总结是我们成长过程中必备的一环。在总结中,要突出自己的成就和取得的进步,以鼓励自己继续努力。3、总结范文可以为我们提供一个参照和借鉴的对象。
解决问题例教学设计篇一
教具:2张表格纸,画好表格的小黑板。
学具:直尺,课堂练习本。
教学过程:
一、导入新课。
二、创设情景,讲授新知。
2、教学例3。
4、大家都认为,可以按3人间由少到多的顺序来列举,也可以按2人间由少到多的顺序来列举。我们先按3人间由少到多的顺序来列举,为了方便记录和观察,我们可以先画个表格。(出示表格)。
提问:这样2人间怎样安排?符合题目要求吗?
谈话:你们会这样列举了吗?接下去应该怎样想?在小组里讨论。注意:组内每个人至少要说一种。指名说答案,教师板书。
解决问题例教学设计篇二
教学内容:人教版二年级数学下册《用除法解决问题》.
教学目的:
(一)通过实践运动使门生理解“1个数是另外一个数的`几倍”的含意,领会数目之间的互相联络。
(二)使学生将“求1个数是另外一个数的几倍是多少”的实际问题转化为“求1个数里含有几个另外一个数”的数学题目的进程,初步学会用转化的法子来解决简单的实际问题。
(三)培育门生的合作意识,进步门生的探讨本领。
教学重点:
使学生将“求1个数是另外一个数的几倍是多少”的实际问题转化为“求1个数里含有几个另外一个数”的数学题目的进程,初步学会用转化的法子来解决简单的实际问题。
教学难点:
运用剖析推理将“1个数是另外一个数的几倍是多少”的数目瓜葛转化为“1个数里面含有几个另外一个数的除法含意。”
教具准备:课件、小棒等。
教学过程:
一.温习。
a.抽生回答,并讲一讲思索进程;
b.请学习绘画的六位同学向人招招手,再汇报一下自己的学习成绩,老师向获得优良成绩的同学表示祝贺。
二.探讨新知。
(1).出示第54页例二主题图(动画课件)。
师:你们想参加这个游戏运动吗?
(2).运动:门生脱手摆飞机;(播放音乐)。
(3).汇报效果。
师:依据你摆的飞机,谁能提个题目让人人猜一猜?引出“求1个数里含有几个另外一数的除法含意”
(5).小组讨论。
(6).汇报效果,门生在动脑思索、充沛探讨中找到了“求1个数是另外一个数的几倍是多少”的解题思绪,即“求1个数是另外一个数的几倍”的含意,就是“求1个数里含有几个另外一个数”用除法计算。
(1).课件出示例三情境图。
(2).门生依据画面提出用除法计算的题目;
(3).依据所发问题,小组讨论解决方法;
(4).门生独立列式解答;
(5).抽生讲解题思绪;
四.巩固深化,质疑拓展。
完成第56页实习12的第一题。
五.全课总结:
这节课你有什么收获呢?
解决问题例教学设计篇三
本次微课《解决问题的策略》主要以ppt的形式,以教师讲解和展演学生常见作品的方式,将画线段图的策略潜移默化地教给学生,并通过提问和线段图的分析引导学生学会根据直观图去分析数量之间的关系,通过微课的形式帮助学生提高分析和解决问题的能力。
学生能够根据波利亚四部曲完整地解决一道实际问题。
学生会画线段图,并能够根据线段图解决简单的实际问题。
该微课主要帮助学生通过分析题目中的条件和问题,正确地画出相应的线段图,并能根据线段图清楚地分析数量之间的关系,找到解决问题的思路,从而顺利解决问题。
在三年级学习了从条件出发和从问题出发的策略去解决问题,在四年级上学期学习了解决问题的一般步骤的策略,而本节课是用画图的策略解决实际问题,画图是一项重要的策略,在今后的学习中会用画图的策略来分析较为复杂的数量关系,并解决较为复杂的实际问题。
《解决问题的策略》这一节课的重难点就在于两方面:一是能正确应用画图的方法整理条件和问题;二是能借助直观图示分析数量之间的.关系,并能够解决较为复杂的实际问题。
学生的学习难点就在于这节课的重难点,而微课将这两个方面的重难点进行了详细讲解,又给了学生思考的过程,学生可以一边思考一边学习,学生试着画图和试着说说想法,并与正确的讲解进行对比找到自己的问题所在。这节微课对于这节课的重难点来说还是很有针对性的。
一,出示例题,理解题意。
2.提问:根据这两个条件,你想解决什么问题(ppt:解决问题)?
【设计意图】1.学生需要独立思考出从屏幕中可以知道什么条件?
2.独立思考根据这两个条件可以求出什么问题?
二,根据题意和观察线段图,分析数量之间的关系。
2.请学生自己画一画线段图,提示学生思考两个问题。
3.教师在ppt上展示了一些同学们常见的线段图画法,并让同学们思考最欣赏哪一副线段图。
4.教师完整地介绍线段图的画法,并由ppt进行展示。
5.根据线段图,说说题目中的条件和问题。
6.谈话:现在你能观察自己的线段图,想办法解决这个问题吗?自己思考一下。
7.教师介绍三种解决问题的思路,并通过ppt进行演示。
9.谈话:的确,从图上直观、清楚地看到了数量之间的关系,确定了解决问题的思路。这也是我们在解决问题时常用到的一种策略。
【设计意图】:1学生根据自己的已有知识经验,画出本题目的线段图。
2.通过观察教师展示的学生作品和介绍画线段图的方法,进行互学,想一想自己所画线段图的问题,并观察介绍者所画线段图的方法。体会线段图能够直观地表示出条件和问题。
3.根据所画出的线段图,分析数量关系,找到方法,并根据教师的ppt展演,进行思考,理解三种解决问题的方法。
4.通过观察对比解决问题的三种线段图,让学生体会和发现都要把他们的邮票转换成同样多。
三,解答并检验。
【设计意图】:帮助学生养成解决问题的完整性,形成良好的学习习惯。
四。回顾解题过程。
1.师:同学们我们解决了一道题目,回顾一下刚才的解题过程,说一说你有什么体会?(用ppt展示解题的过程)。
2.回忆:大家可以回忆一下,在我们以前的学习中,曾经运用过哪些画图的策略?
