教案应该兼顾学生的学习特点和需求,注重培养学生的能力和素养。教案的编写要根据不同学生的学习特点和需求进行个性化设计。这些教案范文涵盖了不同年级、不同科目的教学内容,适合不同教学需求。
小学比例教案篇一
教学内容:
教材第106、107页例1,例2。
教学要求:
1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。
2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。
教学重点:
认识正、反比例应用题的特点。
教学难点:
掌握用比例知识解答应用题的解题思路。
教学过程:
一、铺垫孕伏:
1.判断下面的量各成什么比例。
(1)工作效率一定,工作总量和工作时间。
(2)路程一定,行驶的速度和时间。
让学生先分别说出数量关系式,再判断。
2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。
指名学生口答,老师板书。
3.引入新课。
从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)。
二、自主探究:
1.教学例1。
(1)出示例1,让学生读题。
(2)说明:这道题还可以用比例知识解答。
(3)小结:
提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次篮球个数与总价对应数值比的比值相等,列等式解答。
2.教学改编题。
出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。
3.教学例2。
(1)出示例2,学生读题。
(2)谁能仿照例l的解题过程,用比例知识来解答例2?请同学们自己来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。效率和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的.等式解答。
(3)提问:按过去的方法是先求什么再解答的?先求总量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次修地下管道相对应数值的乘积相等,列等式解答。
4.小结解题思路。
请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)。
三、巩固练习。
1.做练一练。
指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。
2.做练习十三第1题。
先自己判断,小组交流,再集体订正。
四、课堂小结。
这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?
五、布置作业。
完成练习十三第2~6题的解答。
小学比例教案篇二
1.求比值。
8∶4=48∶12=16∶8=。
24∶18=40∶16=15∶5=。
准备题。
(1)找出下列分数中相等的分数,并说说你是根据什么找的?(略)。
学生找出后,教师作引导性提问:它们为什么相等?谁能完整地说出分数的基本性质?
(2)在()内填上适当的数。
3÷4=()4=()40=()÷12=0.75。
58=5:()。
6:7=()7=()7。
9:()=():16。
教师:由上面这两组题你想到了什么?
小结:根据分数与除法的关系,除法与比的关系,比的前项相当于分数的分子,比的后项相当于分数的分母,比值相当于分数值。
比也可以写成分数的形式,如5:8可以写成5/8。
小学比例教案篇三
3、利用多媒体动画的演示,让学生体验到反比例的变化规律。
教学重点:感受反比例的变化,概括反比例的意义;
教学难点:正确判断两种相关联的量是否成反比例;
教学准备:20支铅笔、一个笔筒;相关课件;学生分小组(每组一份观察记录单)。
每次拿的支数。
10。
5
4
2
1
拿的次数。
总支数。
小学比例教案篇四
教材第106、107页例1,例2。
1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。
2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。
认识正、反比例应用题的特点。
掌握用比例知识解答应用题的解题思路。
一、铺垫孕伏:
1.判断下面的量各成什么比例。
(1)工作效率一定,工作总量和工作时间。
(2)路程一定,行驶的速度和时间。
让学生先分别说出数量关系式,再判断。
2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。
指名学生口答,老师板书。
3.引入新课。
从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)。
二、自主探究:
1.教学例1。
(1)出示例1,让学生读题。
(2)说明:这道题还可以用比例知识解答。
(3)小结:
提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次篮球个数与总价对应数值比的比值相等,列等式解答。
2.教学改编题。
出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。
3.教学例2。
(1)出示例2,学生读题。
(2)谁能仿照例l的解题过程,用比例知识来解答例2?请同学们自己来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。效率和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。
(3)提问:按过去的方法是先求什么再解答的`?先求总量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次修地下管道相对应数值的乘积相等,列等式解答。
4.小结解题思路。
请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)。
三、巩固练习。
1.做练一练。
指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。
2.做练习十三第1题。
先自己判断,小组交流,再集体订正。
四、课堂小结。
这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?
五、布置作业。
完成练习十三第2~6题的解答。
小学比例教案篇五
在教学中,以学生为主体,教师为主导,训练为主线。先让学生回忆,重温小学阶段正、反比例的意义及用比例知识解决问题的有关知识并进行系统整理,配合相关的练习题,让学生进行训练,加深学生的理解提高学生运用比例来解决有关问题的能力。
小学比例教案篇六
1、请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来。
2、老师也准备了几个比,想让同学们求出他们的比值,并根据比值分类。
2:34.5:2.710:6。
80:44:610:1/2。
提问:你是怎样分类的?
教师说明:因为这两个比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。(板书:两个比相等4.5:2.7=10:612:16=3/5:4/580:4=10:1/2)像这样的式子叫做比例。这就是这节课我们要学习的内容。(板书课题:比例的意义)。
二、引导探究,学习新知。
1、教学比例的意义。
(1)教学例题。
先出示教材上的四幅图,请同学说说图的内容。找一找四幅图中有什么共同的东西。再出示四面国旗长、宽的尺寸。
师:选择其中两面国旗(例如操场和教室的国旗),请同学们分别写出它们长与宽的比,并求出比值。
提问:根据求出的比值,你发现了什么?(两个比的比值相等)。
教师边总结边板书:因为这两个比的比值相等,所以我们也可以写成一个等式。
2.4∶1.6=60∶40像这样由两个相等的比组成的式子我们把它叫做比例。
师:在图上这四面国旗的尺寸中,还能找出哪些比来组成比例?
