教案应包括教学目标、教学内容、教学方法、教学手段等内容,以及评估学生学习成果的方式。教案应该注重培养学生的创新思维和实践能力,促进综合素质的全面发展。在编写教案时,可以参考一些教学研究成果和教育理论。
小学比例教案篇一
教材分析:
本单元内容是在学生已经学过比的意义、比的化简与比的应用的基础上学习的。《反比例》内容是前面学习“变化的量”,“正比例”等比例知识的深化,是以后学习函数的基础,起着承前启后的作用,是小学阶段比例初步知识教学中的一项重要内容。反比例关系是数学中比较重要的数量关系,而学生理解反比例的含义往往比较困难。为此,教材密切联系学生已有的生活经验和学习经验,创设了三个情境,让学生体会生活中存在大量相关联的量,它们之间的关系有着共同之处,使学生从常量的世界进入了变量的世界,开始接触一种新的思维方式,从而引发学生的讨论和思考,并通过对具体问题的讨论,使学生认识成反比例的量以及反比例在生活中的广泛存在。
学情分析:
学生已经学习了“变化的量”和“正比例”的有关知识,对比例知识有了初步的了解,因此,在教学时依据教材特点,从学生的实际生活经验和知识水平出发,采用“小组合作交流”的教学方法,让尽可能多的学生主动参与到学习过程中,通过独立思考,合作交流,让学生在原有正比例知识经验的基础上,积极主动去建构新知,最大限度充分发挥学生主观能动性,通过学生观察、思考、感知、交流、比较、归纳等数学教学活动,探究新知,体验到成功的愉悦。
设计理念及意图。
《数学课程标准》明确指出:“自主探索与合作交流是学生学习数学的重要方式”。因此,在教学时充分相信学生,放手让学生在合作交流的基础上,主动探究,自己去发现。为此,教学时先复习一些基本的数量关系,使知识间发生迁移,在此基础上探求新知,最后深化新知。
教学目标:
1、知识与能力:
(1)、结合丰富的实例,认识反比例。
(2)、能根据反比例的意义,初步判断两个相关联的.量是不是成反比例,并能解决生活中的实际问题。
2、方法与途径:
在互动、探究的合作交流活动中,培养学生观察、思考、比较、归纳概括的能力。
3、情感与评价:
使学生在自主探索合作交流中体验成功的愉悦,感受反比例关系在生活中的广泛应用。
教学重点:
理解反比例的意义,掌握判断两种量是否成反比例的方法。
教学难点:
一、复习铺垫,引入课题﹙出示课件﹚。
1、复习:判断下面各题中两种量是否成正比例。
﹙1﹚、文具盒的单价一定,买文具盒的个数和总价。
﹙2﹚、一堆货物一定,运出的和剩下的。
﹙3﹚、汽车行驶的路程一定,行驶的速度和时间。
2、谈话引入:
汽车行驶的路程一定,速度和时间这两种相关联的量不成正比例,那么它成不成比例呢?又会成什么比例?这就是今天要解决的问题。﹙出示课题:反比例﹚今天老师就和同学们一道共同探讨反比例的变化规律。
二、教师引导,自主探索。
﹙一﹚初步感知理解两个变化关系的不同。﹙出示情境﹝1﹞﹚。
1、教师引导学生观察分析加法表。
你们发现了什么?(1)图中表示的是谁与谁之间的关系?
让学生自己总结出:和不变,一个加数随另一个加数的变化而变化,并且所有和为12的数都在同一条直线上。
2、引导学生观察分析“乘法表”中两个量的变化关系。
(2)图中表示的是谁与谁之间的关系?
3、师生共同小结:
由此可见,对于“加法表”和“乘法表”中的两个变量,都是一个量变化,另一个量也随着变化,但是它们的变化关系是不同的。“加法表”表示的是和一定两个加数之间的关系,而“乘法表”表示的是积一定两个乘数之间的关系。所有和为12的数都在同一条直线上,积为12的数成一条曲线。
﹙二﹚探索理解反比例的意义。
1、出示情境﹝2﹞。
﹙1﹚教师引导学生观察表格,把表格填写完整。王叔叔要去游长城。不同的交通工具所需时间如下。
﹙4﹚小结:速度×时间=路程﹙一定﹚。
2、出示情境。
﹝3﹞﹙小组合作交流﹚。
师:请同学们在小组内互相讨论交流,并围绕这三个问题进行讨论。
﹙1﹚填表:
﹙3﹚分的杯数是怎样随着每杯的果汁量变化的?
