七年级数学有理数的减法教案(模板17篇)

格式:DOC 上传日期:2023-11-29 22:02:16
七年级数学有理数的减法教案(模板17篇)
时间:2023-11-29 22:02:16     小编:HT书生

教案的编写不是一次性的,而是一个循序渐进的过程,教师可以根据教学实践的反馈进行适当修改和完善。教案应该符合现代教育理念和教学规范,注重培养学生的综合素养。下面是小编为大家收集的教案范文,供大家参考。教案中包括了教学目标、教学准备、教学过程、教学评价等内容,通过研究这些教案,我们可以更好地了解教学设计的要点和方法,提高自己的教学水平。大家一起来看看吧!

七年级数学有理数的减法教案篇一

1.1正数和负数(2)。

教学目标:

教学重点:

深化对正负数概念的理解。

教学难点:

正确理解和表示向指定方向变化的量。

教学准备:彩色粉笔。

教学过程:

一、复习引入:

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分界,是基准.

二、讲解新课。

度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。

思考:教科书第4页(学生先思考,教师再讲解)。

三、课堂练习课本p4练习1,2,3,4。

四、课时小结。

引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.

五、课外作业教科书p5:2、4。

板书设计:

七年级数学有理数的减法教案篇二

学习目标:。

1、理解有理数的运算法则;能根据有理数乘法运算法则进行有理的简单运算。

2、经历探索有理数乘法法则过程,发展观察、归纳、猜想、验证能力.

3、培养语言表达能力.调动学习积极性,培养学习数学的兴趣.

学习重点:有理数乘法。

学习难点:法则推导。

教学方法:引导、探究、归纳与练习相结合。

教学过程。

一、学前准备。

计算:

(1)(一2)十(一2)。

(2)(一2)十(一2)十(一2)。

(3)(一2)十(一2)十(一2)十(一2)。

(4)(一2)十(一2)十(一2)十(一2)十(一2)。

猜想下列各式的值:

(一2)×2(一2)×3。

(一2)×4(一2)×5。

二、探究新知。

1、自学有理数乘法中不同的形式,完成教科书中29~30页的填空.

2、观察以上各式,结合对问题的研究,请同学们回答:

(3)负数乘以正数积为__________数,(4)负数乘以负数积为__________数。

提出问题:一个数和零相乘如何解释呢?

七年级数学有理数的减法教案篇三

1、知识目标:了解有理数乘法法则的合理性,掌握有理数的乘法法则,熟练运用有理数的法则进行准确运算。

2、能力目标:通过对问题的变式探索,培养自己观察、分析、抽象、概括的能力。

3、情感目标:培养积极思考和勇于探索的精神,形成良好的学习习惯。

重点:有理数乘法运算法则的推导及熟练运用。

难点:有理数乘法运算中积的符号的确定。

1、在小学我们已经接触了乘法,那什么叫乘法呢?

求几个的运算,叫乘法。

一个数同0相乘,得0。

2、请你列举几道小学学过的乘法算式。

规定:向右为正,现在之后为正。

3分钟后蜗牛应在o点的()边()cm处。

可以列式为:(+2)(+3)=。

问题2:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟后蜗牛在什么位置?

规定:向右为正,现在之后为正。

3分钟后蜗牛应在o点的()边()cm处。

可以列式为:

问题3:如果蜗牛一直以每分钟2cm的速度向右爬行,那么3分钟前蜗牛在什么位置?

规定:向右为正,现在之后为正。

3分钟前蜗牛应在o点的()边()cm处。

可以表示为:

问题4:如果蜗牛一直以每分钟2cm的速度向左爬行,那么3分钟前蜗牛在什么位置?

规定:向右为正,现在之后为正。

3分钟前蜗牛应在o点的()边()cm处。

可以表示为:

2、观察这四个式子:

(+2)(+3)=+6(—2)(—3)=+6。

(—2)(+3)=—6(+2)(—3)=—6。

正数乘正数积为__数:负数乘负数积为__数:

负数乘正数积为__数:正数乘负数积为__数:

乘积的绝对值等于各乘数绝对值的_____。

思考:当一个因数为0时,积是多少?