【设计意图】:通过ppt回顾整个解决问题的过程,让不同层次的学生对题目都能再次回顾,通过体会让不同的学生都能感受到画图的重要性。
学习指导。
请在预习苏教版小学数学四年级下册《解决问题的策略》第一课时时使用本微视频,初步掌握画线段图并分析数量关系的方法;也可以在学习过本课时,但还没有掌握的情况下,继续重新学习微课,从而达到掌握的目的。
配套学习资料。
制作技术介绍。
所需要的软件为:录屏工具软件;制作的简要流程为:先制作相应的片段ppt,并设计好相应的教案,在此基础上提前邀请一些学生试着画一画本节课例题中的线段图,将典型的学生所画的线段图进行展示;利用录屏工具软件进行录制。
解决问题例教学设计篇四
《用除法解决问题》这节课因为学生已经具备先前的知识经验,在熟练利用乘法口诀求商,学习了表内除法(一)中的解决问题等知识,教学本节课相对简单,学生较易理解。
首先,明确教学设计的各个环节,分为温故互查、探求新知、巩固练习、拓展练习、课堂总结几大部分。其次,教学的重难点应该放在区分两类问题上(包含和平均分),并且能运用所学知识解决问题。再次,设计习题时注意层次性,有梯度进行训练。最后,要强调孩子的学习习惯等细节问题。
在组织教学时,围绕购物的事情,创设一个现实的生活情境,把学生的学习活动同现实生活紧密联系起来,激发了学生的好奇心和求知欲望,体验到生活是数学的源泉,了解了数学的价值,增强了应用数学的意识。同时为学生提供了自主探究、主动获取新知识的时间和空间,充分让学生通过看、想、说、算等实践活动,感知新知和旧知的内在联系;从而调动学生的主体意识,培养发现问题、分析问题、解决问题的能力。
但是,这节课在课堂教学过程中仍然存在一些的不足,还有以下几点没有达到预期目标:
1、总结部分,教师在最后总结时过于宽泛,重点不够突出,应该重点强调本课有关表内除法解决问题分为两种类型(包含和平均分),使学生明确本课重难点。
2、教师语言,在本节课中教师的语言还是不够精炼,各个环节的过渡语用得不是很好。
3、小组合作学习有待提高。
解决问题例教学设计篇五
人教版《义务教育课程标准实验教科书·数学》三年级上册“有余数除法”,教学例4,练习十三的第2、6题。
(一)知识与技能。
初步培养学生在具体的生活情境中收集信息,提出问题并解决问题的能力。
(二)、过程与方法。
通过学生的观察、探索等学习活动,使学生经历从生活数学到数学问题的抽象过程,感受知识的现实性。
(三)、情感态度与价值观。
在学习过程中,通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
引导学生结合商和余数在实际情境中的含义正确写出相应的单位名称。
教师:课件。
学生:表格。
一、激趣导入,引出课题。
教师:同学们,我们先来猜做个游戏好不好?
出示课件:想一想,第十六个图形是什么样的?第35个呢?第98个呢?
教师:同学们真厉害,猜得非常准确,其实这就是用有余数的除法解决实际问题。
教师:这节课要学习的内容就是“用有余数的除法解决问题”。
板书课题。
二、尝试问题,自主学习。
(1)显示例4的主题图,让学生观察。
教师:在同学们的体育活动当中也会出现有余数的除法的实际问题,大家请看!
提问:从这幅图中你看到了什么?
你能根据图中的有效信息提出数学问题吗?
生1:有32个同学。
生2:老师要求每6人一组。
生3:可以分几组,还多几人?
(课件同步出现:可以分几组,还多几人?)。
师:你能帮老师解决这个数学问题吗?
师:请同学们用自己的方法算一算,开始吧。
(2)自主学习,尝试解决问题。
教师:小帮手们动作可真快!请两位小帮手给大伙儿说说你的计算方法。
师:哪位同学给大家说说自己的算法?
教师根据学生的口述板书,
如果有的学生没有写出单位,这时提问:
师:这里的商5表示什么意思呢?余数2呢?那单位各是什么呢?(根据商和余数的单位提问:
教师:你们知道这里的商5表示什么意思吗?余数2呢?
生:商表示可以分5组,余数表示还多2人。)。
(3)出示练习十三的第2题。
师:下面这道有关跳强绳的问题怎么解决呢?看谁做得又对又快!
19-8=11(米)11÷2=5(根)……1(米)。
答:可以做5根短跳绳,还剩1米。
教师:同学们,当你的练习本用完后,你一般会怎么处理它呢?
生1:把它扔了。
生2:卖给废品回收站。师:你可真会节约再利用资源。
教师:这些纸是可以重复利用的。
播放课件。
看完后出示:
生1:把这些钱捐给他们。
生2:用这些钱购买学习用品送给他们。
教师:同学们可真有爱心!
出示课件。
教师:这里出现了什么问题?你能解决吗?
教师:第二个问题你能想出不同的方法吗?各小组可以先讨论,再写下各位购买方案。
教师:请同学们拿出表格,将自己认为最好的购买方案进行整理,填写在表格内。开始吧!
学生一边讨论教师一边巡视,学生讨论完填写好表格后,老师提问。
教师:谁愿意来展示自己的解决方法?
学生说完后老师小结,进行思想教育。
教师:废物再利用可以给我们带来这么好的效益,平时的学习生活中大家可得注意回收,这样既可以保护环境,还可以节约能源,让我们来争当环保节能的小公民吧!
四、课外延伸,拓展思维。
师:三年级一班的同学们也利用废物回收,换来了一些班费,组织大家进行了一次旅行,在旅行中他们遇到了一些问题,请看!
出示第6题的情景图。
先让学生观察“丛林探险”情景图。让学生从两名同学的对话以及图中的指示牌,获得数字信息,解决“坐车”和“租船”问题。
师:从图中同学们可以获得哪些信息?
生:丛林探险活动每辆小车坐6人。
生:我们班有44人。
生:激流勇进游戏每条船坐5人。
师:小男孩小女孩提出了什么问题?
生:如果全班都玩“丛林探险”,最多可以坐满几辆车?会有剩余的人吗?
生2:如果都玩“激流勇进”,应该租几条船呢?