﹙4﹚它们的变化规律是什么?用表中的数据说明。
每杯的果汁量×分的杯数=果汁总体积﹙一定﹚。
3、学生合作交流比较情境。
﹝2﹞和情境﹝3﹞的共同点,比较概括反比例的概念。
反比例概念:两种相关联的量,如果一种量扩大(或缩小)几倍,另一种量反而缩小(或扩大)相同的倍数,这两种量相对应的两数的积一定。那么,这两种量叫做成反比例的量,它们之间的关系叫做反比例关系。
学生回答后板书:xy=k(一定)。
4、学生归纳总结判断两个量是不是成反比例的方法:判断两个量是不是成反比例,主要是看这两种相关联量的积是不是一定的,同时,还要看这两个量变化规律。
﹙三﹚练习:讨论“加法表”和“乘法表”中两个量是否成反比例。
三、解决问题。
1、判断下面每题中的两个量是否成反比例?并说明理由。﹙出示课件﹚指名学生口答,要求说出数量关系式判断。
﹙1﹚煤的总量一定,每天的烧煤量和能够烧的天数。
﹙2﹚张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。
﹙3﹚生产电视机的总台数一定,每天生产的台数和所用的天数。
﹙4﹚跳高的高度和她的身高。
﹙5﹚苹果的单价一定,购买苹果的数量和总价。
2、找一找生活中还有哪些成反比例的例子?
四、全课总结,深化提高。
这节课,你们有了什么新的收获?把你们的收获告诉大家。
五、布置作业:p261、2、3题。
板书设计:
反比例:两种相关联的量,一种量扩大(或缩小)几倍,另一种量反而缩小(或扩大),积一定。
xy=k(一定)。
小学比例教案篇二
1、通过自主尝试学会解比例的方法,进一步理解和掌握比例的基本性质。2、能运用解比例的方法解决实际问题。【教学重点】掌握解比例的方法,学会解比例。【教学难点】引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。
教学重难点。
【教学重点】掌握解比例的方法,学会解比例。
【教学难点】引导学生根据比例的基本性质,将比例改写成两个内项的积等于两个外项积的形式,即已学过的含有未知数的等式。
教学过程。
一、创设情境。
上节课我们学习了一些比例的意义,谁能说一说。
1、什么叫比例?
表示两个比相等的式子叫比例。
2、比例的基本性质是什么?
在比例里,两个外项的积等于两个内项的积。
3、应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
6︰10和9︰15()。
20︰5和4︰1()。
5︰1和6︰2()。
4、根据比例的基本性质,将下列各比例改写成其他等式。
3:8=15:403×40=8×15。
9/1.6=4.5/0.89×0.8=1.6×4.5。
5、这节课我们学习有关比例的应用的知识,即学习解比例。(板书课题,)。
二、引导探索,学习新知。
1、自学:什么是解比例?请看书第35页。
比例共有四项,如果知道其中的任何三项,就可以求出这个比例中的另外一个未知项。求比例中的未知项,叫做解比例。解比例要根据比例的基本性质来解。
2、自主学习例2。
出示思考题:
思考:
(1)、埃菲尔铁搭模型的高与埃菲尔铁搭的高度的比是1:10。
也就是()的高度:()的高度=1:10。
还有几个项不知道?不知道的这个项我们把它叫做()项。
小组内讨论解决问题,汇报:。
(1)把未知项设为x。
(2)根据比例的意义列出比例:(x:320=1:10)。
(3)指出这个比例的外项、内项,弄清知道哪三项,求哪一项。
(4)根据比例的基本性质可以把它变成什么形式?
(5)这变成了原来学过的什么?(方程。)。
(6)让学生自己在练习本上计算完整。课件出示计算过程。
小结:从刚才解比例的过程,可以看出,解比例可以根据比例的基本性质把比例变成方程,然后用解方程的方法来求未知数x,所以解比例也要写“解”字。
解比例的步骤是:
(1)、用比例的基本性质把比例改写成方程。
(2)、应用解方程的知识算出未知数。
3、教学例3。
出示例3:
思考:
(1)“这个比例与例2有什么不同?”(这个比例是分数形式。)。
(2)这种分数形式的比例也能根据比例的基本性质,变成方程来求解吗?