两数相乘,同号得,异号得,并把绝对值。

任何数同0相乘,都得。

1、你能确定下列乘积的符号吗?

37积的符号为;(—3)7积的符号为;

3(—7)积的`符号为;(—3)(—7)积的符号为。

2先阅读,再填空:

(—5)x(—3)。同号两数相乘。

(—5)x(—3)=+()得正。

5x3=15把绝对值相乘。

所以(—5)x(—3)=15。

填空:(—7)x4____________________。

(—7)x4=—()___________。

7x4=28_____________。

所以(—7)x4=____________。

[例1]计算:

(1)(—5)(2)(—5)。

(3)(—6)(—0.45)(4)(—7)0=。

解:(1)(—5)(—6)=+(56)=+30=30。

请同学们仿照上述步骤计算(2)(3)(4)。

(2)(—5)6==。

(3)(—6)(—0.45)==。

(4)(—7)0=。

让我们来总结求解步骤:

两个数相乘,应先确定积的,再确定积的。

1、小组口算比赛,看谁更棒。

(1)3(—4)(2)2(—6)(3)(—6)2。

(4)6(—2)(5)(—6)0(6)0(—6)。

2、仔细计算。,注意积的符号和绝对值。

(1)(—4)0.25(2)(—0.5)(—2)(3)(—)。

(4)(—2)(—)(5)(—)(—)(6)(—)5。

1、下列说法错误的是()。

a、一个数同0相乘,仍得0。

b、一个数同1相乘,仍得原数。

c、如果两个数的乘积等于1,那么这两个数互为相反数。

d、一个数同—1相乘,得原数的相反数。

2、在—2,3,4,—5这四个数中,任意两个数相乘,所得的积最大的是()。

a、10b、12c、—20d、不是以上的答案。

3、计算下列各题:

(5)(—6)(—5)=;(6)(—5)(—6)=。

七年级数学有理数的减法教案篇四

2.培养学生观察、分析、归纳及运算能力。

三、教学重点。

四、教学难点。

五、教学用具。

三角尺、小黑板、小卡片。

六、课时安排。

1课时。

七、教学过程。

(一)、从学生原有认知结构提出问题。

1.计算:

(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.

2.化简下列各式符号:

(1)-(-6);(2)-(+8);(3)+(-7);。

(4)+(+4);(5)-(-9);(6)-(+3).

3.填空:

(1)______+6=20;(2)20+______=17;。

(3)______+(-2)=-20;(4)(-20)+______=-6.

在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算。如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算。

(二)、师生共同研究有理数减法法则。

问题1(1)(+10)-(+3)=______;。

(2)(+10)+(-3)=______.

教师引导学生发现:两式的结果相同,(更多内容请访问首页:)即(+10)-(+3)=(+10)+(-3).

(2)(+10)+(+3)=______.

(2)的结果是多少?

于是,(+10)-(-3)=(+10)+(+3).

至此,教师引导学生归纳出有理数减法法则:

减去一个数,等于加上这个数的。相反数。

教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数。减数变号(减法============加法)。

(三)、运用举例变式练习。

例1计算:

(1)(-3)-(-5);(2)0-7.

例2计算:

(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).

通过计算上面一组有理数减法算式,引导学生发现:

在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数。

阅读课本63页例3。

(四)、小结。

1.教师指导学生阅读教材后强调指出:

由于把减数变为它的相反数,从而减法转化为加法。有理数的加法和减法,当引进负数后就可以统一用加法来解决。

2.不论减数是正数、负数或是零,都符合有理数减法法则。在使用法则时,注意被减数是永不变的。

(五)、课堂练习。

1.计算:

(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;。

2.计算:

3.计算:

(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;。

(4)(-5.9)-(-6.1);。

(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).

