总结的目的是为了让我们更好地认识自己和提升自己的能力。情感表达可以通过文字、语音、肢体语言等多种方式来实现。接下来是一些优秀总结的范文,供您参考和学习。
实际问题与一元二次方程说课稿篇一
初一学过一元一次方程的应用,实际上是据实际题意,设未知数,列出一元一次方程求解,从而得到问题的解决。但有的实际问题,列出的方程不是一元一次方程,是一元二次方程,这就是我们本节课所研究的问题。同一元一次方程、二元一次方程(组)等一样,一元二次方程也是反映某些实际问题中数量关系的数学模型。本课教学思想是应用一元二次方程解决实际问题时,使学生经历完整的数学化过程,培养学生从多角度思考和分析问题以及有条理地表达自己思考过程的能力。不必强求学生解决问题的方法和策略完全统一,只要思路正确,解法合理,结果符合实际即可。
2.通过解决实际生活中的.问题,提高分析问题、解决问题的能力,进一步增强数学的应用意识。
经历用一元二次方程解决实际问题的过程,进一步认识方程模型的重要性。
在解决实际问题中增强学数学、用数学的自觉性,在发现的过程中提高思维品质和探究学习能力。
重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
难点:根据数与数字关系找等量关系。
疑点:列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的解。例如线段的长度不为负值,人的个数不能为分数等。
实际问题与一元二次方程说课稿篇二
2)列方程解决问题的关键是寻找等量关系。
提升:某学校会议室的地面是一个长方形,长比宽多一米,用320块边长为25厘米的正方形瓷砖恰好可将地面铺满。求会议室地面的长和宽。
作业:
建构主义认为,教学方法的核心是强调学习者是一个主动的积极的知识构建者。本节课,从审题,到找等量关系,列方程等一系列活动都从学生实际出发,借助适当的问题情景或实例促使学生反思,引起学生的认知冲突,从而让学生最终通过主动的思考建构起新的认知结构。以上是我对本节课的理解与构思,不到之处请多多指正。
实际问题与一元二次方程说课稿篇三
掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.。
1.重点:用“倍数关系”建立数学模型。
2.难点与关键:用“倍数关系”建立数学模型。
(学生活动)。
:列方程解应用题。
解:设这人持有的甲、乙股票各x、y张.。
则解得。
答:(略)。
(学生活动)。
去括号:1+1+x+1+2x+x2=3。31。
整理,得:x2+3x—0。31=0。
解得:x=10%。
答:(略)。
实际问题与一元二次方程说课稿篇四
每一个数学概念都不是孤立存在的,都存在于一个相应的系统中。把某一概念置于它所存在的相应系统中进行比较,引出新概念,不但能达到对概念的深刻理解,还能深化和发展概念。本课教学时,我将一元二次方程与一元一次方程进行类比,引出一元二次方程的概念。在类比的过程中既加深了对一元二次方程概念的理解又分析了这两种方程的联系和区别。
在概念的理解上,教学时我从学生实际出发,选择一些简单的巩固练习来辨认、识别,帮助学生掌握概念的外延和内涵;通过变式深化对概念的理解;通过新旧概念的对比,分析概念的矛盾运动。。
总之,概念课的引入是概念课教学的前提,概念的理解是概念课教学的核心。重视概念教学,运用多种方式、方法调动学生感官、思维的积极性,学好用好概念是学好一切知识的基础和关键。
实际问题与一元二次方程说课稿篇五
各位老师,今天我说课的内容是:22.3实际问题与一元二次方程第二课时,下面,我从教材分析、教学目的分析、教法分析、教材处理、教学流程等方面对本课的设计进行简要说明:
1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。
2、教学目标要求:
(2)能根据具体问题的实际意义,检验结果是否合理;
(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
3、教学重点和难点:
(1)重点:列一元二次方程解与面积有关问题的应用题。
(2)难点:发现问题中的等量关系。
1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的'主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。
本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:
1、活动1复习回顾解决课前参与。
2、活动2封面设计问题的探究。
3、活动3草坪规划问题的延伸。
4、活动4课堂回眸。
这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
