。
教学准备:
多媒体。
教学过程:
第一环节:创设情境,引入新课(3分钟,学生观察、猜想)。
情景:
第二环节:合作探究(15分钟,学生分组合作探究)。
学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算。
第三环节:做一做(7分钟,学生合作探究)。
教材23页。
李叔叔想要检测雕塑底座正面的ad边和bc边是否分别垂直于底边ab,但他随身只带了卷尺。
(1)你能替他想办法完成任务吗?
第四环节:巩固练习(10分钟,学生独立完成)。
2.如图,台阶a处的蚂蚁要爬到b处搬运食物,它怎么走最近?并求出最近距离。
第五环节课堂小结(3分钟,师生问答)。
内容:如何利用勾股定理及逆定理解决最短路程问题?
第六环节:布置作业(2分钟,学生分别记录)。
作业:1.课本习题1.5第1,2,3题.。
要求:a组(学优生):1、2、3。
b组(中等生):1、2。
c组(后三分之一生):1。
定理与证明教案篇十
教学目标:
1、知识目标:
(2)学会利用勾股定理进行计算、证明与作图;
(3)了解有关勾股定理的历史。
2、能力目标:
(1)在定理的证明中培养学生的拼图能力;
(2)通过问题的解决,提高学生的运算能力。
3、情感目标:
(1)通过自主学习的发展体验获取数学知识的感受;
(2)通过有关勾股定理的历史讲解,对学生进行德育教育。
教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育。
教学用具:直尺,微机。
教学方法:以学生为主体的讨论探索法。
教学过程:
1、新课背景知识复习。
(1)三角形的三边关系。
(2)问题:(投影显示)。
直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?
2、定理的获得。
让学生用文字语言将上述问题表述出来。
勾股定理:直角三角形两直角边的平方和等于斜边的平方。
强调说明:
(1)勾――最短的边、股――较长的直角边、弦――斜边。
(2)学生根据上述学习,提出自己的问题(待定)。
3、定理的证明方法。
方法一:将四个全等的直角三角形拼成如图1所示的正方形。
方法二:将四个全等的直角三角形拼成如图2所示的正方形。
方法三:“总统”法、如图所示将两个直角三角形拼成直角梯形。
以上证明方法都由学生先分组讨论获得,教师只做指导、最后总结说明。
4、定理与逆定理的应用。
5、课堂小结:
已知直角三角形的两边求第三边。
已知直角三角形的一边,求另两边的关系。
6、布置作业:
a、书面作业p130#1、2、3。
b、上交作业p132#1、3。
定理与证明教案篇十一
本节内容是江苏教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,在此之前学生已经学习过了勾股定理。平面向量、正弦定理等相关知识,这为过渡到本节内容的学习起着铺垫作用。本节内容实质是学生已经学习的勾股定理的延伸和推广,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决斜三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。
在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的发现及证明;教学关键是余弦定理在三角形边角计算中的运用。
基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者。引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,我认为本节课的教学目标有:
基于本节课是属于新授课中的数学命题教学,根据《学记》中启发诱导的思想和布鲁纳的发现学习理论,我将主要采用“启发式教学”和“探究性教学”的教学方法即从一个实际问题出发,发现无法使用刚学习的正弦定理解决,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。
在教学中利用计算机多媒体来辅助教学,充分发挥其快捷、生动、形象的特点。
为达到本节课的教学目标、突出重点、突破难点,在教材分析、确定教学目标和合理选择教法与学法的基础上,我把教学过程设计为以下四个阶段:创设情境、引入课题;探索研究、构建新知;例题讲解、巩固练习;课堂小结,布置作业。具体过程如下:
1、创设情境,引入课题
利用多媒体引出如下问题:
a地和b地之间隔着一个水塘现选择一地点c,可以测得的大小及,求a、b两地之间的距离c。
【设计意图】由于学生刚学过正弦定理,一定会采用刚学的知识解题,但由于无法找到一组已知的边及其所对角,从而产生疑惑,激发学生探索欲望。
2、探索研究、构建新知
(1)由于初中接触的是解直角三角形的问题,所以我将先带领学生从特殊情况为直角三角形( )时考虑。此时使用勾股定理,得。
(3)考虑到我们所作的图为锐角三角形,讨论上述结论能否推广到在为钝角三角形( )中。
通过解决问题可以得到在任意三角形中都有,之后让同学们类比出……这样我就完成了对余弦定理的引入,之后总结给出余弦定理的内容及公式表示。
在学生已学习了向量的基础上,考虑到新课改中要求使用新工具、新方法,我会引导同学类比向量法证明正弦定理的过程尝试使用向量的方法证明余弦定理、之后引导学生对余弦定理公式进行变形,用三边值来表示角的余弦值,给出余弦定理的第二种表示形式,这样就完成了新知的构建。