比例也可以写成分数形式:4.5/2.7=10/6请同学们很快地把黑板上我们写出的比例,改写成分数形式。
(2)引导概括比例的意义。
同学们,老师刚才写出的这些式子叫做比例,那么谁能用一句话把比例的意义总结出来呢?(根据学生的回答板书比例的意义。)。
(3)判断。举一个反例:那么2:3和6:4能组成比例吗?为什么?
“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?(看两个比的比值是否相等)如果不能一眼看出两个比是不是相等的,怎么办?”(根据比例的意义去判断)。
根据学生的回答,教师小结:通过上面的学习,我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比比值求出来以后再看。
(4)比较“比”和“比例”两个概念。
引导学生从意义上、项数上进行对比,最后教师归纳:比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
(5)反馈训练。
用手势判断下面卡片上的两个比能不能组成比例。
6:3和12:635:7和45:9。
20:5和16:80.8:0.4和4:2。
2、教学比例的基本性质。
(1)自学课本,了解比例各部分的名称,理解各部分的名称与各项在比例中的位置有关。
(2)检查自学情况:指名说出黑板上各比例的内外项。
(3)探究比例的基本性质。
两个外项的积是4.5×6=27。
两个内项的积是2.7×10=27。
(4)计算验证,达成共识。
师:“是不是所有的比例都有这样的性质呢?”让学生分组计算判断前面的比例式,发现所有的比例式都有这个共同的规律。
(5)引导小结比例的基本性质。
师:通过计算,大家,谁能用一句话把这个规律概括出来?
教师归纳并板书:在比例里,两个外项的积等于两个内项的积。这叫做比例的基本性质。
师:“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着4.5/2.7=10/6)“这个比例的外项是哪两个数呢?内项呢?”
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
(6)判断。前面要判断两个比是不是成比例,我们是通过计算它们的比值来判断的。学过比例的基本性质以后,也可以应用比例的基本性质来判断两个比能不能成比例。
反馈训练:应用比例的基本性质判断3:4和6:8能不能组成比例。
三、巩固深化,拓展思维。
(一)判断。
1.两个比可以组成一个比例。()。
2.比和比例都是表示两个数的倍数关系。()。
3.8:2和1:4能组成比例。()。
(二)、用你喜欢的方式,判断下面那组中的两个比可以组成比例。把组成的比例写出来。
(1)6:9和9:12(2)14:2和7:1。
(3)0.5:0.2和5:2(4)0.8:0.4和0.3:0.6。
(三)填空。
(1)一个比例的两个外项互为倒数,则两个内项的积是(),如果其中一个内项是2/3,则另一个内项是(),如果一个比例中,两个外项分别是7和8,那么两个内项的和一定是()。
(2)如果2:3=8:12,那么,()x()=()x()。
(3)写出比值是4的两个比是()、(),组成比例是()。
(4)如果5a=3b,那么,a:b=():()。
(四)下面的四个数可以组成比例吗?如果能,能组成几个?把组成的比例写出来。
2、3、4和6。
拓展题:猜猜括号里可以填几?
5:2=10:()2:7=():0.71.2:2.5=():25。
四、全课小结,提高认识。
五、布置作业。
练习六2、3、5。
小学比例教案篇七
1、理解反比例的意义。
2、能根据反比例的意义,正确判断两种量是否成反比例。
3、培养学生的抽象概括能力和判断推理能力。
利用反比例的意义,正确判断两种量是否成反比例。
1、成正比例的量有什么特征?
2、下表中的两种量是不是成正比例?为什么?
1.出示例1,提出观察思考要求:
从表中你发现了什么?这个表同复习的表相比,有什么不同?
(1)表中的两种量是每小时加工的数量和所需的加工时间。
教师板书:每小时加工数和加工时间。
(2)每小时加工的数量扩大,所需的加工时间反而缩小;每小时加工的数量缩小,所需的加工时间反而扩大。
教师追问:这是两种相关联的量吗?为什么?
(3)每两个相对应的数的乘积都是600.
教师板书:零件总数。
每小时加工数×加工时间=零件总数。
3.小结。
通过刚才的研究,我们知道,每小时加工数和加工时间是两种相关联的量,每小时加工数变化,加工时间也随着变化,每小时加工数乘以加工时间等于零件总数,这里的零件总数是一定的。
1.出示例2,根据题意,学生口述填表。
2.教师提问:
(1)表中有哪两种量?是相关联的量吗?
教师板书:每本张数和装订本数。
(2)装订的本数是怎样随着每本的张数变化的?
(3)表中的两种量有什么变化规律?
(三)比较例1和例2,概括反比例的意义。
1.请你比较例1和例2,它们有什么相同点?