活动1复习回顾解决课前参与,由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。
活动2封面设计问题的探究,通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。
活动3草坪规划问题的延伸,放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。
活动4课堂回眸,本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。
5、作业布置:共3个题目,前两个为必做题,全员均作;最后一个选作题,可供学有余力学生能力提升用。
实际问题与一元二次方程说课稿篇六
本节课在学习一元二次方程的基础上,进一步学习列一元二次方程解应用题,使学习体验“知识来自实践,又作用于实践”的辩证唯物主义观点。
1、根据学生的当前思维发展水平和教学任务,把掌握列一元二次方程解应用题的一般步骤作为本节课的知识目标,通过对学生列一元二次方程解应用题,学会寻找问题中的等量关系的课堂教学,使学生在基础知识和基本技能,数学能力等方面应获得的发展,充分体验数学来源于生活,从生活的无究奥秘,感受生活的丰富多彩,培养学生的理解问题、解决问题的.能力。
2、正确的把本堂课学生要学习的列一元二次方程解应用作为重点,把比例、平均增长率与各年的增长率的之间这些模糊的概念作为本节课的难点,针对这些重点和难点,教师从学生的现实状况出发重新组织教材,设置一系列的典型例题,围绕列一元二次方程解应用题,学会寻找问题中的等量关系进行分析与讲解。使学生得到数学思维得到有效的训练。
3、本节课从学生自学-探求新识-课堂小结三个方面进行有效的组织课堂教学内容,正确反映教学目标的要求,重点突出,把主要精力放在探求新识的回顾解方程的一般步骤-学前准备-模仿与实践-归纳及练一练-合作与交统关键性问题的解决上;注重层次、结构,张弛有序,秩序渐进。精心设计练习,有计划地设置练习中的思维障碍,使练习具有合适的梯度,提高训练的效率。恰当运用反馈调节机制,根据课堂实际适时调整教学进程,为学生提供反思学习过程的机会,引导学生对照学习目标检查学习效果,有针对性地解决学生遇到的学习困难。
4、从教学效果来看、使每一个学生都能在已有发展的基础上,在“双基”、数学能力和理性精神等方面得到一定的发展。
实际问题与一元二次方程说课稿篇七
一、引导学生观察、类比、联想已学的一元一次方程、二元一次方程,归纳、总结出一元二次方程,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态之中,使新概念的得出觉得意外,让学生跳一跳就可以摘到桃子。
二、合理选材,优化教学,在教学中,忠实于教材,要研究的基础上使用教材。教学方法合理化,不拘于形式,通过一系列的活动来展开教学,发展了学生的思维能力,增强了学生思考的习惯,增强了学生运用数学知识解决实际问题的能力。
四、为了真正做到有效的合作学习,我在活动中大胆地让学生自主完成。先让学生把问题提出来,然后让学生带着问题去讨论,这样学生在讨论时就有目的,就会事半功倍。也让不同层次的学生得到不同的发展。也符合新课程的教学理念。
不足之处:引入方面有待加强,不够激发学生的学习兴趣;板书还有待加强,应给学生做出示范;给学生思考的时间还不够。
实际问题与一元二次方程说课稿篇八
《课标》指出:学生的数学学习应当是一个生动活泼、生动和富有个性的过程,要让学生经历数学知识的形成过程。基于这一理念,朱老师在本节课中注重了让学生动手操作、小组讨论、全班交流。学生在操作中明白算理;小组讨论中,有机会表达自己的想法,也学会去聆听别人的意见并作出适当的评价和补充。学生在交流中相互启发,在不同观点、创造性思维火花的相互碰撞中,发现问题、探究问题、解决问题。
通过教学这节课的设计意图达到了预期的效果,大多数学生已经学会了画“与倍有关的两步计算的实际问题”的线段图,并且知道了画线段图来帮助解题有以下几点好处:
1、有利于学生数学问题意识的培养。
线段图第一次在教学中出现,在认知上是由直观具体的“图”向较为抽象的“线段”的'过渡,而这又是帮助理解数量关系,解决问题的一种有效手段。因此,在设计教学时,我将重点放在了画线段图的方法指导上:让学生根据以往的知识基础,理清数量关系,讨论得出线段图的画法,明确一条线段表示一个数量,两条线段之间是有联系的,而这个联系可以从信息里得到;在对“问号该标在哪儿”的讨论中,明确了问题不同,问号所在的位置就会不同,解决的方法就会不同。
2、有利于学生分析数量关系,掌握解题技巧。
在这节课的学习中,学生在问题的引领下和在对线段图画法的讨论中,得不断的联系已知信息,去体会、分析信息中数量之间的关系,因此,对于数量之间关系的理解是自然而然的获得的,所以解决问题使学生感觉很轻松,讲起解法头头是道。我相信,在以后的学习中,在解决问题时他们会用这种方法去分析数量之间的关系、探究解决问题的方法的。