师:请同学们自己先自个儿想想,然后在小组内说说自己的方法,并列出算式,说明理由。
(1)坐车问题:44÷6=7(辆)……2(人)。
答:最多可以坐满7辆车,还剩余2人。
提问:剩余这2人怎么安排呢?
生:再坐一辆车。
(2)租船问题:44÷5=8(条)……4(人)。
教师:你对这种租船方法有什么看法吗?
教师:你可真会发现问题。
教师:剩下的4个人不去了吗?怎么办呢?
师:应该租几条船呢?为什么?
教师:你为什么要把8加1呢?
8+1=9(条)。
答:应该租9条船。
教师:你考虑得可真周到!
教师:同学们在外游玩的时候可得注意安全哦!
五、结束课题。
解决问题例教学设计篇六
1、使学生在解决实际问题的过程中初步学会从条件出发展开思考,分析并解决相关问题。
2、使学生在对解决实际问题过程的不断反思中,感受解决问题策略的价值,发展分析、归纳和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
用从条件想起的策略解决问题。
策略的体验和理解。
分了五个环节。
第一部分是导入,先出示一个条件,让学生初步体验只有一个条件无法求出问题,接着提供两个条件,让学生选择一个能解决问题的条件,让学生进一步体会只有两个相关联的条件才能解决问题。
第二部分是教学例题,感悟策略。出示例题后重点让学生理解“以后每天都比前一天多摘5个”,用自己的话来说说,从两个角度提炼出了数量关系,然后说解题思路,主要讲清楚根据哪两个条件求出什么,再根据哪两个条件什么。完成填表和列式后沟通了两者的关系,最后总结得出解决问题时我们紧紧抓住条件在思考。揭示课题。
第三环节是变式沟通,形成策略。通过两个变式的教学,让学生加深对策略的感知。接着安排了皮球那道题目,学生对条件的理解是比较困难的,所以我安排了一个动画,帮助学生理解。四个题目结束后,安排了回顾反思,这一环节是新教材比较强调的,让学生在回顾反思中提炼出解决问题的.经验。
第四环节是练习巩固,运用策略。选取了想想做做第一题的第一小题,让学生根据条件提出不同的问题,再解答,最后在分析中提炼出解决问题的第三个小窍门。紧接着请学生独立完成想想做做第4题,第5题。第5题的设计主要考虑到一是学生对游戏比较感兴趣,二是国际象棋是我们学校的特色,三是培养学生估算的能力,四是增加学生的课外知识。
第五环节是课堂总结,交流收获。回顾学习了什么内容,以及解决问题时是怎样一步步分析的。
解决问题例教学设计篇七
【教学目标】:
1.掌握用正比例知识解答含有正比例关系问题的步骤和方法。
2.使学生熟练地判断两种相关联的量是否成正比例,从而加深对正比例意义的理解。
3.发展学生探究解决问题策略的能力,帮助其构建相应的知识结构。
【教学重点】:
1.判断题中相对应的两个量和它们的比例关系。
2.利用正比例的关系列出含有未知数的等式,运用比例知识正确解决问题。
【教学难点】:
1.掌握用比例知识解答解答应用题的步骤和方法。
【教学准备】:多媒体课件。
【教学过程】:
一、激发兴趣,回忆旧知。
1.师:本节课是我们这个单元最后的一个内容,今天我们运用所学的知识来解决问题,希望大家用精彩的表现完成这节课!
师:我们先来回忆一下已经学过的知识吧!(课件出示:)。
我会判断:判断下列每题中的两个量是不是成比例,成什么比例?
(1)总价一定,单价和数量。(成反比例)。
(2)速度一定,路程和时间。(成正比例)。
(3)总钱数一定,用去的钱数和剩下的钱数。(不成比例)。
2.师:看来同学们正比例和反比例的知识学得都很不错,下面我我们就一起来研究——用比例解决问题。(板书课题:用比例解决问题)。
二、揭示课题、探索新知。
(一)教学例5(课件出示:情境图)。
1.回顾旧知。
师:从这幅图中你能知道哪些信息?
(1)例5中的已知条件是:张大妈家:用了吨水,水费是()。李奶奶家:用了()吨水。所求的问题是:
师:(1)要解决水费的问题,就要知道水的单价和用水量。根据我们的生活经验,水的单价虽然不知道,但它是一定的。(2)李奶奶家上个月的水费是多少钱?想请我们用我们以前学过的方法帮她算一算,你们能帮这个忙吗?(3)学生自己解答,然后交流解答方法。(学生可以先求出单价,再求总价或先求出用水量的倍数关系再求总价。)(4)师:像这样的问题也可以用比例的知识来解决。
(1)这道题中涉及哪两种量?
(2)哪种量是一定?
(3)水费和用水的吨数成什么比例关系?你是根据什么判断的?讨论分析:从上表可以知道(每吨水的价钱)一定,所以(水费)和(用水量)成(正)比例。也就是说,两家的(水费)和(用水量)的(比值)相等。
(4)根据这样的比例关系,你能列出等量关系式吗?
张大妈家水费:用水吨数=李奶奶家水费:用水吨数。
(5)如果设李奶奶家上个月的水费是x元,请根据表中相对应的数据和判断列出比例式,然后解答。解:李奶奶家上个月的水费是x元钱。(板书)。
28:8=x:10。
8x=28×10。
x=35。
答:李奶奶家上个月的水费是35元钱。
师:你是怎么想的?(根据上面的数据,概括:因为每吨水的价钱一定,所以水费和用水的吨数成正比例。也就是说,两家的'水费和用水的吨数的比值是相等的。)。
师:28:8和x:10分别表示什么?(水费单价)同学们再思考,看看有没有出现其它比例的解法,如果有,教师也要进行评析。
4、检验。
师:这个问题我们用比例的知识解决了,你有什么方法检验自己的解答是正确的呢?(启发学生自主选择检验方法。如:将结果代入原题、运用比例的基本性质、用算术方法或一般方程方法解答来检验等。)。
三、变式练习。
师:同学们很了不起,帮李奶奶解决完了问题,能再帮王大爷解决一个问题吗?课件出示:“王大爷家上个月的水费是42元,他们家上个月用了多少吨水?”(让学生进行变式练习。)教师巡视,个别指导。
四、巩固练习:智慧城堡。
2、小兰的身高1.5m,她的影长是2.4m,如果同一时间、同一地点测得一棵树的影子长4m,这棵树有多高?提示:你知道吗?影长与身高的比是一个定值!试着用比例解决吧!