(1)都有两种相关联的量。
(2)都是一种量变化,另一种量也随着变化。
(3)都是两种量中相对应的两个数的积一定。
2.教师小结。
像这样的两种量,我们就把它们叫做成反比例的量,它们的关系叫做反比例关系。
教师板书:xy=k(一定)。
1、这节课我们学习了成反比例的量,知道了什么样的两种量是成反比例的量,也学会了怎样判断两种量是不是成反比例。在判断时,同学们要按照反比例的意义,认真分析,做出正确的判断。
2、通过今天的学习,正比例关系和反比例关系有什么相同点和不同点?
完成教材43页做一做。
五、课后作业。
练习七6、7、8、9题。
成反比例的量xy=k(一定)。
每小时加工数×加工时间=零件总数(一定)。
每本页数×装订本数=纸的总页数(一定)。
小学比例教案篇八
担任了几年毕业班的数学教学,到六年级的下学期,将有一半以上的课程是在复习和整理,保守的复习课让习题一道道出现,让同学仅仅停滞在"会"的目标上,这复习课究竟应该如何去上好,应该如何让同学感受学习的快乐和数学的魅力一直是我们思索的问题。在一次班会课上,同学自身组织了班会活动,他们采用了电视上娱乐节目的形式,玩得非常高兴,一瞬间,我就想,这样的形式是否可以植入我的数学课堂?这样是不是数学课上的我也可以和班会课一样成为同学的组织者,引导者和合作者,而不是课堂上的"权威"?本着"体现新理念,用活教材,练活习题,激活课堂"的思想,针对本节课的教学目标,我采用让同学分组竞赛的方法,把复习活动贯穿到课前、课中、课后,让同学在合作与竞争中理解本课重点,疏通知识脉络,建构知识网络,掌握复习方法。
小学比例教案篇九
1.揭示课题。
我们已经学习了正、反比例关系的意义和正、反比例应用题,根据成正、反比例量的关系,可以应用比例的知识解答相应的应用题。这节课,我们练习正、反比例应用题。(板书课题)。
2.基本训练。
小黑板出示练习十第4题,让学生口答并说明理由。结合第(1)题判断说明:在一个乘法表示的式子里(板书:ab=c),如果积一定,另两个量就成反比例;如果一个因数一定,根据乘、除法的关系,另两个量就成正比例。
二、基本题练习。
1.做练习十第5题。
(1)学生读题。
提问:按过去的算术解法,第(1)题要先求什么数量,第(2)题要先求什么数量?用比例的知识怎样解答呢,请大家自己做一做。指名两人板演,其余学生做在练习本上。集体订正。
2.练习小结。
解答正、反比例应用题,都要先判断两种相关联的量成什么比例,找出两种相关联量的对应数值,再列等式解答。解题时,正比例应用题要根据比值一定列等式解答;反比例应用题要根据乘积一定列等式解答。
三、综合练习。
1.做练习十第11题。
让学生默读题目。提问:第一个圆柱的高是第二个圆柱高的还可以怎样说?(第一个圆柱的高和第二个圆柱高的比是4:5,或者第一个圆柱的高看做4份,第二个圆柱的高就是这样的5份)请大家思考两个问题,当两个圆柱底面积相等时,(1)圆柱体积与高成什么比例?(2)两个圆柱体积的比与对应高的比有怎样的关系?为什么?想一想,你能用几种方法解答,自己在练习本上列出式子。指名学生口答式子,老师板书(包括用分数应用题的方法解答)。让学生根据不同的式子,说说各是怎样想的。说明:按照分数与比之间的联系,有些应用题可以根据数量之间的联系,用分数和比例知识,采用不同的方法解答。
2.做练习十第13题。
(1)提问:这是一道什么应用题?可以怎样列式解答?(老师板书)这样解答是怎样想的?(把树苗总棵数看做单位1,单位1的94%是470棵,所以列方程解)。
(2)把树苗总数看做单位l,成活棵数是94%,你还能用比例知识解答吗?指名一人板演,其余学生做在练习本上。集体订正,让学生说明列式理由。
四、讲解思考题。
学生默读题目。提问:增加铅以后,铅与锡的比是5:3,有怎样的关系式?根据这样的关系式可以怎样解答呢?请大家课后想一想、做一做。
五、课堂小结。
通过练习,你进一步明确了哪些内容?指出:过去我们学过的先求单一量和先求总数量的应用题,可以用比例知识来解答。解答正、反比例应用题,要先判断成什么比例,找出数量之间对应数值,然后根据比值相等或乘积相等的等量关系,列等式解答。解答应用题,还可以根据数量之间的联系,用不同的方法做。
六、布置作业。
课堂作业:练习十第8、9、10题。
家庭作业:练习十第6、7、12题。
小学比例教案篇十
本节课主要是应用比例尺的知识解决一些简单的实际问题。遵循“解决实际问题的活动价值不只是获得具体问题的解,更重要的是学生在解决问题的过程中获得的发展”这一理念。本节课在教学设计上重点突出了以下几个方面:
1.面向全体,重视学生对基本解题方法的理解。
在教学中,对于“解比例”,从审题、分析、列比例,到求出的解所表示的实际长度及所用单位,都通过相应的问题加以突出,使学生都能够运用“列比例法”去解决各种相关的问题。
2.拓展思维,重视学生对解题策略个性化和多样化的体验。
在教学中,为学生提供独立思考的机会,结合相关例题,巧妙提出问题,引发学生广泛思考,使学生充分发挥自己的聪明才智,在找到自己个性化的解题策略的同时,也在交流、讨论中感受并理解其他同学的不同解题方法。
3.渗透思想,引导学生实现解题策略的优化。
在教学中,引导学生对不同的解题策略进行比较,使学生在理解不同解题策略的同时,选择比较简捷易懂的解法,从而实现解决问题策略的优化。
小学比例教案篇十一
3.感知生活中的数学知识。
重点难点1.通过具体问题认识反比例的量。
2.掌握成反比例的量的变化规律及其特征。
教学难点:
认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。
预习24---26页内容。
1、什么是成反比例的量?你是怎么理解的?