3、有利于学生运用多种方法解决问题。
这个优点是不言而喻的,在此就不多叙了。
将本文的word文档下载到电脑,方便收藏和打印。
实际问题与一元二次方程说课稿篇九
“求平均数”是人教版小学三年级第六册第三单元42页的内容。它是新教材“统计与概率”领域内容的一部分。小学数学里所讲的平均数一般是算术平均数,用来表示统计对象的一般水平,它是描述数据集中程度的一个统计量。它与我们的现实生活紧密联系,现代社会的公共媒体大量使用统计图表示信息,所以看懂统计图表是现代公民必备的数学素养。基于此本课教学把重点放在运用平均数的理念分析数据、理解数据的意义上,放在根据数据做出必要推断上,另外,平均数的概念与过去学过的平均分的意义是不完全一样的。平均数是一个“虚拟”的数,是借助平均分的意义,通过计算得到的。“平均数”是个“虚数”(大于平均数;小于平均数;等于平均数)“平均数”可用来预测未来发展趋势。教学目标1、初步掌握求“平均数”的基本思想(移多补少的统计思想),理解“平均数”的概念。2、掌握简单的求“平均数”的方法求平均数(算术法移多补少法)并能根据具体情况灵活选用方法进行解答。教学重点:灵活选用“求平均数”的方法解决实际问题。教学难点:平均数的意义。
彭老师这节课在设计上看得出花了很多时间和精力,由小马过河的.故事导入——组织学生摆小卡片,讨论如何平均分——从而介绍移多补少方法——讲解例题——巩固练习——总结课堂,整节课环节清晰,特别是练习设计非常新颖,有辩一辩、说一说、露一手、聪明宝贝等题型。
兴趣是最好的老师,新课程标准指出:数学教学必须注意从学生感兴趣的事物出发为学生创造成功的机会,使他们体会到数学就在身边,对数学产生亲切感。在课堂中彭老师运用了多媒体辅助教学,为他们创造一个发现、探究的空间,使学生能更好地去发现、去创造。让学生能在直观形象的情境中学到知识。
彭老师安排整堂课的教学素材贴近实际生活,让学生体验数学与生活的关系:数学源于生活,回归于生活,并高于生活,增强了学习数学的兴趣,培养了解决实际问题的能力。
听了这节课,我也有以下几点思考:
1、教师在课堂中的语言连贯性还要加强。
2、精心设计的每一课堂环节在教学中要落实到位,尽量做到一步一个脚印。
3、在教学例题后,可让学生把平均数与各实际数进行对比,学生就很清楚的可以看到,平均数有可能比实际数大,也可能比实际数小,还可能等于实际数。这样一对比,后面的练习题“辩一辩”学生应该能更快更准确地回答出来。平均水深只是一个代表数,它的实际水深并不知道,可能比126厘米浅,也可能比126厘米深,还可能正好是126厘米。
4、新教材的数学教材图例非常多,我觉得不管是在新授还是练习题当中,都应先让学生去理解图意,已知什么?求什么?再让学生去解答。
总的说来,彭老师在教材的钻研方面还是下了很大的功夫,如果今后能课堂教学当中应用到位,那就是锦上添花了。
实际问题与一元二次方程说课稿篇十
学习一元二次方程的解法,最终是要落实到它的应用上。本节课通过学习列一元二次方程解应用题,解决两类问题:面积问题及增长率问题,使学生体验“知识来自实践,又作用于实践”的辩证唯物主义观点。史老师围绕这一知识应用开展课堂教学。现就本节课的课堂教学评价如下:
首先,从教学目标制订来看,本节课的教学目标是掌握列一元二次方程解应用题的一般步骤:审--设--列--解--验--答;学会列一元二次方程解应用题。学会寻找增长率问题中的等量关系;了解数学源于生活,从数学的无穷奥秘,感受生活的丰富多采。培养学生理解问题、解决问题的能力。
这一目标比较全面、具体、适宜,能从知识、能力、思想情感等几个方面确定,并且知识目标有量化要求,能力、思想情感目标要有明确要求,体现学科特点。同时确定的教学目标,能以大纲为指导,体现年级、单元教材特点,符合学生年龄实际和认识规律,难易适度。从目标达成来看,教学目标体现在每一教学环节中,教学手段都紧密地围绕目标,为实现目标服务。
史老师对这一节课的知识教授比较准确科学,教师在教材处理上做了一些文章,从课前学习配备一定量的复习练习,回忆巩固列方程解应用题的一般步骤,通过模仿练习,提升学习的量,并在教法选择上突出了重点,突破了难点,抓住了关键。
(一)看教学思路设计。
教学思路是教师上课的脉络和主线,它是根据教学内容和学生水平两个方面的实际情况设计出来的。它反映一系列教学措施怎样编排组合,怎样衔接过渡,怎样安排详略,怎样安排讲练等。
因此史老师在教学思路设计上符合教学内容实际,符合学生实际,并设计合作与探究给学生以新鲜的感受,在课堂上教学思路实际运作的效果比较好。
(二)看课堂结构安排。
教学思路侧重教材处理,反映教师课堂教学纵向教学脉络,而课堂结构侧重教法设计,反映教学横向的层次和环节。它是指一节课的教学过程各部分的确立,以及它们之间的联系、顺序和时间分配。课堂结构也称为教学环节或步骤。