利用有理数减法解下列问题。

八、布置课后作业:

课本习题2.6知识技能的2、3、4和问题解决1。

九、板书设计。

2.5有理数的减法。

(一)知识回顾(三)例题解析(五)课堂小结。

例1、例2、例3。

(二)观察发现(四)课堂练习练习设计。

十、课后反思。

七年级数学有理数的减法教案篇五

二、难点:正确进行有理数的乘除运算。

预习导学。

一、创设情景,谈话导入。

我们已经学习了有理数的乘除法,同学们归纳,总结一下有理数的乘法法则以及乘法运算律。

二、精讲点拨质疑问难。

根据预习内容,同学们回答以下问题:

(3)0与任何自然数相乘,得____。

(1)乘法交换律:ab=_________。

(2)乘法结合律:(ab)c=_______。

(3)乘法分配律:(a+b)c=________。

3、有理数的除法法则:

除以一个不等于0的数,等于乘这个数的__________。

比较有理数的乘法,除法法则,发现_________可能转化为__________。

七年级数学有理数的减法教案篇六

1.1正数和负数(2)。

教学目标:

教学重点:

深化对正负数概念的理解。

教学难点:

正确理解和表示向指定方向变化的量。

教学准备:彩色粉笔。

教学过程:

一、复习引入:

学生思考并讨论.

(数0既不是正数又不是负数,是正数和负数的分界,是基准.

二、讲解新课。

度,用负数表示低于海平面的某地的海拔高度。例如,珠穆朗玛峰的海拔高度为8848.43米,吐鲁番盆地的海拔高度为—155米。记账时,通常用正数表示收入款额,用负数表示支出款额。

思考:教科书第4页(学生先思考,教师再讲解)。

三、课堂练习课本p4练习1,2,3,4。

四、课时小结。

引入负数可以简明的表示相反意义的量,对于相反意义的量,如果其中一种量用正数表示,那么另一种量可以用负数表示.在表示具有相反意义的量时,把哪一种意义的量规定为正,可根据实际情况决定.要特别注意零既不是正数也不是负数,建立正负数概念后,当考虑一个数时,一定要考虑它的符号,这与以前学过的数有很大的区别.

五、课外作业教科书p5:2、4。

板书设计:

七年级数学有理数的减法教案篇七

3.进一步感悟“转化”的思想。

把有理数的加减法混合运算统一为加法运算。

省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变。

根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算。

1、完成下列计算:

(1)3+7-12;(2)(-8)-(-10)+(-6)-(+4)。

归纳:根据有理数的减法法则,有理数的`加减混合运算可以统一为运算;

省略负数前面的加号和()后的形式是______________________;

展示交流。

1、把下列运算统一成加法运算:

2、将下列有理数加法运算中,加号省略:

(1)12+(-8)=________________;

3、将下列运算先统一成加法,再省略加号:

=___[]______________________。

4、仿照本p37例6,完成下列计算:

盘点收获。

个案补充。

1.计算:

本p39习题2。5第6题(1)、(3)、(5),第7题。

七年级数学有理数的减法教案篇八

理解有理数的概念,懂得有理数的两种分类方法:会判别一个有理数是整数还是分数,是正数、负数还是零。

二、过程与方法。

经历对有理数进行分类的探索过程,初步感受分类讨论的思想。

三、情感态度与价值观。

通过对有理数的学习,体会到数学与现实世界的紧密联系。

教学重难点及突破。

在引入了负数后,本课对所学过的数按照一定的标准进行分类,提出了有理数的概念。分类是数学中解决问题的常用手段,通过本节课的学习,使学生了解分类的思想并进行简单的分类是数学能力的体现,教师在教学中应引起足够的重视。关于分类标准与分类结果的关系,分类标准的确定可向学生作适当的渗透,集合的概念比较抽象,学生真正接受需要很长的过程,本课不宜过多展开。

教学准备。

用电脑制作动画体现有理数的分类过程。

教学过程。

四、课堂引入。

2.举例说明现实中具有相反意义的量。

3.如果由a地向南走3千米用3千米表示,那么-5千米表示什么意义?

4.举两个例子说明+5与-5的区别。

七年级数学有理数的减法教案篇九

2.使学生掌握求一个已知数的;。

3.培养学生的观察、归纳与概括的能力.

重点:理解的意义,理解的代数定义与几何定义的一致性.