讨论:
(1)解这种分数形式的比例时,要注意什么呢?
(2)在这个比例里,哪些是外项?哪些是内项?
让学生在课本上填出求解过程。解答后,让他们说一说是怎样解的。课件出示计算过程。
课件出示:做一做,独立完成后订正。
4、总结解比例的过程。
刚才我们学习了解比例,大家回忆一下,解比例首先要做什么?(根据比例的基本性质把比例变成方程。)。
变成方程以后,再怎么做?(根据以前学过的解方程的方法求解。)。
从上面的过程可以看出,在解比例的过程中哪一步是新知识?(根据比例的基本性质把比例变成方程。)。
三、巩固应用:。
(一)、填空。
1、解比例x:12=2:24第一步24x=12×2是根据()。
2、把0、3:1、2=0、2:0、8可改写成。
()×()=()×()。
3、把4×5=10×2改写成比例是():()=():()。
4、若甲:乙=3:5,甲=30,则乙=()。
5、在比例中,如果两个内项的积上36,其中一个外项是9,
另一个外项是()。
(二)、判断下列的说法是否正确。
1、含有未知数的比例也是方程。()。
2、求比例中的未知项叫解比例。()。
3、解比例的理论依据是比例的基本性质。()。
4、比就是比例,比例也是比。()。
(三)、根据题意,先写出比例,再解比例。
1、8与x的比等于4与32的比。
2、14与最小的质数的比等于21与x的比。
四、课堂总结:
今天你有什么收获?指生说收获。老师小结。
小学比例教案篇三
3、利用多媒体动画的演示,让学生体验到反比例的变化规律。
教学重点:感受反比例的变化,概括反比例的意义;
教学难点:正确判断两种相关联的量是否成反比例;
教学准备:20支铅笔、一个笔筒;相关课件;学生分小组(每组一份观察记录单)。
每次拿的支数。
10。
5
4
2
1
拿的次数。
总支数。
小学比例教案篇四
1、理解反比例的意义。
2、能根据反比例的意义,正确判断两种量是否成反比例。
3、培养学生的抽象概括能力和判断推理能力。
利用反比例的意义,正确判断两种量是否成反比例。
1、成正比例的量有什么特征?
2、下表中的两种量是不是成正比例?为什么?
1.出示例1,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间。
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600.
教师板书:零件总数。
每小时加工数×加工时间=零件总数。
3.小结。
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
1.出示例2,根据题意,学生口述填表。
2.教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数。
(2)装订的本数是怎样随着每本的张数变化的?
(3)表中的两种量有什么变化规律?
(三)比较例1和例2,概括反比例的意义。
1.请你比较例1和例2,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2.教师小结。
像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
教师板书:xy=k(一定)。
1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?
完成教材43页做一做。
五、课后作业。
练习七6、7、8、9题。
成反比例的量xy=k(一定)。
每小时加工数×加工时间=零件总数(一定)。
每本页数×装订本数=纸的总页数(一定)。
小学比例教案篇五
本节课主要是应用比例尺的知识解决一些简单的实际问题。遵循“解决实际问题的活动价值不只是获得具体问题的解,更重要的是学生在解决问题的过程中获得的发展”这一理念。本节课在教学设计上重点突出了以下几个方面:
1.面向全体,重视学生对基本解题方法的理解。
在教学中,对于“解比例”,从审题、分析、列比例,到求出的解所表示的实际长度及所用单位,都通过相应的问题加以突出,使学生都能够运用“列比例法”去解决各种相关的问题。
2.拓展思维,重视学生对解题策略个性化和多样化的体验。
在教学中,为学生提供独立思考的机会,结合相关例题,巧妙提出问题,引发学生广泛思考,使学生充分发挥自己的聪明才智,在找到自己个性化的解题策略的同时,也在交流、讨论中感受并理解其他同学的不同解题方法。
3.渗透思想,引导学生实现解题策略的优化。
在教学中,引导学生对不同的解题策略进行比较,使学生在理解不同解题策略的同时,选择比较简捷易懂的解法,从而实现解决问题策略的优化。
小学比例教案篇六
1.通过对分数基本性质的记忆和沟通分数与比、除法之间的联系,理解比的基本性质。
2.能够运用比的基本性质把比化成最简单的整数比。
3.渗透转化的数学思想,培养学生的抽象概括能力,并使学生认识事物之间都是存在内在联系的。
小学比例教案篇七
二、小组协作概括“成反比例的量”的意义。
(一)活动??