五、课堂总结。
解决了以上几个问题,我们一起来反思一下刚才的学习过程,归纳出用比例解决问题的步骤,好吗?(学生自己用语言叙述)。
(1)判断题目中两种相关联的量是成正比例还是反比例;(判)。
(2)设未知量为x,注意写明计量单位;(设)。
(3)根据题意列出比例式;(列)。
(4)解比例;(解)。
(5)验算,作答。(验)。
六、布置作业:
第63页练习十一,第4题;
第64页练习十一,第6题、第7题。
解决问题例教学设计篇八
教学内容:教科书第20页例2。
教学目标:
1.加深对解决求一个数的几分之几是多少的问题思路与计算方法的理解,使学生学会解答稍复杂的求一个数的几分之几是多少的问题。
2.发展学生分析推理能力和解决实际问题的能力。
教学过程。
播放公路上往来不断的车辆及噪杂的声音。
师:噪音对人的健康有害,绿化造林可以降低噪音。
出示画面(如教材第20页情境图)请学生说说对图意的理解。
学生提问题,教师板书。(噪音降低了多少?绿化带这边听到的声音是多少分贝?)。
师:我们来解决第一个问题:噪音降低了多少?谁能把问题完整地叙述出来。
出示线段图。
请学生把条件与问题在线段上表示出来(如下图)。
提问:把谁看作单位“1”?然后让学生独立解答。
师:现在我们解决第二个问题。谁能把问题完整地叙述出来?
师:线段图上哪一段表示“现在听到的声音有多少分贝”?
把线段图补充完整。
小组讨论探讨解决方法。
汇报交流方法。
第一种方法:先求出降低了多少分贝?再用原来的分贝数减去降低的分贝数。
列式。
提问:1-1/8表示什么?在线段图上表示出来。
师:比较这两种方法有什么不同?
学生讨论交流。明确两种方法都是把原来声音的80分贝看作单位“1”,都需要求80分贝的几分之几。但是第一种方法是根据已知条件先求出80分贝的1/8是多少,即降低了多少分贝,再求出现在听到的声音的分贝数。第二种方法是根据问题找到现在听到的分贝数占原来声音80分贝的几分之几,再根据分数乘法的意义求出现在听到的声音是多少分贝。
解决问题例教学设计篇九
教学内容:
二年级下册第一单元例2、练习一2、3、5题。
教学目标:
1、使学生能从具体的生活情境中发现问题,掌握解决问题的步骤和方法,知道可以用不同的方法解决问题。
2、培养学生认真观察等良好的学习习惯,通过看、说、读、想、算的方法初步培养学生发现问题、提出问题、解决问题的能力。
3、通过学习,使学生认识到小括号的作用。
4、通过解决具体问题,培养学生初步的应用意识和热爱数学的良好情感。
教学重点:使学生知道可以用不同的方法解决问题,体会解决问题策略的多样性,提高解决问题的能力。教学难点:从不同的角度发现并提出问题以及不同的方法解决问题。
教学准备:课件。
教学过程:
一、情景导入,激发兴趣。
1、谈话:同学们,上一节课我们用了什么方法来解决问题?
学生说,老师板贴:看、说、读、想、算。这节课我们继续用这些方法来解决问题。
2、课件出示游乐园面包房图,
师:看,这是面包房,图中的小朋友们在做什么?
[设计意图]:从学生喜欢的事物引入,把学生的注意力吸引到画面上来,激发学生学习的兴趣。
二、合作交流,探索新知。
1、指导学生再观察画面,你从图中知道什么数学信息?
2、你能提出什么数学问题?学生自由发言,提出问题。
教师适当启发引导:还剩多少个面包?
[设计意图]:首先让学生观察情境图中蕴含的信息,从中找出与数学有关的信息,初步感受数学信息之间的一些联系,从中发现一些数学问题。
3、小组交流讨论。
(1)应该怎样计算:还剩多少个面包?
(2)独立思考后,把自己的想法在组内交流。
(3)选派组内代表在班中交流解决问题的方法。
方法一、54―8=46(个)46―22=24(个)。
方法二、54―22=32,32―8=24(个)。
方法三、8+22=30(个)或22+8=30(个)54―30=24(个)(让学生说说每一步计算的理由)。
5、比较三种方法的异同。明确三种方法的结果都是求:还剩多少个面包?,在解决问题的思路上不同。
6、把两个小算式你能写成一个算式吗?学生尝试列综合算式。(1)54-8-22=24(个)或54-22-8=24(个)。
(2)能不能列成54-8+22?小组里讨论、交流:你是怎么想的?
7、老师今天给大家介绍一个新朋友“小括号”:如果想改变运算顺序,先算后面的,再算前面的,可以在先算的算式外面填上小括号。小括号的作用可大了,可以改变运算顺序,小朋友们只要看见它,就要先算它里面的算式。把(2)中的算式“54-8+22”变成“54-(8+22)”,就可以了。这样我们就可以先算8+22,然后再算54-30。
8、指导学生读:54-(8+22)读作:54减8与22的和。
9、小结。(小括号能改变运算顺序:先算括号里面的数)。
[设计意图]:使学生在观察事情的发生、发展过程中明确条件,提出问题后明确数量之间的内在联系,找到解决问题的策略之后,需要用一定的运算进行表达并计算出结果,最终自主解决问题,并明确小括号的作用。
三、巩固练习。
1、教科书第6页练习一的第2题。
(2)分析题目,找出题目的已知条件和问题。读一读,说一说关键词。
(3)想一想,第一步要先求什么?第二步要再求什么?
(4)列式计算:94―34=60(个)60―29=31(个)。
或34+29=63(个)94―63=31(个)。
让学生列出综合算式,要他们正确的使用小括号。列好后要求学生说出每一步表示的意义。(用喜欢的方法计算,能用小括号就更好啦)。
94―34―29=31(个)或94―(34+29)=31(个)。
2、教科书第7页练习一的第3题。
羊圈里原来有58只羊。第一次跑走了6只,第二次跑走了7只,现在羊圈里面有几只?