1、从教学环节的时间分配看,本节课前面时间安排多,内容多,后面时间少,内容密度大,讲与练时间搭配还不够合理,讲地多,练得少。
2、从教师活动与学生活动看,占用时间过多,学生活动时间不够多。
3、从学生的个人活动时间与学生集体活动时间的分配看,学生个人活动,小组活动和全班活动时间分配不够合理,集体活动过多,学生个人自学、独立思考、独立完成作业时间不够。
4、从优差生活动时间看,学生情况我们不是很熟悉,难以判断。
5、从非教学时间看,史老师控制较好,基本没有浪费宝贵的课堂时间的现象。
什么是教学方法?它包括教师“教学活动方式,还包括学生在教师指导下”“学”的方式,是“教”的.方法与“学”的方法的统一。
一种好的教学方法总是相对而言的,它总是因课程,因学生,因教师自身特点而相应变化的。也就是说教学方法的选择要量体裁衣,灵活运用。本节课采用任务驱动下的学生自主学习与教师辅导相结合的模式,设计思路较好,具体实施时仍旧感觉到传统教法占优。
现代化教学呼唤现代化手段。“一支粉笔一本书,一块黑板一张嘴”的陈旧单一教学手段应该成为历史。本节课适当运用了投影仪、计算机等现代化教学手段,提高了课堂的容量。
1、看板书。
字迹工整美观,板画娴熟。因书写地方少,体现不出教师的真实水平。
2、看教态。
据心理学研究表明:人的表达靠55%的面部表情+38%的声音+7%的言词。教师课堂上的教态应该是明朗、快活、庄重,富有感染力。仪表端庄,举止从容,态度热情,热爱学生,师生情感交融。这一方面对我们每一个教师都应该加强。
3、看语言。
教学也是一种语言的艺术。教师的语言有时关系到一节课的成败。史老师语言准确清楚,说普通话,精当简炼,有启发性。教学语言的语调高低适宜,快慢适度,富于变化。
4、看教法。
史老师运用教具,操作投影议、微机等比较熟练。
课堂效果评析包括以下几个方面。一是教学效率高,学生思维活跃,气氛热烈。二是学生受益面大,不同程度的学生在原有基础上都有进步。知识、能力、思想情操目标达成。三是有效利用45分钟,学生学得轻松愉快,积极性高,当堂问题当堂解决,学生负担合理。应该说本节课基本达到了预期的教学效果。
实际问题与一元二次方程说课稿篇十一
宋老师上了《求去掉多少的实际问题》一课,扎实有效地注重学法指导,循循善诱,突破了本课的重难点,收到了较好的课堂效果。从本课教学内容看来,教材编得越来越细了,将“求原来有多少的实际问题”和“求去掉多少的实际问题”分别列出来,作为两个新知识点进行教学,这也说明了,这两个知识点是一年级学生掌握的一个重点和难点。抽象的关系是学生最不擅长的一种思维方式,在讲解算法时,光靠嘴说从一共里面去掉一部分得到另一部分,抽象且枯燥,学生听了很乏味。因此宋老师借助于直观图形和学生去年所学的扩线图来降低例题的难度,便于学生思考。在教学新课时,老师引导学生自己根据图意,想求吃了多少个桃,该怎样求?开始的时候,有几个学生说的很好,说用一共的桃减去剩下的桃等于吃了的桃。老师及时表扬了他们,但发现还有许多小朋友不会用语言表达,也有学生还不理解解题的'方法。所以老师用画图的方法帮助学生理解数量间的关系。当图一出示,许多学生很快理解了数量间的关系,很容易说出:要求吃了多少个桃,用一共的桃减去剩下的桃。这时宋老师由点到面,先指名说想法,再同桌说,最后全班说,达到了班级大多数学生会说出解题的方法,然后指名列算计算,强调单位和口答。这样做到了重点突出,难点突破。在接下来的练习中学生运用老师教的方法去做,都很自如。
课堂上老师没有一丝一毫的机械传授,而是不着痕迹的点拨、引导,把自主学习、交流、探索新知的机会和权利交给孩子,引导学生根据生活经验通过思考、交流,学会从总数里去掉一部分得到另一部分的一般方法,体现了从扶到放的过程,学生的思维能力得到了培养。
实际问题与一元二次方程说课稿篇十二
知识技能。
1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型。
2.能根据具体问题的实际意义,检验结果是否合理。
过程方法。
经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
情感态度与价值观。
通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。
2.教学重点/难点。
教学难点:发现传播问题中的等量关系。
3.教学用具。
制作课件,精选习题。
4.标签。
教学过程。
一、导入新课。
生:审题、设未知数、找等量关系、列方程、解方程,最后答题。
试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型。这一节我们就讨论如何利用一元二次方程解决实际问题。
二、探索新知。
【问题情境】。
【分析】。
(1)本题中有哪些数量关系?