师:好,现在请同学们拿出课前准备的学具,以小组为单位,动手操作,按要求认真填写观察记录单。看哪个组完成的又快又好!
1、学生汇报观察记录单的填写结果。
2、引导观察:在填、拿的过程中,你发现了什么?
3、师:你能根据表格,写出这三个量的关系式吗?
4、小结:通过刚才的活动,我们发现每次拿的支数变化,拿的次数也随着变化,但每次拿的支数和拿的次数的积即总支数总是一定的。
5、揭示反比例的意义(阅读课本,明确反比例关系)。
6、如果用x、y表示两种相关联的量,用k表示积,反比例关系式怎样表示?
(二)活动二:(例3)。
1、课件出示例3,指名读题,学生独立完成。
2、总结归纳出正比例和反比例的相同点和不同点。
三、强化练习发展提高。
1判定两个量是否成反比例,主要看它们的()是否一定。
2全班人数一定,每组的人数和组数。
()和()是相关联的量。
每组的人数×组数=全班人数(一定)。
所以()和()是成反比例的量。
3判断下面每题中的两种量是不是成反比例,并说明理由。
糖果的总数一定,每袋糖果的粒数和装的袋数。
煤的总量一定,每天的烧煤量和能够烧的天数。
生产电视机的总台数一定,每天生产的台数和所用的天数。
长方形的面积一定,它的长和宽。
4机动练习:
想一想:铺地面积一定时,方砖边长与所需块数成不成反比例?为什么?
四、全课总结。
1、你能不能结合日常生活举一些反比例的例子。
2、今天这节课,你有什么收获?还有什么遗憾?
小学比例教案篇八
p53~54、第4~13题,思考题,正、反比例应用题的练习。
进一步掌握正、反比例的意义,能正确应用比例知识解答基本的正、反比例应用题,并沟通不同解法之间的联系,进一步提高学生判断,分析和推理等思维能力。
一、基本训练。
p53第4题,口答并说明理由。
二、基本题练习。
1、做练习十第5题。
2提问:按过去的算术解法,第(1)题要先求什么数量?第(2)题呢?
用比例的知识怎样解答呢,请大家自己做一做。
评讲:说一说是怎样想的`?
(板书:速度×时间=路程(一定)=反比例。
提问:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?为什么?
3、练习:(略)。
三、综合练习。
3、练习十第11题。
启发学生用几种方法解答。
4、做练习十第13题。
(1)提问:这是一道什么应用题?可以怎样列式解答?
(2)把树苗总数看做单位“1”,成活棵数是94%,你还能用比例知识解答吗?
四、讲解思考题。
引导:增加铅以后,铅与锡的比是5:3,有怎样的关系式?
五、课堂:
通过本课的练习,你进一步明确了哪些内容?
六、作业:
第8、9、10题。
七、课后作业:
第6、7、12题。
小学比例教案篇九
1、进一步理解比例的意义和基本性质,能区分比和比例。
2、能正确理解正、反比例的意义,能正确进行判断。
3、拓展思维能力。
1回顾本单元的学习内容,形成支识网络。
2我们学习哪些知识?用合适的方法把知识间联系表示出来。汇报同学互相补充。
什么叫比?比例?比和比例有什么区别?
什么叫解比例?怎样解比例,根据什么?
什么叫呈正比例的量和正比例关系?什么叫反比例的关系?
什么叫比例尺?关系式是什么?
1填空。
六年级二班少先队员的人数是六年级一班的8/9一班与二班人数比是()。
小圆的'半径是2厘米,大圆的半径是3厘米。大圆和小圆的周长比是()。
甲乙两数的比是5:3。乙数是60,甲数是()。
5/x=10/340/24=5/x。
3、完成26页2、3题。
综合练习。
1、a1/6=b1/5a:b=():()。
2、9;3=36:12如果第三项减去12,那么第一项应减去多少?