难点:多重符号的化简.

一、从学生原有的认知结构提出问题。

二、师生共同研究的定义。

特点?

引导学生回答:符号不同,一正一负;数字相同.

像这样,只有符号不同的两个数,我们说它们互为,如+5与。

应点有什么特点?

引导学生回答:分别在原点的两侧;到原点的距离相等.

这样我们也可以说,在数轴上的原点两旁,离开原点距离相等的两个点所表示的数互为.这个概念很重要,它帮助我们直观地看出的意义,所以有的书上又称它为的几何意义.

3.0的是0.

这是因为0既不是正数,也不是负数,它到原点的距离就是0.这是等于它本身的的数.

三、运用举例变式练习。

例1(1)分别写出9与-7的;。

例1由学生完成.

在学习有理数时我们就指出字母可以表示一切有理数,那么数a的如何表示?

引导学生观察例1,自己得出结论:

数a的是-a,即在一个数前面加上一个负号即是它的。

1.当a=7时,-a=-7,7的是-7;。

2.当-5时,-a=-(-5),读作“-5的”,-5的是5,因此,-(-5)=5.

3.当a=0时,-a=-0,0的是0,因此,-0=0.

么意思?引导学生回答:-(-8)表示-8的;-(+4)表示+4的`;。

例2简化-(+3),-(-4),+(-6),+(+5)的符号.

能自己总结出简化符号的规律吗?

括号外的符号与括号内的符号同号,则简化符号后的数是正数;括号内、外的符号是异号,则简化符号后的数是负数.

课堂练习。

1.填空:

(1)+1.3的是______;(2)-3的是______;。

(5)-(+4)是______的;(6)-(-7)是______的。

2.简化下列各数的符号:

-(+8),+(-9),-(-6),-(+7),+(+5).

3.下列两对数中,哪些是相等的数?哪对互为?

-(-8)与+(-8);-(+8)与+(-8).

四、小结。

指导学生阅读教材,并总结本节课学习的主要内容:一是理解的定义——代数定义与几何定义;二是求a的;三是简化多重符号的问题.

五、作业。

1.分别写出下列各数的:

2.在数轴上标出2,-4.5,0各数与它们的。

3.填空:

(1)-1.6是______的,______的是-0.2.

4.化简下列各数:

5.填空:

(3)如果-x=-6,那么x=______;(4)如果-x=9,那么x=______.

教学过程是以《教学大纲》中“重视基础知识的教学、基本技能的训练和能力的培养”,“数学教学中,发展思维能力是培养能力的核心”,“坚持启发式,反对注入式”等规定的精神,结合教材特点,以及学生的学习基础和学习特征而设计的由于内容较为简单,经过教师适当引导,便可使学生充分参与认知过程.由于“新”知识与有关的“旧”知识的联系较为直接,在教学中则着力引导观察、归纳和概括的过程.

探究活动。

有理数a、b在数轴上的位置如图:

将a,-a,b,-b,1,-1用“”号排列出来.

分析:由图看出,a1,-1。

解:在数轴上画出表示-a、-b的点:

由图看出:-a-1。

点评:通过数轴,运用数形结合的方法排列三个以上数的大小顺序,经常是解这一类问题的最快捷,准确的方法.

七年级数学有理数的减法教案篇十

准确掌握积的乘方的运算性质、

(二)难点

用数学语言概括运算性质、

(三)解决办法

增强对三种运算性质的理解,并运用对比的方法强化训练以达到准确地区分、

一课时、

投影仪或电脑、自制胶片、

3、通过举例来说明积的乘方性质应如何正确使用,师生共练以达到熟练掌握、

4、多种题型的设计,让学生能从不同的角度全面准确地理解和运用该性质、

(一)明确目标

本节课重点学习积的乘方的运算性质及其较灵活地运用、

(二)整体感知

(三)教学过程

1、创设情境,复习导入

前面我们学习了同底数幂的乘法、幂的乘方这两个寨的运算性质,请同学们通过完成一组练习,来回顾一下这两个性质:

填空:

七年级数学有理数的减法教案篇十一

难点:有理数乘方运算的符号法则?