(2)如何理解“两轮传染”?
(3)如何利用已知的数量关系选取未知数并列出方程?
(4)能否把方程列得更简单,怎样理解?
(5)解方程并得出结论,对比几种方法各有什么特点?
【解答】。
设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。于是可列方程:
1+x+x(1+x)=121。
解方程得x1=10,x2=—12(不合题意舍去)。
因此每轮传染中平均一个人传染了10个人。
【思考】。
如果按这样的传播速度,三轮传染后有多少人患了流感?
【活动方略】。
教师提出问题。
学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题。
【设计意图】。
使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验。
三、例题分析。
解:设每个支干长出x个小分支,则。
1+x+xx=91,即x2+x—90=0。
解得x1=9,x2=—10(不合题意,舍去)。
答:每个支干长出9个小分支。
【分析】。
(1)两题中有哪些数量关系?
(3)对比两题,它们有什么联系与区别?
【活动方略】。
教师活动:操作投影,将例题显示,组织学生讨论。
学生活动:合作交流,讨论解答。
【设计意图】。
进一步提升学生在活动1中的学习效果,使学生充分体会传播问题,培养学生对传播问题的解题能力。
四、当堂训练。
1.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,那么根据题意列出的方程是()。
a.x(x+1)=182b.x(x—1)=182。
c.2x(x+1)=182d.x(1—x)=182×2。
【活动方略】。
学生独立思考、独立解题。
教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)。
【设计意图】。
检查学生对所学知识的掌握情况。
课堂小结。
1、用“传播问题”建立数学模型,并利用它解决一些具体问题。
2。解一元二次方程的一般步骤:一审、二设、三列、四解、五验(检验方程的解是否符合题意,将不符合题意的解舍去)、六答。
板书。
实际问题与一元二次方程说课稿篇十三
从试题结构看,共分三个大题,包括填空题、选择题、解答题,相对来说试题比较简单。从学生的答卷来看,存在以下问题:
一、学生计算能力总体差.
二、基础知识掌握不扎实如:。
填空题7题和10题,学生对一元二次方程和一元一次方程的条件理解不透彻。
根据题意列方程审题不清。
三、基本的概念定理不清楚。
如:选择题14和15题有关角平分线和垂直平分线定理的考查好多学生出错.15题是有关一元二次方程和一元一次方程和整式方程,分式方程的考查,包括有优生都出错.
四、证明题逻辑思维不条理。
对于95%的学生证明步骤依然是他们的弱点,是初三阶段的训练目标.
针对上述问题,今后需采取以下措施:落实基础,提高学生的计算能力,加强审题能力的培养,规范学生的书写及解题格式的规范程度,针对我们班及格人数和其他班有差距,需要加强及格边缘学生的个别关注,尤其充分利用辅导课的时机有针对性的辅导.对不同的学生给以不同的关注,使每个学生都能克服其缺点以提高学习成绩.
实际问题与一元二次方程说课稿篇十四
张老师这节课从学案的编写到实施,在形式和内容上都体现了新课程改革的特征,符合新课标的基本精神,展示了新课程理念,采用了新课堂模式。针对这节课我着重从以下几个方面谈谈个人的意见。
教学方法是实现教学目标,体现教学内容的手段,教学方法运用是否得当,主要看能否充分发挥教师的主导作用和学生的主体地位,能否最大限度地提高课堂教学效率。本堂课教师在处理好数学知识结构与学生认知结构的关系的基础上,按由易到难的顺序安排教学内容,注重思想训练与思维能力的培养。课堂上学生紧紧围绕着学案结合老师的指导,展开自主的学习。在引导学生得出用配方法来解一元二次方程方法步骤后,接着引导学生加强训练,对出现的问题立即进行矫正并反思总结,不但能提高学生运算能力,而且对培养学生养成良好的学习习惯起到很大的作用。
教学内容规定着教什么和学什么的问题,恰当地选择和处理教学内容是实现教学目标的重要保证。这节课从本节课的教学内容始终围绕目标、反映目标,能分清主次,准确地确定让学生明白如何利用配方法来解一元二次方程,以及利用配方法来解一元二次方程方法步骤这一重点、难点、关键点,处理好新旧知识的结合点,抓住知识的生长点。讲授具有启发性、层次性、详略得当;本堂课师生互动,共同探索,结合多媒体较好地处理了这个重点。同时,注意发挥练习题的作用,加强对学生解题方法和过程的指导,使传授知识和培养能力容为一体。通过对问题的处理,学生在不知不觉中得到了用配方法解一元二次方程的方法,真可谓潜移默化、水到渠成。
本节课始终以如何用配方法解一元二次方程为主线加强对学生知识、技能、方法、能力等的培养,目标的达成,达到了比较理想的程度。在课堂结构上堂体现了自主、合作、检测的主体框架,严谨顺畅,理念新颖,课堂营造的`学习氛围比较轻松活泼;内容上,新旧知识的前后联系,多种解法系统而完整,学到了新知识,还让学生体验到了成功的快乐。教学中灵活使用多媒体资源,提高了教学效果也是本节课的一个亮点。