根据余弦定理的两种形式,我们可以利用余弦定理解决以下两类解斜三角形的问题:
(1)已知三边,求三个角;
(2)已知三角形两边及其夹角,求第三边和其他两个角。
3、例题讲解、巩固练习
本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握使用余弦定理解决问题的方法。其中例题先以学生自己思考解题为主,教师点评后再规范解题步骤及板书,课堂练习请同学们自主完成,并请同学上黑板板书,从而巩固余弦定理的运用。
例题讲解:
例1在中,
(1)已知,求;
(2)已知,求。
【设计意图】例题1分别是通过已知三角形两边及其夹角求第三边,已知三角形三边求其夹角,这样余弦定理的两个形式分别得到了运用,进而巩固了学生对余弦定理的运用。
例2对于例题1(2),求的大小。
【设计意图】已经求出了的度数,学生可能会有两种解法:运用正弦定理或运用余弦定理,比较正弦定理和余弦定理,发现使用余弦定理求解角的问题可以避免解的取舍问题。
例3使用余弦定理证明:在中,当为锐角时;当为钝角时,
【设计意图】例3通过对和的比较,体现了“余弦定理是勾股定理的推广”这一思想,进一步加深了对余弦定理的认识和理解。
课堂练习:
练习1在中,
(1)已知,求;
(2)已知,求。
【设计意图】检验学生是否掌握余弦定理的两个形式,巩固学生对余弦定理的运用。
练习2若三条线段长分别为5,6,7,则用这三条线段()。
a、能组成直角三角形
b、能组成锐角三角形
c、能组成钝角三角形
d、不能组成三角形
【设计意图】与例题3相呼应。
练习3在中,已知,试求的大小。
【设计意图】要求灵活使用公式,对公式进行变形。
4、课堂小结,布置作业
先请同学对本节课所学内容进行小结,教师再对以下三个方面进行总结:
(1)余弦定理的内容和公式;
(2)余弦定理实质上是勾股定理的推广;
(3)余弦定理的可以解决的两类解斜三角形的问题。
通过师生的共同小结,发挥学生的主体作用,有利于学生巩固所学知识,也能培养学生的归纳和概括能力。
布置作业
必做题:习题1、2、1、2、3、5、6;
选做题:习题1、2、12、13。
作业分为必做题和选做题、针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高。
各位老师,以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的临时发挥而随机生成。预设效果如何,最终还有待于课堂教学实践的检验。
本说课一定存在诸多不足,恳请老师提出宝贵意见,谢谢。
定理与证明教案篇十二
生:有一个内角是90°,那么这个三角形就为直角三角形.。
生:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.。
二、讲授新课。
是不是三角形的三边只要有两边的平方和等于第三边的平方,就能得到一个直角三角形呢?
活动3下面的三组数分别是一个三角形的三边长?
定理与证明教案篇十三
虽然现在已经有不少人用不同方法证明出了四色定理,但我认为四色定理的证明还是有点复杂,所以给出以下证明。(注:图形与图形的位置关系可分为相离、包含、内向接、内向切、外向接、外向切,在此文中由于题意关系不妨重新分为以下关系:1把包含、内向接、内向切,统一划分为包含关系。2把外向接单独划分为相接关系。3把相离、外相切统一划分为相离关系。)。
此证明过程中把图的组合形式按照其位置关系而抽离出了以下四种基本有效模式:若要存在只需用一种颜色便能彼此区分开来的地图,则该图中所有图形必定满足彼此相离。如下图:
图(1)。
分析:这是最简单的一种图形关系模式暂且称为模式a。若要存在只需用两种颜色便能彼此区分开来的地图,则该图中的所有图形必定满足最多只存在两个图形的两两相交的图形。各种有效图形关系如下图:
图(2)。
分析:两个图形的两两相交的所有图形关系均可变形而得出等价的以上两种图形关系模式之。
一。由于图(1)存在包含关系,被包含的图形是对外部无影响的,所以图(1)仍属于模式a。所以两个图形的两两相交只有图(2)的相交关系模式的图形有效的,我们暂且称之为模式b。若要存在只需用三种颜色便能彼此区分开来的地图,则给图中所有图形必定满足最多只存在三个图形的两两相交图形。各种有效图形关系如下图:
图(3)。
分析:三个图形的两两相交的所有图形关系均可变形而得出等价的以上两种图形关系模式之。
一。由于图(2)属于存在包含关系,同理整体回归于模式a。所以三个图形的两两相交只有图(1)的相接关系模式的图形是有效图形模式,我们暂且称之为模式c。若要存在只需用四种颜色便能彼此区分开来的地图,则给图中所有图形必定满足最多只存在四个图形的两两相交图形。各种有效图形关系如下图:
图(4)。
分析:四个图形的两两相交的所有图形关系均可变形而得出等价的以上两种图形关系。由于图(2)属于存在包含关系,同理可得出整体也就回归于图形模式a。同样我们暂且称图(1)的图形关系模式为模式d。观察易得,已经拥有四个有效图形的模式d有一个图形是被包围的,所以在此基础上在球面或是平面上是不可能诞生有五个图形两两相交而组成的模式e了,由于以上的四种基本的有效模式均可由四种以内的颜色彼此分开。所以在平面或球面上四种颜色已足以把它们彼此区分。另外至于在环形体或丁形体上,则可用此方法得出五色定理和六色定理。
定理与证明教案篇十四