1、求n个相同因数的积的运算叫做乘方?

2、乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数?

一般地,在an中,a取任意有理数,n取正整数?

应当注意,乘方是一种运算,幂是乘方运算的结果?当an看作a的n次方的结果时,也可以读作a的n次幂。

例1计算:

(1)2,2,2,24;(2)-2,2,3,(-2)4;。

(3)0,02,03,04?

教师指出:2就是21,指数1通常不写?让三个学生在黑板上计算?

引导学生观察、比较、分析这三组计算题中,底数、指数和幂之间有什么关系?

(1)模向观察。

正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零?

(2)纵向观察。

互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等?

(3)任何一个数的偶次幂都是什么数?

任何一个数的偶次幂都是非负数?

你能把上述的结论用数学符号语言表示吗?

当a0时,an0(n是正整数);

当a。

当a=0时,an=0(n是正整数)?

(以上为有理数乘方运算的符号法则)。

a2n=(-a)2n(n是正整数);

=-(-a)2n-1(n是正整数);

a2n0(a是有理数,n是正整数)?

例2计算:

(1)(-3)2,(-3)3,[-(-3)]5;。

(2)-32,-33,-(-3)5;。

(3),?

让三个学生在黑板上计算?

课堂练习。

计算:

(1),,,-,;

(2)(-1)2001,322,-42(-4)2,-23(-2)3;。

(3)(-1)n-1?

让学生回忆,做出小结:

1、乘方的有关概念?

2、乘方的符号法则?3?括号的作用?

1、计算下列各式:

(-3)2;(-2)3;(-4)4;;-0.12;。

-(-3)3;3(-2)3;-6(-3)3;-(-4)2(-1)5?

2、填表:

3、a=-3,b=-5,c=4时,求下列各代数式的值:

4、当a是负数时,判断下列各式是否成立?

(1)a2=(-a)2;(2)a3=(-a)3;(3)a2=;(4)a3=。

5、平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?

6、若(a+1)2+|b-2|=0,求a2000b3的值?

七年级数学有理数的减法教案篇十二

比较正数和负数的大小。

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

负数与负数的比较。

一、复习:

1、读数,指出哪些是正数,哪些是负数?

—85。6+0。9—+0—82。

2、如果+20%表示增加20%,那么—6%表示。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)。

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

a、从0起往右依次是?从0起往左依次是?你发现什么规律?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“—8在—6的左边,所以—8〈—6”

5、再通过让另一学生比较“8〉6,但是—8〈—6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,所有的负数都在0的'左边,也就是负数都比0小,而正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习。

1、练习一第4、5题。

2、练习一第6题。

3、某日傍晚,黄山的气温由上午的零上2摄氏度下降了7摄氏度,这天傍晚黄山的气温是摄氏度。

四、全课总结。

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

第二课教学反思:

许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

例3——两个不同层面的拓展:

1、在数轴上表示数要求的拓展。

数轴除了可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1。5。建议此处教师补充要求学生表示出“+1。5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1。5和—1。5绝对值相等。同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

2、渗透负数加减法。

教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

例4——薄书读厚、厚书读薄。

薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)。

例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘了三种不同类型,一一请学生介绍比较方法,将薄书读厚。

将厚书读薄——无论哪种类型,比较方法万变不离其宗。

无论哪种比较方法,最终都可回归到“数轴上左边的数比右边的数小。”即使有学生在比较—8和—6大小时是用“86,所以—8—6”来阐述其原因,其实也与数轴相关。因为当绝对值越大时,表示离原点的距离越远,那么在数轴上表示的点也就在原点左边越远,数也就越小。所以,抓住精髓就能以不变应万变。

在此,我还补充了—3/7和—2/5比较大小的练习,提升学生灵活应用知识解决实际问题的能力。

七年级数学有理数的减法教案篇十三

(二)能力训练目标:

1、经历探索有理数乘法的运算律的过程,发展观察、归纳的能力。

2、能运用乘法运算律简化计算。

(三)情感与价值观要求:

1、在共同探索、共同发现、共同交流的过程中分享成功的喜悦。

2、在讨论的过程中,使学生感受集体的力量,培养团队意识。

乘法运算律的运用。

乘法运算律的运用。

探究交流相结合。

创设问题情境,引入新课。

[活动1]。

问题2:计算下列各题:

(1)(-7)×8;。

(2)8×(-7);

(5)[3×(-4)]×(-5);

(6)3×[(-4)×(-5)];

[师生]由学生自主探索,教师可参与到学生的讨论中。

像前面那样规定有理数乘法法则后,乘法的交换律和结合律与分配律在有理数乘法中仍然成立。我们可以通过问题2来检验。(略)。

[师]同学们自己采用上面的方法来探究一下分配律在有理数范围内成立吗?

[生]例如:5×[3十(-7)]和5×3十5×(-7);(略)。

[师](-5)×(3-7)和(-5)×3-5×7的结果相等吗?

(注意:(-5)×(3-7)中的3-7应看作3与(-7)的和,才能应用分配律。否则不能直接应用分配律,因为减法没有分配律。)。

讲授新课:

[活动2]用文字语言和字母把乘法交换律、结合律、分配律表达出来。

应得出:

1、一般地,有理数乘法中,两个数相乘,交换因数的位置,积相等。

2、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。

3、一般地,一个数同两个数的和相乘,等于这个数分别同这两个数相乘,再把积相加。

[活动3][师生]教师引导学生讨论、交流,从中体会学习的快乐。

3、用简便方法计算:

[活动4]。

练习(教科书第42页)。

这节课我们学习乘法的运算律及它们的运用,使我们体验到了掌握一般的正常运算外,还要灵活运用运算律,能简便的一定要简便,这样做既快又准。

课后作业:课本习题1.4的第7题(3)、(6)。

用简便方法计算:

(1)6.868×(-5)+6.868×(一12)+6.868×(+17)。

(2)[(4×8)×25一8]×125。

七年级数学有理数的减法教案篇十四

教师在备课时,应充分估计学生在学习时可能提出的问题,确定好重点,难点,疑点,和关键。根据学生的实际改变原先的教学计划和方法,满腔热忱地启发学生的思维,针对疑点积极引导。

非常高兴,能有机会和同学们共同学习

昨天,老师在七年级三班上课时,把他们分成七个小组,每个小组回答问题的情况以抢答赛的形式记分。你们看(出示投影)这是七年级三班七个小组回答问题的表现情况。答对一题得一分,记作+1分;答错一题扣一分,记作1分。第几组最棒?老师还没来得及计算出每个小组的最后得分,咱们班哪位同学能帮老师算出最后结果?(学生在教师引导下回答)

我们已得出了每个小组的最后分数,那么哪个小组是优胜小组?(第一小组),回去以后,老师就把小奖品发给他们,相信他们一定会很高兴。

同学们,这节课你们愿不愿意也分成几个小组,看一看那个小组的同学表现得最出色?(原意)那么老师就按座次给同学们分组,每一竖排为一组。老师把组号写在黑板上,以便记分。

希望各组同学积极思考、踊跃发言。同学们有没有信心得到老师的小奖品?(有)同学们加油!

我们已得到了这7个小组的最后得分,那位同学能试着用算式表示?(学生在教师指导下列算式)

以上这些算是都是什么运算?(加法),两个加数都是什么数?(有理数),这就是我们这节课要学习的有理数的加法(板书课题)。

刚才老师说要给七年级三班的优胜组发奖品,老师手里有12本作业本,优胜组共6人,老师将送出的作业本数占总数的几分之几?(二分之一)分数最低的一组共7人,他们每人交给老师一个作业本,占总数的几分之几?(十二分之七)如果,老师得到的作业本记为正数,送出的作业本记为负数,则老师手里的作业本增加或减少几分之几?同学们能列出算式吗?(学生列式)对于这个算式,同学们还能轻易的感知出结果吗?(不能)