本节课针对学科特点,结合本课内容,制定了明确的教学目标,而且在这堂课中顺利的完成了目标,使学生学会用配方法解一元二次方程方法,做到理解其算理,掌握其算法;并进一步培养学生观察比较、分析、综合的能力,进一步提高学生的计算能力,培养思维的灵活性。同时还培养学生参与数学学活动的积极性,体验在学习活动中探索和创造的乐趣,感受数学的严谨性、数学结论的确定性,养成认真仔细的良好学习习惯。本节课教学目标明确,教学过程始终围绕这个目标展开,重点内容的教学得到保证,重点知识和技能得到巩固和强化。而教学效果是课堂教学的落脚点。张老师这节课不但在规定的时间内完成了教学任务而且在知识的传授、能力的培养、思想与道德教育等方面都实现了目标要求,在学生的方面,学生听课的注意力非常集中,他们学习积极而主动,能准确地完成课堂练习,能对一堂课归纳出主要内容,独立的进行课堂小结与反思,并对自己的学习情况进行准确的自我评价等。
本节课基本能做到“以学生的发展”为本,使数学教育面向全体学生,不同的人在数学上得到不同的发展,这也是当前数学教学改革的重要课题之一,这节课如果能适当分层照顾全体,注重知识的形成过程,注重思维品质的培养,使每一位学生都有所获都有所得,是每一个学生都得到不同的发展,那么这节课就更加精彩。
实际问题与一元二次方程说课稿篇十五
新课改下,要求改变教师的课堂教学行为,发挥学生的主体作用,主张学生个性化学习。善思善想的学生得到几种不同的解答都有自己的道理。但是数学教学中虽提倡一题多解,可答案是确定的,并非灵活多变,对于上述类型题到底该如何确定答案,新课改实施后考题灵活多变,学生翻阅资料扩大知识面无可厚非。并且随着社会的发展,家长逐渐重视对孩子的教育,通过为孩子买各种各样的教辅资料来提高孩子的学习成绩。孰不知资料中对一些题的答案众说不一,到底谁是权位,我们师生又该如何面对。
当前,老师讲学生听已成了教学中最普遍的方法。而要学生对教学的内容进行反思,听是远远不够的。要反思,就要有内容。所以学生就要先进行课堂简要摘记。课堂简要摘记给学生提供了反思的依据。学生也能从课堂简要摘记中更好的体验课堂所学习的内容,学生的学习活动也成了有目标,有策略的主体行为,可促使老师和学生进行探索性,研究性的活动。有利于学生在学习活动中获得个人体验,提高个人的创造力,所以课堂简要摘记是学生进行反思的重要环节。
课堂教学是开展反思性学习的主渠道。在课堂教学中有意识的引导学生从多方位、多角度进行反思性的学习。学生的实践反思,可以是对自身的认识进行反思,如,对日常生活中的事物及课堂中的内容,都可引导学生多问一些为什么?也可以是联系他人的实践,引发对自己的行为的比较反省,我们可以多引导学生进行同类比较,达到“会当凌绝顶,一览众山小”的境界;也可以是对生活中的一种现象,或是周围的一种思潮的分析评价,此外学生的反思还何以是阶段性的,如:一节课尾声时,让学生进行一下反思,想想自己这节课都有什么收获?还有哪些疑问?当天睡前,反思一下今天自己的感受;或是一周反思一下自己的进步和不足等等。
实际问题与一元二次方程说课稿篇十六
今天我说课的内容是人教版初中数学九年级上册第二十二章、第22.3节《实际问题与一元二次方程》的第四课时实验与探究。它是继传播问题、百分率问题、长宽比例问题这几个基本问题的学习后的探索活动课,对于本节课我将从教材分析与学生现实分析、教学目标分析,教法的确定与学法指导,教学过程这四个方面加以阐述。
(一)教材分析与学生现实分析。
一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的基础,它是研究现实世界数量关系和变化规律的重要模型。本节课以一元二次方程解决的实际问题为载体,通过对它的进一步学习和研究体现数学建模的过程帮助学生增强应用认识。
大量事实表明,学生解应用题最大的难点是不会将实际问题提炼为数学问题,而列一元二次方程解决实际问题的数量关系比可以用一元一次方程解实际问题的数量关系要复杂一些。对于初中学生来说他们比较缺乏社会生活经历,收集信息处理信息的能力较弱,这就构成了本节课的难点。
(二)数学新课程标准要求:
人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的发展。
我根据新课标对方程的具体要求和初三学生的认知的特点,确定了如下教学目标的:。
1、知识与技能:能根据问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。以一元二次方程解决实际问题为载体,加强学生对数学建模的基本方法的掌握。
2、过程与方法:经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。
3、情感、态度与价值观:通过用一元二次解决实际问题,体会数学知识应用的价值,了解数学对促进社会进步和发展的作用。激发学生学习数学的兴趣,体会做数学的快乐,培养用数学的意识。
实际问题与一元二次方程说课稿篇十七
学生在七年级和八年级已经学习了一元一次方程、二元一次方程,以及一次函数的相关知识及应用,在九年级学习了一元二次方程的相关解法,初步体会了一元二次方程在解决实际问题中的.具体应用,可以说一元二次方程是以前学过的方程知识的延续和深化,它在现实生活以及数学中有着广泛的应用,也是学习其他数学知识(如二次函数等)的基础.