让学生自己分析题目的已知条件和问题,用喜欢的方法计算,最好能用上小括号,并汇报。
58―6―7=45(只)或58―(6+7)=45(只)。
3、新型电脑公司有87台电脑,上午卖出24台,下午卖出26台,还剩下多少台?(用两种方法解答,用上小括号)。
(1)学生读题,分析题目的已知条件和问题。
(2)学生独立做题,老师巡视。(要求运用小括号进行计算)。
(3)学生汇报。87―24―26=37(台)或87―(24+26)=37(台)。
4、完成练习一第5题。先指导观察,明确条件和问题,指导读一读,找出关键词,然后思考并列式计算。
[设计意图]:让学生在交流、实践中掌握知识。明确小括号的作用是改变运算顺序,有小括号的一定要先算小括号里面的数,并学会运用小括号。
四、课堂总结。
通过今天这节课你有什么收获?
解决问题例教学设计篇十
1、使学生初步学会解答求一个数比另一个数多(少)几的应用题。
2、培养学生观察能力,实际操作能力及初步分析和推理能力。
3、通过操作培养学生的动手操作能力。
3、让学生经历自己提出问题、自己解决问题的过程,培养学生的自主探究能力。
4、生活情境的模拟教学,使学生体会到生活数学无处不在,培养学生在生活中发现问题,解决问题的`能力。
多媒体课件。
1、看一看。
师:你看到这副画,想说什么?
生:一和同样多。
师:你怎么知道是同样多?
生1:有5个,也有5个。
生2:和一个一个可以相对的。
师:小朋友都回答的非常好,给你们小组各加一颗五角星。(学生回答对了问题教师要及时给该小组加五角星。)。
2、摆一摆。
请小朋友们拿出你们的学具,第一行摆5个,第二行摆7个。
看着你摆的图,谁能提数学问题。
生1:比少几个?
生2:比多几个?
1、跳绳比赛。
小白兔和小猫在比赛跳绳,我们看看谁能赢?
小白兔比小猫多跳了下?
小猫比小白兔少跳了下?
2、采松果。
两只松鼠在比赛采松果,哪只松鼠采的更多呢?
3、钓鱼比赛。
三只小猫每人拿了一只水桶,一根鱼竿,你猜它们在比赛什么?
对在比赛钓鱼,它们可认真了?我们赶紧去看看!
看着这幅钓鱼图,你能提出哪些问题?小组比赛,哪一组问题提的多,答的好,就能获"星级小组"!
小组讨论汇报情况,教师及时评价鼓励。
现在我们来看看各小组得到了多少五角星,哪一组最少,哪一组最多?
你根据各小组的五角星能提出哪些数学问题?
如:第一组第二组第三组第四组。
生:第一组比第二组少1个;第四组比第三组多个,比第1组多2个……。
p73做一做。
解决问题例教学设计篇十一
教学目标:
1、结合现实生活中的具体情境,让学生经历发现问题、解决问题的过程,学会用连乘的方法解决问题。
2、使学生学会分析连乘问题的数量关系,运用合理的解题思路解决问题。
3、培养学生多角度观察问题、解决问题的能力,让学生体会解决问题策略的多样化。
4、培养学生认真观察、积极思考、完整准确表达的习惯,初步形成综合运用数学知识解决问题的能力。
教学重点:使学生能正确分析并解决连乘问题。
教学难点:引导学生寻求解决连乘问题的解题思路,并体会找到中间问题的过程。
教学过程。
一、创设情境,复习导入。
师:同学们,我们先来做一个小练习,请大家看屏幕。(课件出示:在超市的一个货架放着各种包装的面包,爸爸买了其中一种面包4袋,一共多少钱?)。
师:读一读,你能解决这个问题吗?
(学生认真的观察思考,要求一共多少钱所需要的条件。学生会发现不能求出问题,因为不知道1袋面包的价钱)。
师:就是说,要求一共的钱数,需要知道哪两个条件?
(在学生回答后教师课件出示:)。
师:知道这两个条件,就能求出总钱数。那你们刚才说哪个条件不知道?(学生回答后)。
师:我们就补充上这个条件。(课件出示完整题目:每袋面包12元,爸爸买了4袋,一共需要多少元钱?)。
师:现在能解决了吗?该怎么列式计算?(学生独立完成,全班反馈订正)。
(课件出示题目2:开学初,老师给咱班50个同学每人发5个作业本。)。
师:读一读,你能解决这道题吗?(学生会发现这道题没有问题,思考后回答)。
师:你能根据这两个条件,提出合适的问题吗?