3用5、2、15、6四个数组成两个比例():()、():()。
1、如果a=c/b那当()一定时,()和()成正比例。当()一定时,()和()成反比例。
整理和复习。
解比例。
正反比例正方比例的意义。
正反比例的判断方法。
比例应用题正比例应用题。
反比例应用体题。
小学比例教案篇十
结合“图片像不像”“调制蜂蜜水”等情境,找到相等的比,理解比例的意义,认识各部分名称,能通过化简比或求比值判断两个比能否组成比例,会用两种形式表示比例。
2.数学思考与问题解决。
经历自学和合作的过程,体验学习的快乐。
3.情感态度。
培养学生自主参与的意识,培养学生观察、分析、概括的能力。
通过情境理解比例的意义,通过求比值或化简比判断两个比是否能组成比例。
1.教学难点。
通过求比值或化简比判断两个比是否能组成比例,并正确的写出比例。
2.教法学法。
讲授与自学相结合、自主学习法、合作学习法。
多媒体课件、学生自学卡。
一、回顾旧知,复习铺垫。
1.复习学过的有关比的知识。
2.谈话引入新课。
二、引导探究,学习新知。
你们能说出每幅图的长与宽的各是多少吗?请在学习卡上写下来。
写出长与宽的比,并求出比值。完成学习卡的第一题。
(1)交流反馈。
师:像这样表示两个比相等的式子叫做比例。(板书:比例)。
3.组织看书,认识名称。
我们知道了比例的意义,那么,比例的各部分名称是什么呢?请大家自学16页的“认一认”,完成学习卡的第二题。
4.利用新知,学以致用。
师:在图上这五张图片的尺寸中,你还能找出哪些比来组成比例?
(小组讨论,交流汇报)。
生汇报。
【设计意图:通过教师系统的总结,传递给学生一个信号,考虑问题要多方位思考。】。
5.内化意义,提高认识。
(1)从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?
(2)要判断两个比能否组成比例,关键看什么?如果不能一眼看出两个比是不是相等,怎么办?”
6.引申应用。
学生自学数学书的16页的问题三。
7.比较“比”和“比例”两个概念。
(1)教学比例各部分的名称。
教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书p17,看看什么叫比例的项、外项、内项。
指名让学生指出板书中的`比例的外项、内项。
教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:
两个外项的积是80×5=400。
两个内项的积是2×200=400。
“你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。
通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?
最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。
“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成:
“这个比例的外项是哪两个数呢?内项呢?”
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
三、巩固深化,拓展思维。
(题略)。
四、全课小结,提高认识。
通过这节课的学习,你们都有哪些收获?
小学比例教案篇十一
2.利用反比例函数的图象解决有关问题.
1.经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;。
2.探索反比例函数的图象的性质,体会用数形结合思想解数学问题.
一、创设情境。
上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k0)的图象,探究它有什么性质.
二、探究归纳。
1.画出函数的图象.
分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x0.
解1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等.
3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.
上述图象,通常称为双曲线(hyperbola).
提问这两条曲线会与x轴、y轴相交吗?为什么?
学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).
学生讨论、交流以下问题,并将讨论、交流的结果回答问题.
1.这个函数的图象在哪两个象限?和函数的图象有什么不同?
2.反比例函数(k0)的图象在哪两个象限内?由什么确定?
(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.
注1.双曲线的两个分支与x轴和y轴没有交点;。
2.双曲线的两个分支关于原点成中心对称.
以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?
在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少.
在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小.
三、实践应用。
例1若反比例函数的图象在第二、四象限,求m的值.
分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值.
解由题意,得解得.
例2已知反比例函数(k0),当x0时,y随x的.增大而增大,求一次函数y=kx-k的图象经过的象限.
分析由于反比例函数(k0),当x0时,y随x的增大而增大,因此k0,而一次函数y=kx-k中,k0,可知,图象过二、四象限,又-k0,所以直线与y轴的交点在x轴的上方.
解因为反比例函数(k0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kx-k的图象经过一、二、四象限.
例3已知反比例函数的图象过点(1,-2).
(1)求这个函数的解析式,并画出图象;。
(2)由点a在反比例函数的图象上,易求出m的值,再验证点a关于两坐标轴和原点的对称点是否在图象上.
解(1)设:反比例函数的解析式为:(k0).
而反比例函数的图象过点(1,-2),即当x=1时,y=-2.
所以,k=-2.
(2)点a(-5,m)在反比例函数图象上,所以,
点a的坐标为.
点a关于x轴的对称点不在这个图象上;。
点a关于y轴的对称点不在这个图象上;。
点a关于原点的对称点在这个图象上;。
(1)求m的值;。
(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?