2、情境一中的两个表中量变化关系相同吗?
3、三个情境中的两个量哪些是成反比例的量?为什么?
利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。
认识加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每。
两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。
同桌交流,用自己的语言表达。
写出关系式:速度×时间=路程(一定)。
观察思考并用自己的语言描述变化关系乘积(路程)一定。
写出关系式:每杯果汁量×杯数=果汗总量(一定)。
5、以上两个情境中有什么共同点?
引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。
1、判断下面每题是否成反比例。
(1)出油率一定,香油的质量与芝麻的质量。
(2)三角形的面积一定,它的底与高。
(3)一个数和它的倒数。
(4)一捆100米电线,用去长度与剩下长度。
(5)圆柱体的体积一定,底面积和高。
(6)小林做10道数学题,已做的题和没有做的题。
(7)长方形的长一定,面积和宽。
(8)平行四边形面积一定,底和高。
2、教材“练一练”p33第1题。
3、教材“练一练”p33第2题。
4、找一找生活中成反比例的例子,并与同伴交流。
小学比例教案篇十二
1、甲数除以乙数的商是2.8,甲、乙两数的最简比是()。
2、圆的周长与直径的比值是();正方形的周长与边长的比值是()。
3、在24的约数中选出四个数,组成一个比例是()。
4、如果苹果重量的1/6与橘子重量的20%相等,那么苹果重量与橘子重量的比是()。
5、在一个比例中。两个内项互为倒数,其中一个外项是最小的合数,另一个外项是()。
6、用一张长和宽之比为2:1的纸剪两个最大的圆,这张纸的利用率是()。
7、一根钢管长3米,截去1/3后又截去1/3米,比原来短了()米。
8、圆柱体的侧面积一定,()和高成反比例。
9、两个长方形的面积比是8:7,长的比是4:5,宽的比是()。
10、请写出两个内项相等,两个比的比值都是0.4的一个比例。
二、判断题。
2、等第等高的平行四边形与三角形的面积之比为2:1。
4、甲、乙两个足球队的比赛结果是3:0,这个比的前项是3,后项是0。
5、两个正方体的棱长之比为2:3,则他们的体积之比为4:9。
三、选择题。
1、一种长5毫米的零件,画在图纸上长10厘米,这副图的比例尺是()。
a、1/2b、2/1c、1/20d、20/1。
2、圆的面积和()成正比例。
a、半径b、直径c、半径的平方d、
3、一项工程,甲独做5天完成,乙独做6天完成,甲、乙两人的工作效率的比是()。
a、5:6b、6:5c、1/6:1/5d、5/11:6/11。
4、路程一定,所走的路程和剩下的`路程()。
5、xy+2=k(一定),x和y()。
6、下列选项中,()成正比例,()成反比例,()不成比例。
a、比的前项一定,比的后项和比值。
b、比例尺一定,分母和分数值。
c、正方形的边长和面积。
四、计算题(解比例略)。
五、解决问题。
6、一个长方形操场长100米,宽50米,把它画在比例尺是1/2000的图纸上,长和宽各应画多少厘米?请画出这个长方形。
小学比例教案篇十三
该板块主要复习比和比例的意义、性质及应用,除了对基本概念的复习外,还注重沟通比和比例间的关系及与分数、除法的联系。
例题:关于比、比例的知识,你都知道哪些?对比和比例的相关知识的复习。
教学时,以问题“关于比和比例的知识,你都知道哪些?”引入,让学生自主地回顾知识。学生可能会想到很多,同时也会感到这些知识点比较零乱、无序、缺乏系统化,进而激发学生梳理这部分知识的需求,在此基础上以小组为单位展开学习。重点对比、比例、比例尺的意义及比和比例的性质、化简比、求比值、解比例、求图上(实际)距离、判断正(反)比例等内容进行与复习。
“讨论与交流”是从知识内在联系方面进行,重点弄清楚比、比例与相关知识的联系与区别。
教学第一个问题时,先让学生自主讨论比、分数、除法的联系与区别,借助于下图,揭示它们之间的关系。
从意义上区分:“比”是表示两个数的倍数关系;“除法”表示的是一种运算;“分数”则是一个数。
教学第二个问题时,结合第一个问题的讨论,让学生自主交流,能体会到比、除法、分数的基本性质在本质上是相同的。
教学第三个问题时,可在对比和比例意义进行对比的基础上进行讨论、交流,明确“比”表示两个数相除的关系,而“比例”表示两个比相等的式子。了解比是比例的基础,比例是比的扩展,没有两个相等的比是组不成比例的。还要弄清楚不是任意的两个比都能组成比例的,-定是比值相等的两个比才能组成比例。所以,要判断两个比能否组成比例,关键要看这两个比的比值是否相等。可借助下面的表格帮助学生理解:
通过上面的复习,让学生进一步地感受到“数学知识间,有着密切的联系”
第1题,是运用逼和比例尺解决问题的题目,练习时先让学生说一说每一个信息中比及比例尺所表示的实际意义,然后再结合实际意义感受比和比例在实际生活中应用非常广泛。
第2题是运用正比例知识解决实际问题的题目。练习时,可以用以下几种方法测量大树的高度:
(1)利用影子。人影与树影、人高与树高的比组成比例,根据人高、人影、树影的高度求出树高。
(2)利用标杆。方法同上。
最后,让学生谈谈感受,体会比例知识在生活中的实际应用。
第3题是用百分数和比解决问题的题目。练习时,可让学生在解决问题的基础上,交流百分数和比所表示的实际意义,理解比与百分数意义的区别,体会在通常情况下,表示各部分的关系时,用比表示更清楚;表示部分与总数之间的关系,用百分数更合适一些。
第4题是一道实际问题。练习时,可引导学生先分析用什么方法来解答,形成思路后,再解答。该题可以用分数的知识解答,先求出总数是5000顶,再计算5000×(1-),得出4000顶;也可以用比例的知识解决,设未加工的为x顶,1:4=1000:x,求出未加工4000顶;还可以用其他方法解决。通过解题让学生体会在实际解决问题时,可以选用不同的方法。
5.式与方程。
本板块是对小学阶段学习的代数初步知识进行,包括用字母表示数、简易方程及用方程解决实际问题。
例1:用字母表示数,可以简明地表达数量关系、运算律和计算公式。你能举出一些这样的例子吗?是对用字母表示数知识的系统。
教学时,让学生通过举例来回顾如何用字母表示数、数量关系、公式等,并以表格的形式来呈现,同时引导学生对用字母表示的内容进行观察,使之对小学阶段的公式、数量关系、运算律等又系统的`了解。对用字母表示数时容易出错的问题,教师要加以强调。如:字母和数相乘、字母和字母相乘时的写法等。
例2:你能把有关方程的知识一下吗?是对有关方程知识进行。
教学时,可以先让学生对有关的概念进行回顾,如:等式、方程、方程的解、解方程等进行回顾,并对易混概念:等式与方程、方程的解与解方程进行讨论区分。然后引导学生列表,交流完善。
复习解方程时,要使学生弄清解方程中每一步的根据是什么(等式的性质),以及怎样检验。教师可通过举例来引导学生复习。
“讨论与交流”是对用字母表示数的优越性及用方程解决问题的特点进行讨论。
教学时,对于用字母表示数的优越性,要使学生在交流的基础上感受到用字母表示数很简洁、概括、准确。对于第二个问题,可结合具体的题目,让学生分别用方程与算术方法解答,通过对比,分析用方程和算术方法解决问题的基本思路及特点,体会两种思路的区别,知道有些题目适合用方程思路解决,有些题目适合用算术方法解决。明确在用方程解决问题时,关键是要抓住题目中主要的等量关系,设未知数,列方程解答。
“应用与反思”
第1题是练习用字母表示数的题目。练习时,让学生独立完成,交流时注意说说每个题的数量关系。最后,体会用字母表示数量关系的简洁性。
第2题是一个找规律的题目。练习时,可以让学生边观察边填表,在填写的过程中发现规律,自觉地运用字母表示出规律。规律是:分成的三角形的个数比边数少2,用含有字母的式子就是n-2。体会用字母表示数的概括性。
第4题是用列方程的方法解决问题的题目。练习时,先找出题中的等量关系,通过交流引导学生自觉选择最基本的等式列方程。之后,可以让学生交流用方程解决问题的方法。练习完成后,教师可以把该题的已知条件和问题变化一下,变成用算术方法解决的问题,让学生体会到灵活选择解答方法的必要性。最后,引导学生用不同方法解决问题的特点。
小学比例教案篇十四
2.利用反比例函数的图象解决有关问题.
1.经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;。
2.探索反比例函数的图象的性质,体会用数形结合思想解数学问题.
一、创设情境。
上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k0)的图象,探究它有什么性质.
二、探究归纳。
1.画出函数的图象.
分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x0.
解1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等.
3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.
上述图象,通常称为双曲线(hyperbola).
提问这两条曲线会与x轴、y轴相交吗?为什么?
学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).
学生讨论、交流以下问题,并将讨论、交流的结果回答问题.
1.这个函数的图象在哪两个象限?和函数的图象有什么不同?