作者:童孝彬作者单位:南京市共青团路中学,江苏,南京,210000刊名:考试周刊英文刊名:kaoshizhoukan年,卷(期):“”(6)分类号:g63关键词:
实际问题与一元二次方程说课稿篇十八
1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.
2.能根据具体问题的实际意义,检验结果是否合理.
【教学重点】列一元二次方程解有关传播问题、平均变化率问题的应用题。
【教学难点】发现传播问题、平均变化率问题中的等量关系。
【学习过程】。
一、知识回顾。
1、解一元二次方程都是有哪些方法?
2、列一元一次方程解应用题都是有哪些步骤?
二、新知探究。
分析:设每轮传染中平均一个人传染了x个人,
第二轮传染中,这些人中的每个人又传染了_______人,第二轮后共有_______人患了流感。
实际问题与一元二次方程说课稿篇十九
从试题结构看,共分三个大题,包括填空题、选择题、解答题,相对来说试题比较简单。从学生的答卷来看,存在以下问题:
填空题7题和10题,学生对一元二次方程和一元一次方程的条件理解不透彻。
根据题意列方程审题不清。
如:选择题14和15题有关角平分线和垂直平分线定理的考查好多学生出错.15题是有关一元二次方程和一元一次方程和整式方程,分式方程的考查,包括有优生都出错.
对于95%的学生证明步骤依然是他们的弱点,是初三阶段的训练目标.
针对上述问题,今后需采取以下措施:落实基础,提高学生的计算能力,加强审题能力的培养,规范学生的书写及解题格式的规范程度,针对我们班及格人数和其他班有差距,需要加强及格边缘学生的个别关注,尤其充分利用辅导课的.时机有针对性的辅导.对不同的学生给以不同的关注,使每个学生都能克服其缺点以提高学习成绩.
实际问题与一元二次方程说课稿篇二十
随着核心素养的提出,作为一直奋战在一线的一名教师,对自己的课堂应该提出一个更高的要求,应该把培养孩子的们的数学核心素养作为一节课的目标。通过本节课的教学,总体感觉达到了自己预期的一个教学目标,但还有很多不足之处,现从收获和不足两个方面加以说明。
本节课的收获。
1整节课的整体设计能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,活跃了课堂气氛。
2总体上较好的达到了教学的目标,课后通过作业和练习做了一个统计,孩子对知识的理解达到78%,作业的正确率达到65%。
3本节课例题的设置比较贴合实际、例题由易到难,孩子容易接受和理解。
4本节课的教学方法主要以提问―讨论―总结的形式进行,更利于孩子的发挥。
5本节课在课堂的设置上更注重孩子“数学抽象”能力的培养,并在能力培养的过程中注重方法,以实例为载体,循序渐进让孩子逐步接受,自然生成结论,这样培养能力的过程孩子更易接受,理解更深刻。
本节课的不足。
1、在课堂时间的把控上做得还是不够好,由于孩子的能力层次不齐,所以在分组讨论过程中为了让更多的'孩子能够给掌握讨论的结论,给孩子们讨论留的时间多了一些,最后在做课堂总结的时候做得很草率,甚至最后拖堂,最后利用数学的自习课给孩子做了补充,。
2、在第2道例题的讲解过程中,没有板书的一个落实,让很多孩子在例3练习时书写过程出了很多问题。
3、在给孩子设置的问题很单一,没有涉及更多的问题的变化,当然这是我预期就想到的,主要还是考虑到了多数孩子的接受能力。
以上就是我在本次实践案例中的收获以及感觉到的不足,如有不当之处,望能不吝赐教!