(3)当-3时,求此函数的最大值和最小值.
解(1)由反比例函数的定义可知:解得,m=-2.
(2)因为-20,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大.
(3)因为在第个象限内,y随x的增大而增大,
所以当x=时,y最大值=;。
当x=-3时,y最小值=.
所以当-3时,此函数的最大值为8,最小值为.
例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.
(1)写出用高表示长的函数关系式;。
(2)写出自变量x的取值范围;。
(3)画出函数的图象.
解(1)因为100=5xy,所以.
(2)x0.
(3)图象如下:
说明由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.
四、交流反思。
本节课学习了画反比例函数的图象和探讨了反比例函数的性质.
1.反比例函数的图象是双曲线(hyperbola).
(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.
五、检测反馈。
1.在同一直角坐标系中画出下列函数的图象:
(1);(2).
2.已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;。
(2)当时,y的值;。
(3)当x取何值时,?
3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值.
4.已知反比例函数经过点a(2,-m)和b(n,2n),求:
(1)m和n的值;。
(2)若图象上有两点p1(x1,y1)和p2(x2,y2),且x1x2,试比较y1和y2的大小.
小学比例教案篇十二
简要提示:
本课教学内容是课程标准苏教版六年级(下)第45页的“解比例”。这部分内容是在学生已经理解了比例的意义、掌握了比例的基本性质的基础上进行教学的,通过教学使学生会应用比例的基本性质解比例,并掌握解比例的方法和过程;使学生在应用比例的基本性质解比例的过程中感受不同领域数学内容的内在联系,发展对数学的积极情感。
教学流程:
流程1:教学例5a。
教师:李明同学在学习了图形的放大和缩小后,也在电脑上把下面的一张照片按比例放大。课件出示例5。
教师读题:现在只知道放大后照片的长是13.5厘米,宽是多少厘米呢?你能解决这个问题吗?教师:要求出宽,我们必须先理解“按比例放大”是什么意思,你能说给你的同桌听一听吗?教师:按比例放大的意思呀就是说明这张照片放大前后的相应边长的比能组成比例,例如:放大前的照片的长:放大后的照片的长=放大前照片的宽:放大前照片的长:宽=放大后照片的长:宽。
流程2:教学例5b。
教师:现在放大后的宽不知道,我们可以用什么来表示?
教师:我们就可以假设放大后的照片的宽为x厘米。
课件出示解:设放大后的照片的宽为x厘米。
教师:现在你能列出比例式吗?
教师:我们可以列出这样的比例13.5:6=x:4。
教师:动动脑筋,这个比例中的未知数x你能求出来吗?试一试!
流程3:教学例5c。
课件出示解答过程。
教师:其实这就是根据比例的基本性质两个内项的积等于两个外项的积写的。你看懂了吗?教师(指着):现在我们已经把未知数x求出来了,像这样求比例中的未知项的过程,就叫做解比例。(板书课题:解比例)。
教师:最关键的还是把一个比例写成等式这一步,它就是根据比例的基本性质得来的。
流程4:教学“试一试”a。
教师:你现在会解比例了吗?请大家看课本45页的试一试,请你接着完成它。
流程5:教学“试一试”b。
课件出示解比例的过程。
教师:看一看,你做对了吗?说说把比例写成1.2x=75×0.4的依据是什么?
流程6:完成“练一练”
教师:请同学们继续看课本45页上的练一练,把这3题做在自己的练习本上,看谁做得有对又快。
教师:核对一下,你是这样做的吗?
课件出示三题的解题过程。
流程7:课堂总结。
教师:在列比例式时我们要根据题意,正确找出题目里的比例,列出比例式,在解比例的过程中最重要的是要把比例根据比例的基本性质转化成一个等式,同时计算也要认真、细心。
流程8:完成练习十第6题。
教师:下面我们再来做一些练习。
课件出示题目。
教师:请大家先读一读,然后独立在练习本上完成。
教师:我们可以这样来求未知数。
课件出示解答过程。
流程9:完成练习十第7。
题教师:先读一读,想一想,然后做在练习本上,做完后同桌互相批改一下。
流程10:完成练习十第8题a。
教师:请大家看课本47页第8题,先轻声地读一读。
教师:在练习本上分别写出每杯蜂蜜水中蜂蜜和水体积的比,然后看一看它们能不能组成比例。教师:可以写成这样的比25:200、30:250,它们能组成比例。
流程11:完成练习十第8题b。
教师:大家看第2个问题,题目中的“照第一杯蜂蜜水中蜂蜜和水的比计算:是什么意思?教师:这句话的意思就是300毫升水中应加入的蜂蜜与水的体积的比等于第一杯中蜂蜜与水体积的比。
教师:正确理解了这个条件的意思后,就请大家列比例来解决这个问题。
课件出示解答过程。
教师:核对一下,你做对了吗?