2.反比例函数(k0)的图象在哪两个象限内?由什么确定?
(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.
注1.双曲线的两个分支与x轴和y轴没有交点;。
2.双曲线的两个分支关于原点成中心对称.
以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?
在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少.
在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小.
三、实践应用。
例1若反比例函数的图象在第二、四象限,求m的值.
分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值.
解由题意,得解得.
例2已知反比例函数(k0),当x0时,y随x的.增大而增大,求一次函数y=kx-k的图象经过的象限.
分析由于反比例函数(k0),当x0时,y随x的增大而增大,因此k0,而一次函数y=kx-k中,k0,可知,图象过二、四象限,又-k0,所以直线与y轴的交点在x轴的上方.
解因为反比例函数(k0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kx-k的图象经过一、二、四象限.
例3已知反比例函数的图象过点(1,-2).
(1)求这个函数的解析式,并画出图象;。
(2)由点a在反比例函数的图象上,易求出m的值,再验证点a关于两坐标轴和原点的对称点是否在图象上.
解(1)设:反比例函数的解析式为:(k0).
而反比例函数的图象过点(1,-2),即当x=1时,y=-2.
所以,k=-2.
(2)点a(-5,m)在反比例函数图象上,所以,
点a的坐标为.
点a关于x轴的对称点不在这个图象上;。
点a关于y轴的对称点不在这个图象上;。
点a关于原点的对称点在这个图象上;。
(1)求m的值;。
(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?
(3)当-3时,求此函数的最大值和最小值.
解(1)由反比例函数的定义可知:解得,m=-2.
(2)因为-20,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大.
(3)因为在第个象限内,y随x的增大而增大,
所以当x=时,y最大值=;。
当x=-3时,y最小值=.
所以当-3时,此函数的最大值为8,最小值为.
例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.
(1)写出用高表示长的函数关系式;。
(2)写出自变量x的取值范围;。
(3)画出函数的图象.
解(1)因为100=5xy,所以.
(2)x0.
(3)图象如下:
说明由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.
四、交流反思。
本节课学习了画反比例函数的图象和探讨了反比例函数的性质.
1.反比例函数的图象是双曲线(hyperbola).
(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.
五、检测反馈。
1.在同一直角坐标系中画出下列函数的图象:
(1);(2).
2.已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;。
(2)当时,y的值;。
(3)当x取何值时,?
3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值.
4.已知反比例函数经过点a(2,-m)和b(n,2n),求:
(1)m和n的值;。
(2)若图象上有两点p1(x1,y1)和p2(x2,y2),且x1x2,试比较y1和y2的大小.
小学比例教案篇十五
教材第106、107页例1,例2。
1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。
2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。
认识正、反比例应用题的特点。
掌握用比例知识解答应用题的解题思路。
1.判断下面的量各成什么比例。
(1)工作效率一定,工作总量和工作时间。
(2)路程一定,行驶的速度和时间。
让学生先分别说出数量关系式,再判断。
2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。
指名学生口答,老师板书。
3.引入新课。
从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)。
1.教学例1。
(1)出示例1,让学生读题。
(2)说明:这道题还可以用比例知识解答。
(3)小结:
提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次篮球个数与总价对应数值比的比值相等,列等式解答。
2.教学改编题。
出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。
3.教学例2。
(1)出示例2,学生读题。
(2)谁能仿照例l的解题过程,用比例知识来解答例2?请同学们自己来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。效率和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。
(3)提问:按过去的方法是先求什么再解答的?先求总量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次修地下管道相对应数值的乘积相等,列等式解答。
4.小结解题思路。
请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)。
1.做练一练。
指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。
2.做练习十三第1题。
先自己判断,小组交流,再集体订正。
这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?
完成练习十三第2~6题的解答。
小学比例教案篇十六
结合“图片像不像”“调制蜂蜜水”等情境,找到相等的比,理解比例的意义,认识各部分名称,能通过化简比或求比值判断两个比能否组成比例,会用两种形式表示比例。
2.数学思考与问题解决。
经历自学和合作的过程,体验学习的快乐。
3.情感态度。
培养学生自主参与的意识,培养学生观察、分析、概括的能力。
通过情境理解比例的意义,通过求比值或化简比判断两个比是否能组成比例。
1.教学难点。
通过求比值或化简比判断两个比是否能组成比例,并正确的写出比例。
2.教法学法。
讲授与自学相结合、自主学习法、合作学习法。
多媒体课件、学生自学卡。
一、回顾旧知,复习铺垫。
1.复习学过的有关比的知识。
2.谈话引入新课。
二、引导探究,学习新知。
你们能说出每幅图的长与宽的各是多少吗?请在学习卡上写下来。
写出长与宽的比,并求出比值。完成学习卡的第一题。
(1)交流反馈。
师:像这样表示两个比相等的式子叫做比例。(板书:比例)。
3.组织看书,认识名称。
我们知道了比例的意义,那么,比例的各部分名称是什么呢?请大家自学16页的“认一认”,完成学习卡的第二题。
4.利用新知,学以致用。
师:在图上这五张图片的尺寸中,你还能找出哪些比来组成比例?