课件出示:
(根据学生的补充,教师课件出示完整题目:老师给咱班50个同学每人发5个作业本,老师需要准备多少个作业本?)。
师:请同学们口头解答,同桌互相交流一下。(指名学生口答,课件出示算式)。
师小结:同学们,你们可真了不起,刚才的练习我们知道了要解决一个问题,要有两个条件;还知道了,如果告诉我们两个条件,可以提出问题,这是我们解决问题时所需要的重要本领。这节课我们继续学习“解决问题”。(板书课题:解决问题)。
设计意图:在课的开始,设计两道不完整的题目,一道是缺少条件,一道是没有问题,让学生补充条件、提问题。通过这一学习过程,帮助学生巩固乘法问题的数量关系,同时复习“要求几个几是多少用乘法计算”。通过分析法和综合法引导学生去思考问题,为学生分析、解决两步计算的乘法问题奠定了基础。
二、主体探究新知。
1、创设情境,引出问题。
课件出示课本例1情境图(图略)。
师:大家看,这是同学们在参加广播操比赛。仔细观察,图中告诉了我们哪些信息?(学生根据图说出题中的信息)。
师:通过刚才大家的交流,我们知道了题中告诉我们“每个方阵有8排,每排有10人,3个方阵”三个条件,提出了一个问题“一共有多少人?”。
设计意图:在这一教学环节,让学生经历一个从情境中收集信息、整理信息并且完整地用文字表述问题的过程。指导学生学会认真读题,仔细审题,明确题目中的条件和所求问题,理解题意。
师:认真分析题目中的条件和问题,你能解决这些问题吗?老师相信大家都会解决这个问题。先不忙着列算式,先说一说在分析和解决这个问题时,你是怎么想的?先自己想一想,说一说,然后在小组互相交流。(教师巡视,收集学生是如何分析的信息)。
师:哪个组派代表来说说你们小组是怎么分析的?(根据学生的回答,教师引导)。
师:大家的思路都非常的清晰,那老师要问问你们,为什么要先求1个方阵的人数?用哪两个条件就可以求出这个问题,为什么用这两个条件就能求出1个方阵的人数?3个方阵呢?(学生先自己思考,然后同组交流,集体反馈。教师可根据学生的回答,借助于点子图帮助学生理解为什么先求1个方阵的人数,求一个方阵人数为什么用乘法,怎样求3个方阵的人数。思路图整理如下)。
师:我们一起回忆刚才从要求的问题开始怎样一步一步找到解题思路的。(师生一起说)要求——总人数,就要知道——每个方阵的人数和方阵数。每个方阵的人数不知道就要先求它,用题中的——每个方阵有8排、每排有10人,就能求出每个方阵的人数,根据求出的——每个方阵的人数和有3个方阵,就可以求出总人数。请各自再试着说一说我们刚才是怎么分析的,然后同桌之间互相交流一下。(学生再次的整理思路,熟悉思维过程)。
师:根据刚才我们说的思路,怎样列算式?(学生独立列式解答,反馈后教师板书算式)。
设计意图:通过追问帮助学生理清思路、弄清楚题目中的数量关系。学生一般会有两种方法:一是想要求什么,必须知道什么条件,不知道的条件就是先求的;二是根据题中两个有关系的条件,想到可以求出什么,求出的这个问题,可能就是解决最终问题必需的条件。这两种思考方法其实就是解决问题时常用的分析法和综合法。在这里只给学生渗透这样的思维方式,不明确提出来。通过潜移默化的意识渗透和日积月累的思维训练,让学生逐渐具备独立分析、解决问题的能力,实现“授之以渔”的目的。
师:大家想一想,还有没有别的思路?(教师引导学生理解另外一种思路)。
师:可以看着点子图,和小组同学商量一下。(小组讨论,反馈小组意见,师生共同总结思路)。
师:我们一起来梳理一下,刚才这种解题思路。(师生共同叙述)。
师:根据这种思路这样列算式?用这种方法解决问题时,哪个地方要特别注意?(第一步的单位名称)。
解决问题例教学设计篇十二
本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的。本节课是让学生画线段图来分析题意,这部分内容是让学生用不同的方法,也就是不同的解题思路来分析。从而让学生理解和掌握这种稍复杂的分数乘法应用题的数量关系,为下一步学习稍复杂的已知一个数的几分之几是多少求这个数的应用题打好基础。
本节课是在学生熟练掌握简单的求一个数的几分之几是多少的应用题的基础上进行教学的,例2分析一个数量的两个部分与整体的关系,确定把什么看作单位1学生不难理解,教学时,要画线段图帮助学生理解题意,学生就不会感到有太大的困难了。例3分析的是两个量之间的关系,教学方法与例1相同。
1、使学生掌握解答稍复杂的求一个数几分之几是多少的应用题的思路,并能正确解答。
2、提高学生分析解答应用题的能力,培养探索精神。
分析和掌握把什么量看作单位1及谁是谁的几分之几。
分析和理解两个数量的比校对于学生来说比较难些。
备注。
活动一:创设情境,初步感知题意。
1、教师出示例2的情境图。
2、让学生结合图叙述题意。
活动二:动手画图,分析题意。
1、你能不能用上节课我们讲过的学习方法,借助于其它的方法来分析一下这道的意思呢?
学生动手画线段图,分析。小组交流。
与教师共同再一次感受如何画线段图。(教师板书)。
重点让学生明确谁是单位1。
2、让学生说一说是怎样想的?确定解题的思路。
3、可能会有两种不同的思路。教师让学生用自己喜欢的方法解答。
4、全班交流,订正。
5、问:这两种解法有什么区别?有什么联系?
活动三:教学例3.
教师出示例3。
1、引导学生读题,理解题意。
2、根据这句话应当把什么看单位1?
3、学生试画出线段图,分析数量关系。
4、学生自己解答。
订正时,让学生说说是怎样分析的?与全班交流。
活动四:巩固练习。
1、完成21页中的做一做。
教师要求学生画线段图。
2、完成练习五中部分练习题。
订正时,让学生说说分析的思路。
活动五:课堂小结。
通过本节课的学习你都有哪些收获?
解决问题例教学设计篇十三
教学目标:
知识与技能:1.使学生了解含有两个未知数的实际问题的特点,理解并掌握它的数量关系,会列方程进行解决。2.培养学生发现问题,分析问题,解决问题的能力。
过程与方法:让学生在独立思考,交流互动当中经历解决问题的过程,掌握解决问题的方法和步骤。
情感,态度与价值观:通过学习,使学生了解地球的知识,感受数学与生活的联系,激发学生的学习兴趣。
教学重点:学会解决含有两个未知数的问题。
教学难点:分析数量关系。
教学准备:多媒体课件。
教学模式:多媒体教学。
教学过程:
一.准备题。
1.想一想,填一填。
(1).学校科技组有女同学人,男同学人数是女同学的3倍。
男同学有人;
男女同学共有()人;
男同学比女同学多()人。
(2).校园里栽了棵柳树,栽的松树是柳树的2.5倍。
松树栽了()棵;
柳树比松树少栽()棵。
2.解下面的方程。
二.引入新课。
多媒体出示图片:破坏生态环境的后果,引发学生感想。
出示植树造林图片,感受大自然的美。
三.探究新知。
1.观察主题图。
你从中知道了哪些信息?说说看。(师板书条件)。
想一想:可以提出什么数学问题?(师补充板书)。
2.引导学生分析问题,解决问题。
(1).学生自由读题,理解题意。
(2).引导学生画线段图,分析数量关系。
种树面积:
种草面积:共12.5亩。
提问:题中有两个未知数,怎么办?怎样设未知数?
启发学生思考,讨论,然后交流自己的方法,教师在线段图上标出亩和。
1.5亩。
教师:借助线段图,会解决这个问题吗?试试看。
(3).学生独立解决问题,完成后组织交流,汇报解法。师板书解题过程,进行检验。
3.回顾解题过程,加深对题目的进一步理解,并评价学生的做法,激发学习的积极性。
四.巩固练习。
同学们知道地球的形状吗?