流程12:完成思考题。
教师:下面我们要来挑战一下自己了,有信心吗?请看??
课件出示题目。
教师:大家读一读,想一想,题目中告诉了我们哪些信息?
教师:“两个外项正好互为倒数”是什么意思?由此你能想到什么呢?
流程13:布置作业。
教师:今天的课堂作业是练习十的第5题。希望大家能认真完成。
小学比例教案篇十三
本单元在学生具有比和比例的知识,认识常见数量关系的基础上编排,通过对两个数量保持商一定或积一定的变化,理解正比例关系和反比例关系,渗透初步的函数思想。正比例和反比例历来是小学数学里的重要内容之一,与过去的教材相比,本单元进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。全单元编排三道例题和一个练习,前两道例题都是关于正比例的,分别教学正比例的意义和图像,后一道例题教学反比例的知识。
例1让学生初步感知两种相关联的量以及成正比例的量的含义。列表呈现了一辆汽车行驶的路程和时间,通过写出几组对应的路程和时间的比并求比值,发现各个比的比值都是80,理解80是这辆汽车每小时行驶的千米数,由此得出数量关系路程/时间=速度(一定)。在数量关系中,路程比时间等于速度是旧知识,速度一定是这个问题情境里的规律,是正比例概念的生长点。教材先指出路程和时间是两种相关联的量,用时间变化,路程也随着变化具体解释两种量的相关联。再指出这辆汽车行驶的路程和时间的比的比值总是一定,可以说路程和时间成正比例,它们是成正比例的量,学生在这里首次感知了正比例关系。
试一试在另一组数量关系中继续感知正比例关系,购买铅笔数量和总价的表格里有三个空格,先计算买4枝、5枝、6枝这种铅笔的总价,让学生体会铅笔的单价每枝0。3元是不变的,总价是随着数量变化而变化的,总价与数量是两种相关联的量。然后依次回答其他三个问题,得出铅笔总价和数量成正比例的结论,并用式子总价/数量=单价(一定)作出解释。试一试的认知线索与例1相似,留给学生自主活动的空间比例1大,使学生对正比例关系的体验更深刻。
学生在上面两个实例中感知了正比例的具体含义,教材第63页要形成正比例的概念。抽象概括正比例的意义是概念形成的重要环节,也是发展数学思考的极好机会。首先用字母表示数量,每个实例里都有两个相关联的量,分别是路程和时间或者总价与数量,两个量的比的比值分别是速度和单价,因而用字母x和y表示两种相关联的量,用k表示它们的比值;然后把路程/时间=速度(一定)、总价/数量=单价(一定)表示成y/x=k(一定),并指出正比例关系可以用这个字母式子表示。用抽象的字母组成的式子表示正比例关系是认知难点,教学要联系两个实例,引导学生经历字母表示具体的数量?字母式子表示常见数量关系?字母式子表示正比例关系的过程,加强对式子y/x=k(一定)的理解。
练一练判断生产零件的数量和时间成不成正比例,是把正比例概念具体化,利用概念进行演绎推理。具体地说,是分析这个情境里的生产零件数量和所用时间的比的比值是否始终保持一定,如果具备y/x=k(一定)这种关系,两种相关联的量成正比例,否则就不成正比例。学生在第62页试一试里已经进行过这样的分析和判断,那时是依据连续的四个问题进行的,现在要求他们独立开展有条理的推理活动,进一步理解正比例的意义,掌握判断两种量成不成正比例的方法。练习十三第1~3题配合例1的教学,第3题判断正方形的周长与边长、面积与边长成不成正比例。可以根据表格里填的数据进行推理,因为周长与边长的比4/1、8/2、12/3、16/4的比值都是4,面积与边长的比1/1、4/2、9/3、16/4的比值不相等,所以正方形的周长与边长成正比例,面积与边长不成正比例。也可以根据正方形的周长公式和面积公式推理,从边长4=周长可以得到周长与边长的比的.比值是确定的数4,即周长/边长=4(一定),所以正方形的周长与边长成正比例。从边长边长=面积可以知道,面积虽然随着边长的变化而变化,但是面积与边长的比的比值是变化的量,即面积/边长=边长,所以正方形的面积与边长不成正比例。前一种思考对问题进行具体的分析,适宜大多数学生的实际水平,也符合《标准》的要求。后一种思考没有利用数据信息,推理的难度较大,不必对学生提出这样的要求。教材设计这道题的意图是进一步使学生理解正比例的意义,突出正比例概念的内涵:两种相关联量的比的比值保持一定。