对于有理数的加法,有的同学们能直接感知得到结果,有的靠感知是不够的,这就需要我们共同探索规律!(出示投影),观察这7个算式,每一个算式都是怎样的两个有理数相加?(引导学生回答)你们还能举出不同以上情况的算式吗?(不能),这说明这几个算式概括了有理数加法的不同情况。

前两个算式的加数在符号上有什么共同点?(相同),那么我们就可以说这是什么样的两数相加?(同号两数相加)同学们还能观察出那几个算式可归为一类吗?(3、4、5、异号两数相加,6、7一个数同0相加)

同学们已把这7个算式分成了三种情况,下面我们分别探讨规律。

(2) 异号两数相加,其和有何规律呢?大家观察这三个式子回答问题。(引导学生分成两类,容易得到绝对值相同情况的结论。再引导学生观察绝对值不相同的情况,回答问题)哪位同学能概括一下这个规律?(引导学生得出)

(3) 一个数同0相加,其和有什么规律呢?(易得出结论)

同学们经过积极思考,探索出了解决有理数加法的规律,顾一下(出哪位同学能带领大家共同回顾一下?(出示投影,学生大声朗读)我们把这个规律称为有理数的加法法则。

同学们都很聪明,积极参与探索规律,每个组都有不错的成绩。个别落后的组不要气馁,继续努力,下面老师就给大家一个得分的机会,看哪一组能[出题制胜]!(出示)

(活动过程1后评价、加分;教师以其中一题为例,讲解题格式及过程;活动过程2后:让每组第三排同学评价加分)

同学们已经基本掌握了有理数的加法法则,并会运用它,但七年级三班有几位同学对这一内容掌握的不是太好,以致在作业中出了毛病,他们为此很苦恼。希望咱们同学能帮帮他们,看哪位同学能像妙手回春的神医华佗一样药到病 除!(师生共同治病)

看来同学们对有理数的加法已经掌握得很好了,大家还记得前面那个难倒我们的有理数的加法题呢?那位同学能解决这个问题呢?(学生口述 师板书)。在大家的努力下,我们终于攻破了这个难关。

通过这节课的学习,大家有什么收获?(学生回答)同学们都有很多收获,老师认为收获最多的是优胜组的同学,因为他们能得到老师的小奖品,大家赶紧看看那一组获胜?欢迎优胜组上台领奖,大家掌声鼓励!

同学们,希望你们在未来的学习和生活中都能积极进取,获得一个又一个的胜利。

七年级数学有理数的减法教案篇十五

一、选择题:(本大题共有8小题,每小题3分,共24分)。

1、的相反数是()。

a.b.c.2d.

2、在数轴上距离原点2个单位长度的点所表示的数是()。

a.2b.c.2或d.1或。

3、下列各式中正确的是()。

a.b.c.d.

4、绝对值不大于3的所有整数的积等于()。

a.b.6c.36d.0。

5、下列说法中,正确的是()。

a.任何有理数的绝对值都是正数b.如果两个数不相等,那么这两个数的绝对值也不相等。

c.任何一个有理数的绝对值都不是负数d.只有负数的绝对值是它的相反数。

6、如果a与1互为相反数,则等于()。

a.2b.2c.1d.-1。

7、的值为()。

a.0b.3.14--3.14d.0.14。

列为()。

a.-b-a。

二、填空题(本大题共有10小题,每小题3分,共30分)。

9、的倒数是____________.

10、绝对值等于2的数是___________.

1015。

1896。

11、相反数等于本身的数是_____________.

12、倒数等于本身的数是___________.

13、=______________.

14、孔子出生于公元前551年,如果用-551年表示,则李白出生于公元7表示为________。

15、有一组按规律排列的数-1,2,-4,8,-16,,第个数是__________.

16、已知=0,则____________.