最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明。在这幅“勾股圆方图”中,以弦为边长玫秸?叫蜛bde是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间懂得小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:
4×(ab/2)+(b-a)2=c2。
化简后便可得:
a2+b2=c2。
亦即:
c=(a2+b2)(1/2)。
稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题。
再给出两种。
1。做直角三角形的高,然后用相似三角形比例做出。
2。把直角三角形内接于圆。然后扩张做出一矩形。最后用一下托勒密定。
定理与证明教案篇十五
1、用验证法发现直角三角形中存在的边的关系。
(二)能力训练点。
观察和分析直角三角形中,两边的变化对第三边的影响,总结出直角三角形各边的基本关系。
(三)德育渗透点。
培养学生掌握由特殊到一般的化归思想,从具体到抽象的思维方法,以及化归的思想,从而达到从感性认识到理性认识的飞跃;又从一般到特殊,从抽象到具体,应用到实践中去。
二、教学重点、难点及解决办法。
1、重点:发现并证明勾股定理。
2、难点:图形面积的转化。
3、突出重点,突破难点的办法:《几何画板》辅助教学。
三、教学手段:
利用计算机辅助面积转化的探求。
四、课时安排:
本课题安排1课时。
五、教学设想:
六、教学过程(略)。
定理与证明教案篇十六
1,根据定义:三角形两边中点之间的'线段为三角形的中位线。
2.经过三角形一边中点与另一边平行的直线与第三边相交,交点与中点之间的线段为三角形的中位线。
3.端点在三角形的两边上与第三边平行且等于第三边的一半的线段为三角形的中位线。
定理与证明教案篇十七
《余弦定理》选自人教a版高中数学必修五第一章第一节第一课时。本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。
余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。
1、理解并掌握余弦定理和余弦定理的推论。
2、掌握余弦定理的推导、证明过程。
3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。
1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。
2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。
3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。
1、在交流合作的过程中增强合作探究、团结协作精神,体验 解决问题的成功喜悦。
2、感受数学一般规律的美感,培养数学学习的兴趣。
重点:余弦定理及其推论和余弦定理的运用。
难点:余弦定理的发现和推导过程以及多解情况的判断。
普通教学工具、多媒体工具 (以上均为命题教学的准备)
定理与证明教案篇十八
本节课主要通过勾股定理的证明探索,使学生进一步理解和掌握勾股定理。通过利用质疑、拼图观察、思考、猜想、推理论证这一过程,培养学生探求未知数学知识的能力和方法,培养学生求异思维能力、认知能力、观察能力和独立实践能力。学生独立或分组进行拼图实验,教师组织学生在实验过程中发现的有价值的实验结果进行交流和展示。本节课的过程由激趣、质疑、实验、求异、探索、交流、延伸组成。
本节课的成功之处:
1、创设情景,实例导入,激发学生的学习热情。
2、由于实现了教师角色的转变,教法的创新,师生的平等,气氛的活跃,学生积极参加。
3、面向全体学生,以人为本的教育理念落实到位。整节课都是学生自主实验、自主探索,自主完成由形到数的转化。学生勇于上讲台展示研究成果,教师只是起到组织、引导作用。
4、通过学生动手实验,上台发言,展示成果,体验了成功的喜悦。学生的自信心得到培养,个性得到张扬。通过当场展示,让学生体会到动手实践在解决数学问题中的重要性,同时也让学生体会到用面积来验证公式的直观性、普遍性。
5、学生的研究成果极大地丰富了学生对勾股定理的证明的认识,学生从中获得利用已知的知识探求数学知识的能力和方法。这对学生今后的学习和将来的发展是大有裨益的。同时验证勾股定理的证明的探究,使学生形成一种等积代换的思想,为今后的学习奠定基础。
本节课的不足之处及改进思路:
1、小部分能力基础和能力都比较差的学生在探索过程中无所事事,因此教师应该在课前对不同层次的学生提出不同的要求,让每个学生多清楚地知道这节课自己的任务是什么。
2、本节课拼图验证的方法是以前学生很少接触的,所以在探索过程中很多学生都显得有些吃力。所以教师在讲方法一时,应该先介绍这种证明方法以及思路,让学生模仿第一种方法的'基础上,能轻松地总结出第二种方法,从而产生去探索更多方法的兴趣和动力,有利于学生的数学思维的提升。
3、对学生的人文教育和爱国教育不够。很多学生在探索过程中遇到困难时,选择放弃或等别人的答案。教师此时应该注意引导学生要勇于克服困难,主动进行探索,提高了自身的推理能力和创新精神。同时教师也要不断渗透爱国教育,培养学生的民族自豪感和爱国热情。
在我们的数学教学中,活动课是不可忽视的内容。在这个探索的过程中,学生绝大多数是不会创造或发明什么的,这是一个素质的表现和培养过程。学生得到什么结果是次要的,重要的是使学生的素质和能力得到培养。这是中学数学活动课的价值取向。
【本文地址:http://www.xuefen.com.cn/zuowen/16819859.html】