1.观察地球的图片,介绍地球表面的情况,了解表面积的含义。
2.自学教材例题,在深入分析题意的基础上,让学生画出线段图,进一步理解数量关系,掌握解法。
五.深化练习。
1.将主题图中的“我家今年共种了12.5亩的草和树”改为“我家今年种的草比树多2.5亩”。
让学生编题,鼓励学生积极思考,分析数量关系。同伴之间进行讨论和交流,画出线段图进行解决,然后组织全班交流,学习解题方法和步骤。
2.比较两题的异同,引导学生在理解的基础上掌握“和倍”、“差倍”问题的一般解法。
2.数学小博士。
六.全课总结。
引导学生回顾全课,总结本节课解决问题的特点,解决问题的方法和步骤,强调怎样设未知数,要求先分析数量关系再进行解答。
七.布置作业。
教后反思:
一、教材的处理。
数学来源于生活,生活中处处有数学。课前设计中,我紧密联系学生的生活实际,创设了“种草种树”的教学情境,让学生在这一情境中不但学习了新知,而且开阔了眼界,丰富了教学内容。紧接着,通过对教材例题的自学和练习,进一步巩固上面学到的方法。然后,改变情境图中的一个条件,启发学生继续学习,学生在前面学习的基础上,学会运用迁移类推的方法,通过思考、交流、分析、解答,获得了解决这类问题的方法。又经过比较,使学生清楚地认识到两道题的联系与区别,提高辨别能力和解决问题的能力。
二、本节课目标完成情况。
在教学过程中,我紧紧围绕课前预设的三维目标实施教与学的双边活动,从教学实施的过程来看,基本上达到了预期的目标。大多数学生掌握了稍复杂问题的解决方法,尽管有些学生会做还不会说,大部分学生能够有根据、有步骤地解决问题。在学生学习的过程中,我能不断评价鼓励学生,使学生既掌握了知识,发展了能力,又使学生体验到了数学在生活中的应用,尝到了成功的快乐。
三、课件的应用。
解决问题,就是要解决生活中的问题。因此本节课上我用多媒体课件出示情境,把学生带入了一个个活生生的场面,使学生产生主动探究的愿望,培养了自主探索的精神,提高了自主探索的能力,发挥了多媒体课件在解决问题教学中的辅助作用。
四、教学中的不足。
1.课前复习时说的过细,学生弄清楚了这样做的道理,但费时较多,占用了后面的教学时间,致使教学过程前松后紧,练习部分处理得较为仓促,学生学会了“和倍”问题的解决方法,“差倍”问题掌握的同学不多。
2.解方程练的较少,中、下学生没有熟练掌握解方程的一般方法,制约了学生进一步的学习,也影响了教学进度。
3.因为多媒体的原因,使学生上课后不能立刻进行学习,耽误了几分钟的学习时间,同时影响了教学的顺利进行。
总之,教学是一项长期的工作,培养学生的各方面能力也要通过长期不懈的努力,只有这样,才能使学生牢固地掌握知识,逐步形成一些技能技巧,最终能够运用所学到的知识解决生活中的问题,才能完成自己的教学任务。
解决问题例教学设计篇十四
教学目标:
1.在直观的情境中想到转化,并应用图形的平移和旋转知识进行图形的等积,等周长的变形.
2.在解决实际问题过程中体会转化的含义和应用的手段,感受转化在解决这个问题时的价值。
3.进一步积累解决问题的经验,增强解决问题的“转化”意识,提高学好数学的信心.
教学重点:感受“转化”策略的价值,会用“转化”的策略解决问题。
教学难点:会用“转化”的策略解决问题。
教学准备:电子课件、实物投影。
预习作业:
教学过程:
预习效果检测分别出示两组图片。
(3)现在你能看出这两个图形的面积相等吗?学生互相交流合作探究。
学生得出:第一个图形:上面半圆向下平移5格。
第二个图形:下半部分凸出的两个半圆分割出来,以直径的上面端点为中心,分别按顺时针和逆时针方向旋转180度。
教师在电子白板上将图形平移、旋转、拼合,图形的变化过程迅速呈现在学生眼前,学生清晰直观地感受到了,从而化解了理解上的障碍。
师:你知道你刚才比较时运用了什么策略吗?
教师板书转化,将课题补全(用转化的策略解决问题)。
在以往的学习中,我们曾经就运用转化的策略解决过一些问题,回忆一下。同桌交流。学生充分列举,教师媒体配合演示并板书。
这些运用转化的策略解决问题的过程有什么共同点?(把新问题转化成熟悉的或者已经解决过的问题。)。
转化是一种常用的、也是重要的解决问题的策略。下面我们就用转化的策略来解决一些题目。
空间与图形的领域。
1、检查课本练习十四第二题。你是怎样用分数表示图中的涂色部分的?
2、检查课本练一练,指名学生口答。
转化成什么图形可以使计算简便?怎样转化?
3、检查练习十四第三题。
4、试一试:1/2+1/4+1/8+1/16。
这道题你是怎样求和的?小组交流。
5、练一练4(课本练习十四1)。
每一排的点分别表示每一轮参加比赛的球队,把两个点合成一个点的过程表示进行了一场比赛。淘汰制是指每场比赛都要淘汰1支球队。
三、当堂达标:完成补充习题对应的练习并交流反馈。
四、故事启迪,领悟转化的技巧。
数学家爱迪生求灯泡的容积的故事(幻灯片)。
有一次,爱迪生把一只灯泡交给他的助手阿普顿,让他计算一下这只灯泡的容积是多少。阿普顿是普林顿大学数学系高材生,又在德国深造了一年,数学素养相当不错。他拿着这只梨形的灯泡,打量了好半天,又特地找来皮尺,上下量了尺寸,画出了各种示意图,还列出了一道又一道的算式。一个钟头过去了。
爱迪生着急了,跑来问他算出来了没有。“正算到一半。”阿普顿慌忙回答,豆大的汗珠从他的额角上滚了下来。“才算到一半?”爱迪生十分诧异,走近一看,哎呀在阿普顿的面前,好几张白纸上写满了密密麻麻的算式。“何必这么复杂呢?”爱迪生微笑着说,“你把这只灯泡装满水,再把水倒在量杯里,量杯量出来的水的体积,就是我们所需要的容积。”“哦!”阿普顿恍然大悟。他飞快地跑进实验室,不到1分钟,没有经过任何运算,就把灯泡的容积准确地求出来了。
听了这个故事,你明白了什么道理?