_________________________________________________。(列出三式,有一式给一分.)。

18、一个大长方形被分成8个小长方形,其中有5个小长方形的面积如图中的数字所。

示,填上表中所缺的数,则这个大长方形的面积为_______。

三、解答下列各题:(本大题共8题,共96分)。

19、把下列各数填在相应的大括号里(8分)。

32,,7.7,,,,0,,

正数集合:;负数集合:;。

整数集合:;负分数集合:。

20、在数轴上表示下列各数及它们的相反相数,并根据数轴上点的位置把它们按从小到大的顺序排列。(10分)。

21、比较下列各数的大小(要写出解题过程)(6分)。

(1)与(2)与。

22、计算下列各题(每小题4分,共40分)。

23、体育课上,某中学对七年级男生进行了引体向上测试,以能做7个为标准多于标准的次数记为正数,不足的次数记为负数,其中8名男生的成绩为+2,-1,+3,0,-2,-3,+1,0。

(1)这8名男生中达到标准的占百分之几?(2)他们共做了多少次引体向上?

25、某出租车沿公路左右方向行驶,向左为正,向右为负,某天从a地出发后到收工回家所走路线如下:(单位:千米)+8,-9,+4,+7,-2,-10,+18,-3,+7,+5。

(1)问收工时离出发点a多少千米?

(2)若该出租车每千米耗油0.3升,问从a地出发到收工共耗油多少升?

26、(8分)股民李明上星期六买进春兰公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)。

星期一二三四五六。

每股涨跌+4+4.5-1-2.5-6+2。

(1)星期三收盘时,每股是多少元?

(2)本周内最高价是每股多少元?最低价每股多少元?

参考答案。

1.b;2;c;3.d;4.d;5.c;6.c;7.c;8.c;9.3;10.2。

11.0;12.13.-3.142;14.+701;15.;。

16.-4;。

10515。

189276。

18.

面积比等于。

19.

正数集合:;负数集合:;。

整数集合:;负分数集合:。

20.

21.(1)∵,

(2)∵,

6

22.(1)-2;(2)9;(3)2;(4)4;(5);。

(6)-35;(7)-12;(8)0;。

(9)。

(10).

24.略。

25.解:(1+0.2)7+(1.5+0.4)3=13.1元,

(1+0.2)6=7.2元。

所以,1月份水费为13.1元,2月份水费为7.2元.

26.解:(1)8-9+4+7-2-10+18-3+7+5=25,离a地25千米。

(2)8+9+4+7+2+10+18+3+7+5=73,

0.373=21.9升.

27.(1)27+4+4.5-1=34.5元;。

(2)最高35.5元,最低26元;。

(3)。

买入价为27元,

卖出价为27+4+4.5-1-2.5-6+2=28元。

买入手续费27x0.15%x1000=40.5元。

卖出税费28x(0.15%+0.1%)x1000=70元。

扣除税费40.5+70=110.5元。

七年级数学有理数的减法教案篇十六

3+4表示3和+4的代数和。

等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。

4、先把正数与负数分别相加,可以使运算简便。

5、在交换加数的位置时,要连同前面的符号一起交换。如。

12-5+7应变成12+7-5,而不能变成12-7+5。

教学设计示例一。

一、素质目标。

(一)知识教学点。

1.了解:代数和的概念.。

2.理解:有理数加减法可以互相转化.。

(二)能力训练点。

培养学生的口头表达能力及计算的准确能力.。

(三)德育渗透点。

(四)美育渗透点。

七年级数学有理数的减法教案篇十七

1、熟练掌握一元一次不等式组的解法,会用一元一次不等式组解决有关的实际问题;。

3、体验数学学习的乐趣,感受一元一次不等式组在解决实际问题中的价值。

正确分析实际问题中的不等关系,列出不等式组。

建立不等式组解实际问题的数学模型。

出示教科书第145页例2(略)。

问:(1)你是怎样理解“不能完成任务”的数量含义的?

(2)你是怎样理解“提前完成任务”的数量含义的?

(3)解决这个问题,你打算怎样设未知数?列出怎样的不等式?

师生一起讨论解决例2.

1、教科书146页“归纳”(略).

2、你觉得列一元一次不等式组解应用题与列二元一次方程组解应用题的步骤一样吗?

在讨论或议论的基础上老师揭示:

步法一致(设、列、解、答);本质有区别.(见下表)一元一次不等式组应用题与二元一次方程组应用题解题步骤异同表。

【本文地址:http://www.xuefen.com.cn/zuowen/16534454.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档