实际问题与一元二次方程说课稿篇二十一
一、课前预习:
1、某厂今年1月份的总产量为100吨,平均每月增长20%,则:。
二月份总产量为____________吨;三月份总产量为____________吨。(填具体数字)。
2、某厂今年1月份的总产量为500吨,设平均每月增长率是x,则:
二月份总产量为____________吨;三月份总产量为____________吨。(填含有x的式子)。
3、某种商品原价是100元,平均每次降价10%,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。(填具体数字)。
4、某种商品原价是100元,平均每次降价的百分率为x,则:第一次降价后的价格是________元;第二次降价后的价格是_______元。(填含有x的式子)。
实际问题与一元二次方程说课稿篇二十二
由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.
教学目标。
掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.
通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用“倍数关系”建立数学模型,并利用它解决实际问题.
重难点关键。
1.重点:用“倍数关系”建立数学模型。
2.难点与关键:用“倍数关系”建立数学模型。
教学过程。
一、复习引入。
(学生活动)问题1:列方程解应用题。
下表是某一周甲、乙两种股票每天每股的收盘价(收盘价:股票每天交易结果时的价格):。
星期一二三四五。
甲12元12.5元12.9元12.45元12.75元。
乙13.5元13.3元13.9元13.4元13.75元。
老师点评分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y乘以相应的每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.
解:设这人持有的甲、乙股票各x、y张.
则解得。
答:(略)。
二、探索新知。
上面这道题大家都做得很好,这是一种利用二元一次方程组的数量关系建立的数学模型,那么还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题.
老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x.因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样“倍数”增长,即(1+x)+(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式.
去括号:1+1+x+1+2x+x2=3.31。
整理,得:x2+3x-0.31=0。
解得:x=10%。
答:(略)。
以上这一道题与我们以前所学的'一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.
例1.某电脑公司20xx年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.
分析:设这个增长率为x,由一月份的营业额就可列出用x表示的二、三月份的营业额,又由三月份的总营业额列出等量关系.
解:设平均增长率为x。
则200+200(1+x)+200(1+x)2=950。
整理,得:x2+3x-1.75=0。
解得:x=50%。
答:所求的增长率为50%.
三、巩固练习。
(2)某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为__________.
四、应用拓展。
例2.某人将20xx元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.
分析:设这种存款方式的年利率为x,第一次存20xx元取1000元,剩下的本金和利息是1000+20xxx・80%;第二次存,本金就变为1000+20xxx・80%,其它依此类推.
解:设这种存款方式的年利率为x。
整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0。
解得:x1=-2(不符,舍去),x2==0.125=12.5%。
答:所求的年利率是12.5%.
五、归纳小结。
本节课应掌握:。
六、布置作业。
1.教材p53复习巩固1综合运用1.
2.选用作业设计.
作业设计。
一、选择题。
1.20xx年一月份越南发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是().
a.100(1+x)2=250b.100(1+x)+100(1+x)2=250。
c.100(1-x)2=250d.100(1+x)2。
2.一台电视机成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台售价为().
a.(1+25%)(1+70%)a元b.70%(1+25%)a元。
c.(1+25%)(1-70%)a元d.(1+25%+70%)a元。
3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降低的百分数)不得超过d%,则d可用p表示为().
a.b.pc.d.
二、填空题。
1.某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,第二年的产量为_______kg,第三年的产量为_______,三年总产量为_______.
2.某糖厂20xx年食糖产量为at,如果在以后两年平均增长的百分率为x,那么预计20xx年的产量将是________.
3.我国政府为了解决老百姓看病难的问题,决定下调药品价格,某种药品在涨价30%后,20xx年降价70%至a元,则这种药品在年涨价前价格是__________.
三、综合提高题。
1.为了响应国家“退耕还林”,改变我省水土流失的严重现状,20xx年我省某地退耕还林1600亩,计划到20xx年一年退耕还林1936亩,问这两年平均每年退耕还林的平均增长率2.洛阳东方红拖拉机厂一月份生产甲、乙两种新型拖拉机,其中乙型16台,从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐年递增,又知二月份甲、乙两型的产量之比是3:2,三月份甲、乙两型产量之和为65台,求乙型拖拉机每月的增长率及甲型拖拉机一月份的产量.
3.某商场于第一年初投入50万元进行商品经营,以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.
(1)如果第一年的年获利率为p,那么第一年年终的总资金是多少万元?(用代数式来表示)(注:年获利率=×100%)。
(2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.
答案:。
一、1.b2.b3.d。
二、1.6(1+x)6(1+x)26+6(1+x)+6(1+x)2。
2.a(1+x)2t。
3.
三、1.平均增长率为x,则1600(1+x)2=1936,x=10%。
2.设乙型增长率为x,甲型一月份产量为y:。
则
即16x2+56x-15=0,解得x==25%,y=20(台)。
3.(1)第一年年终总资金=50(1+p)。
(2)50(1+p)(1+p+10%)=66,整理得:p2+2.1p-0.22=0,解得p=10。
【本文地址:http://www.xuefen.com.cn/zuowen/16630673.html】