五、课堂总结:
多位数学家说过:“什么叫解题?解题就是把题目转化为已经解过的题。今天我们学习了用转化的策略解决问题,在解决问题时我们要善于运用转化,用好转化策略,才能正确解题。
解决问题例教学设计篇十五
教学内容:
教科书第59页例5以及相关练习题。
教学目标:
1、使学生能正确判断题中涉及的量是否成正比例关系。
2、进一步巩固正比例的意义,掌握用正比例方法解应用题的方法和步骤,能正确地用正比例的方法来解答应用题。
3、培养学生运用所学知识解决实际问题的能力,培养学生勇于探索精神。
4、在成功解决生活中的实际问题中体会数学的价值。
教学重点:
利用已学的`正比例的意义,通过自己探索掌握解答正比例应用题的方法。
教学难点:
正确判断两个量是否成正比例的关系,找出相等关系并列出含有未知数的等式。
教具准备:
小黑板。
教学过程:
一、复习铺垫,激发兴趣。
1、填空并说明理由。
(1)速度一定,路程和时间成()比例。
(2)单价一定,总价与数量成()比例。
(3)每块地砖的大小一定,砖的块数和所铺的总面积成()比例。
【设计意图:通过复习,让学生温故而知新,为学习下面的内容铺垫。】。
3、提出问题:老师请你用一把米尺去测量学校旗杆的高度,你能行吗?
生1:把旗杆放下量。
生2:爬上去量。
生3:利用影子的长度量。(如果没有学生说教师可做适当引导。)。
师:相信通过这一节课的学习,你一定会找到解决的方法的。
【设计意图:激起学生学习这习欲望,欲望是产生动机的催化剂。】。
二、揭示课题、探索新知。
1、小黑板出示例5。
张大妈:我们家上个月用了8吨水,水费是12.8元。
李奶奶:我们家用了10吨水,上个月的水费是多少钱?
思考:题中告诉了我们哪些信息?要解决什么问题?
师:你能利用数学知识帮李奶奶算出上个月的水费吗?
(1)学生自己解答。
(2)交流解答方法,并说说自己想法。
算式是:12.8÷8×10。
=1.6×10。
=16(元)。(先算出每吨水的价钱,再算出10吨水需要多少钱。)。
(也可以先求出用水量的倍数关系再求总价。)。
10÷8×12.8。
=1.25×12.8。
=16(元)。
解决问题例教学设计篇十六
苏教版小学六年级数学上册第四单元解决问题的策略第1课时,教材第68页—69页例2和练一练。
1、引导学生经历解决问题的过程,能有序、有效地思考、分析数量关系,初步学会用假设的策略解决含有两个未知数的实际问题。
2、能对解决问题的过程进行反思,初步感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
3、进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。
能有序、有效地思考、分析实际问题中的数量关系。
感受假设策略对于解决问题的价值,培养学生比较、分析、综合和推理等能力。
课件、导学单、教具。
一、复习铺垫。
1、出示下面的问题,让学生列式解答。
把720毫升果汁倒人9个同样的小杯子里,正好倒满。平均每个杯子的容量是多少毫升?
数量关系:()个小杯的容量=720毫升。
口头列式解答。
提问:和第1题相比,这道题难在哪里?(第1题是把720毫升果汁倒入一种杯子里,可以直接用除法计,这一道题是把720毫升果汁倒入两种杯子里,题中有两个未知数量。)。
3、揭示课题:这道题可以怎样解答呢?今天我们就来研究解决这样的实际问题的策略。(板书课题:解决问题的策略)。
二、探索策略。
1、教学例1。
(1)理解题意。
谈话:请同学们先观察题中的条件和问题,想一想,根据题意,你。
能找到怎样的数量关系,和小组里的同学说说你是怎样理解这些数量关系的。
揭示:6个小杯的容量+1个大杯的容证=720毫升。
大杯的容量x=小杯的容量小杯的容量x3=大杯的容量。
(2)确定思路。
谈话:我们知道,在遇到比较复杂的问题时,要想办法把复杂的问题转化成简单的问题。你有办法把这个问题变得简单吗?请先联系刚才理解数量关系式想一想,再和同学说说你准备怎样解决这个问题。
反馈:请把你的解题思路分享给大家。
学生想到的思路可能有以下几种,结合学生的交流,分别作如下引导:
思路一:假设把720毫升果汁全部倒入小杯。
问:把720毫升果计全部倒入小杯,1个大杯要换成几个小杯?把大杯换成小杯后,正好倒满多少个小杯?先画线段图分析。
思路二:假设把720毫升果汁全部倒入大杯,6个小杯换成几个大杯?把小杯换成大杯后,正好倒满多少个大杯?先画线段图分析。
思路三:列方程解。
小结:根据题中的数量关系,同学们想到了解决问题的不同思路。上面的几种思路都是抓住哪一个数量关系展开思考的?像这样通过假设把复杂问题转化为简单问题的方法,也是常用的解决问题的策略。(板书:假设)。
(3)列式解答并检验。
谈话:选择一种方法完成解答,并检验解题的过程和结果。
完成解答后,让学生说说列式、检验的方法和结果。
(4)回顾反思。
(5)教学第二种思路。
学生独立思考,列式计算,教师巡视。
指名交流解题时的思考过程,以及列式计算的过程和结果。
(6)比较和回顾。
提回:通过解答上面的问题,你有哪些收获和体会?
让学生先在小组里说一说,再组织全班交流。
2、完成“练一练”。
(1)出示题目,提问:要求桌子和椅子的单价、可以怎样进行假设?让学生按自己的思路完成解答,教师巡视。
(2)让不同思路的学生展示自己解题的过程。
三、巩固练习。
完成练习十一第1—3题。
四、课堂总结。
今天这节课我们学了什么?你有哪些收获和体会?还有什么疑问?
【本文地址:http://www.xuefen.com.cn/zuowen/16663256.html】