(小组讨论,交流汇报)。
生汇报。
【设计意图:通过教师系统的总结,传递给学生一个信号,考虑问题要多方位思考。】。
5.内化意义,提高认识。
(1)从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?
(2)要判断两个比能否组成比例,关键看什么?如果不能一眼看出两个比是不是相等,怎么办?”
6.引申应用。
学生自学数学书的16页的问题三。
7.比较“比”和“比例”两个概念。
(1)教学比例各部分的名称。
教师:同学们能正确地判断两个比能不能组成比例了,那么比例各部分的名称是什么?请同学们翻开教科书p17,看看什么叫比例的项、外项、内项。
指名让学生指出板书中的`比例的外项、内项。
教师:我们知道了比例各部分的名称,那么比例有什么性质呢?现在我们就来研究。(在比例的意义后面板书:比例的基本性质)请同学们分别计算出这个比例中两个内项的积和两个外项的积。教师板书:
两个外项的积是80×5=400。
两个内项的积是2×200=400。
“你发现了什么?”(两个外项的积等于两个内项的积。)板书:80×5=2×200“是不是所有的比例都是这样的呢?”让学生分组计算前面判断过的比例式。
通过计算,大家发现所有的比例式都有这个共同的规律,谁能用一句话把这个规律说出来?
最后教师归纳并板书出:在比例里,两个外项的积等于两个内项的积。并说明这叫做比例的基本性质。
“如果把比例写成分数形式,比例的基本性质又是怎样的呢?”(指着80:2=200:5)教师边问边改写成:
“这个比例的外项是哪两个数呢?内项呢?”
学生回答后,教师强调:如果把比例写成分数形式,比例的基本性质就是等号两端分子和分母分别交叉相乘,积相等。
三、巩固深化,拓展思维。
(题略)。
四、全课小结,提高认识。
通过这节课的学习,你们都有哪些收获?
小学比例教案篇十七
本单元在学生具有比和比例的知识,认识常见数量关系的基础上编排,通过对两个数量保持商一定或积一定的变化,理解正比例关系和反比例关系,渗透初步的函数思想。正比例和反比例历来是小学数学里的重要内容之一,与过去的教材相比,本单元进一步加强正、反比例的概念教学,突出正比例关系的图像及简单应用,重视正、反比例与现实生活的联系,淡化脱离现实背景判断比例关系,不安排应用正、反比例关系解决实际问题。全单元编排三道例题和一个练习,前两道例题都是关于正比例的,分别教学正比例的意义和图像,后一道例题教学反比例的知识。
例1让学生初步感知两种相关联的量以及成正比例的量的含义。列表呈现了一辆汽车行驶的路程和时间,通过写出几组对应的路程和时间的比并求比值,发现各个比的比值都是80,理解80是这辆汽车每小时行驶的千米数,由此得出数量关系路程/时间=速度(一定)。在数量关系中,路程比时间等于速度是旧知识,速度一定是这个问题情境里的规律,是正比例概念的生长点。教材先指出路程和时间是两种相关联的量,用时间变化,路程也随着变化具体解释两种量的相关联。再指出这辆汽车行驶的路程和时间的比的比值总是一定,可以说路程和时间成正比例,它们是成正比例的量,学生在这里首次感知了正比例关系。
试一试在另一组数量关系中继续感知正比例关系,购买铅笔数量和总价的表格里有三个空格,先计算买4枝、5枝、6枝这种铅笔的总价,让学生体会铅笔的单价每枝0。3元是不变的,总价是随着数量变化而变化的,总价与数量是两种相关联的量。然后依次回答其他三个问题,得出铅笔总价和数量成正比例的结论,并用式子总价/数量=单价(一定)作出解释。试一试的认知线索与例1相似,留给学生自主活动的空间比例1大,使学生对正比例关系的体验更深刻。
学生在上面两个实例中感知了正比例的具体含义,教材第63页要形成正比例的概念。抽象概括正比例的意义是概念形成的重要环节,也是发展数学思考的极好机会。首先用字母表示数量,每个实例里都有两个相关联的量,分别是路程和时间或者总价与数量,两个量的比的比值分别是速度和单价,因而用字母x和y表示两种相关联的量,用k表示它们的比值;然后把路程/时间=速度(一定)、总价/数量=单价(一定)表示成y/x=k(一定),并指出正比例关系可以用这个字母式子表示。用抽象的字母组成的式子表示正比例关系是认知难点,教学要联系两个实例,引导学生经历字母表示具体的数量?字母式子表示常见数量关系?字母式子表示正比例关系的过程,加强对式子y/x=k(一定)的理解。