像直观表达正比例关系。
例2是按照《标准》的要求根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值编排的,设计的三个问题体现了教学正比例图像的三个步骤。第一步认识图像上的点,按照a点表示1小时行80千米b点表示5小时行400千米说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。了解正比例图像是直线对以后画图能起两点作用:一是画正比例关系的图像(如第64页练一练),可以根据提供的各组数据描出图像的许多个点,再依次连成直线;二是如果按正比例关系画出的点不在同一条直线上,表明画点出现了错误,应及时纠正。第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。要指导学生利用画垂线或画平行线的技能,尽量使得数准确些。如估计2。5小时行驶的千米数,要在横轴上找到表示2。5小时的点,过这点画横轴的垂线,得到垂线与图像的交点,再过交点作纵轴的垂线,根据垂足在纵轴上的位置估计行驶的路程。
练习十三第4、5题配合例2的教学。判断实际问题里相关联的两种量成不成正比例有两种思路,一种是看画成的图像,如果图像是一条直线,那么两种量成正比例;如果图像不是一条直线,那么两种量不成正比例。另一种是根据正比例的意义,利用各组对应的数据写出比、求比值,从比值是否相等作出成不成正比例的判断。教学时要引导学生应用后一种思路,在判断活动中加强对概念的理解。
例3教学反比例的意义,安排的教学活动线索和例1十分相似。在表格里可以看到笔记本的单价在变化,购买的数量也在变化,而且每组相对应的单价和数量的乘积都是60,这不仅是算得的,还和题目里的用60元买笔记本相一致,因此用数量关系式单价数量=总价(一定)表示这个问题情境里两个变量的变化规律。在此基础上指出单价和数量是两种相关联的量,它们成反比例,是两个成反比例的量。试一试先把表格填写完整,在填表时体会工地要运的72吨水泥是确定的。然后思考三个问题,抓住每天运的吨数与需要的天数的乘积是多少,乘积表示什么数量以及问题情境的数量关系式,从每天运的吨数天数=运水泥的总吨数(一定),理解每天运的吨数和需要的天数成反比例。通过上面四个实例的研究,学生初步感知了反比例的含义,于是用字母x、y表示两种相关联的量,用k表示两个量的乘积,把反比例关系表示成xy=k(一定),形成反比例的概念。
练习十三第6~8题配合例3的教学,重温认识反比例的过程,应用概念进行判断,从而加强对反比例的理解。第8题在方格纸上分别呈现了三个面积都是12平方厘米的长方形、三个周长都是14厘米的长方形,看图在表格里填出各个长方形的长与宽。前三个长方形的长乘宽分别是121=12、62=12、43=12,即长宽=面积(一定),得到的结论是长方形的面积一定,长与宽成反比例。后三个长方形的长乘宽分别是61=6、52=10、43=12,这些周长相等的长方形,长与宽的乘积不相等,所以长方形的周长一定,长与宽不成反比例。教学这道题要让学生经历得出结论的过程,强化对反比例概念的理解。第9~13题是综合练习,练习内容包括成正比例的量与成反比例的量的比较,成比例的量与不成比例的量的比较,比例尺与正比例关系,还要寻找生活中成正比例的量或成反比例的量的实例。编排这些练习,要通过比较与判断进一步使学生清晰地理解概念,掌握成正、反比例的量的变化规律;要联系正比例的概念体会比例尺的意义,形成新的认知结构;要体验生活中经常看到成正比例的量与成反比例的量,培养数学意识。
【本文地址:http://www.xuefen.com.cn/zuowen/16626086.html】