练一练判断生产零件的数量和时间成不成正比例,是把正比例概念具体化,利用概念进行演绎推理。具体地说,是分析这个情境里的生产零件数量和所用时间的比的比值是否始终保持一定,如果具备y/x=k(一定)这种关系,两种相关联的量成正比例,否则就不成正比例。学生在第62页试一试里已经进行过这样的分析和判断,那时是依据连续的四个问题进行的,现在要求他们独立开展有条理的推理活动,进一步理解正比例的意义,掌握判断两种量成不成正比例的方法。练习十三第1~3题配合例1的教学,第3题判断正方形的周长与边长、面积与边长成不成正比例。可以根据表格里填的数据进行推理,因为周长与边长的比4/1、8/2、12/3、16/4的比值都是4,面积与边长的比1/1、4/2、9/3、16/4的比值不相等,所以正方形的周长与边长成正比例,面积与边长不成正比例。也可以根据正方形的周长公式和面积公式推理,从边长4=周长可以得到周长与边长的比的.比值是确定的数4,即周长/边长=4(一定),所以正方形的周长与边长成正比例。从边长边长=面积可以知道,面积虽然随着边长的变化而变化,但是面积与边长的比的比值是变化的量,即面积/边长=边长,所以正方形的面积与边长不成正比例。前一种思考对问题进行具体的分析,适宜大多数学生的实际水平,也符合《标准》的要求。后一种思考没有利用数据信息,推理的难度较大,不必对学生提出这样的要求。教材设计这道题的意图是进一步使学生理解正比例的意义,突出正比例概念的内涵:两种相关联量的比的比值保持一定。
像直观表达正比例关系。
例2是按照《标准》的要求根据给出的有正比例关系的数据在有坐标系的方格纸上画图,并根据其中一个量的值估计另一个量的值编排的,设计的三个问题体现了教学正比例图像的三个步骤。第一步认识图像上的点,按照a点表示1小时行80千米b点表示5小时行400千米说出其他各点的具体含义,体会各个点都表示汽车在某段时间所行驶的路程,也体会这些点是根据对应的时间与路程的数据在方格纸上画出来的。第二步认识图像的形状,从图中描出的点在一条直线上,体会正比例关系的图像是一条直线。了解正比例图像是直线对以后画图能起两点作用:一是画正比例关系的图像(如第64页练一练),可以根据提供的各组数据描出图像的许多个点,再依次连成直线;二是如果按正比例关系画出的点不在同一条直线上,表明画点出现了错误,应及时纠正。第三步应用图像,估计行驶时间所对应的路程或者行驶路程所用的时间。要指导学生利用画垂线或画平行线的技能,尽量使得数准确些。如估计2。5小时行驶的千米数,要在横轴上找到表示2。5小时的点,过这点画横轴的垂线,得到垂线与图像的交点,再过交点作纵轴的垂线,根据垂足在纵轴上的位置估计行驶的路程。
练习十三第4、5题配合例2的教学。判断实际问题里相关联的两种量成不成正比例有两种思路,一种是看画成的图像,如果图像是一条直线,那么两种量成正比例;如果图像不是一条直线,那么两种量不成正比例。另一种是根据正比例的意义,利用各组对应的数据写出比、求比值,从比值是否相等作出成不成正比例的判断。教学时要引导学生应用后一种思路,在判断活动中加强对概念的理解。
例3教学反比例的意义,安排的教学活动线索和例1十分相似。在表格里可以看到笔记本的单价在变化,购买的数量也在变化,而且每组相对应的单价和数量的乘积都是60,这不仅是算得的,还和题目里的用60元买笔记本相一致,因此用数量关系式单价数量=总价(一定)表示这个问题情境里两个变量的变化规律。在此基础上指出单价和数量是两种相关联的量,它们成反比例,是两个成反比例的量。试一试先把表格填写完整,在填表时体会工地要运的72吨水泥是确定的。然后思考三个问题,抓住每天运的吨数与需要的天数的乘积是多少,乘积表示什么数量以及问题情境的数量关系式,从每天运的吨数天数=运水泥的总吨数(一定),理解每天运的吨数和需要的天数成反比例。通过上面四个实例的研究,学生初步感知了反比例的含义,于是用字母x、y表示两种相关联的量,用k表示两个量的乘积,把反比例关系表示成xy=k(一定),形成反比例的概念。
练习十三第6~8题配合例3的教学,重温认识反比例的过程,应用概念进行判断,从而加强对反比例的理解。第8题在方格纸上分别呈现了三个面积都是12平方厘米的长方形、三个周长都是14厘米的长方形,看图在表格里填出各个长方形的长与宽。前三个长方形的长乘宽分别是121=12、62=12、43=12,即长宽=面积(一定),得到的结论是长方形的面积一定,长与宽成反比例。后三个长方形的长乘宽分别是61=6、52=10、43=12,这些周长相等的长方形,长与宽的乘积不相等,所以长方形的周长一定,长与宽不成反比例。教学这道题要让学生经历得出结论的过程,强化对反比例概念的理解。第9~13题是综合练习,练习内容包括成正比例的量与成反比例的量的比较,成比例的量与不成比例的量的比较,比例尺与正比例关系,还要寻找生活中成正比例的量或成反比例的量的实例。编排这些练习,要通过比较与判断进一步使学生清晰地理解概念,掌握成正、反比例的量的变化规律;要联系正比例的概念体会比例尺的意义,形成新的认知结构;要体验生活中经常看到成正比例的量与成反比例的量,培养数学意识。
【本文地址:http://www.xuefen.com.cn/zuowen/16598008.html】