数学实际问题与方程教学设计(精选17篇)

格式:DOC 上传日期:2023-11-29 19:08:11
数学实际问题与方程教学设计(精选17篇)
时间:2023-11-29 19:08:11     小编:雅蕊

人类社会有着众多有趣且多样化的文化。5.总结要具有清晰的逻辑思维和正确的表达方式以下是小编为大家收集的总结范文,仅供参考,希望能给大家提供一些启示。

数学实际问题与方程教学设计篇一

本课是针对人民教育出版社出版的《七年级数学上册》第三章一元一次方程中3。4实际问题与一元一次方程(行程问题应用题归类解析——追及问题)设计的内容。

1、使学生进一步掌握列一元一次方程解应用题的方法和步骤;

2、熟练掌握追及问题中的等量关系。

培养学生观察能力,提高他们分析问题和解决实际问题的能力。

培养学生勤于思考、乐于探究、敢于发表自己观点的学习习惯,从实际问题中体验数学的价值。体会观察、分析、归纳对数学知识中获取数学信息的重要作用,进一步掌握列一元一次方程解应用题的方法和步骤,能在独立思考和小组交流中获益。

1、重点:找等量关系列一元一次方程,解决追及问题。

2、难点:将实际问题转化为数学模型,并找出等量关系。

探究式。

1、行程问题中有哪些基本量?它们间有什么关系?

2、行程问题有哪些基本类型?

行程问题应用题是中小学数学应用题中很重要的一类,学生难以理解,不容易掌握。行程问题的题型千变万化,导致许多学生感到束手无策,难以适从。其实认真分析,就会发现行程问题应用题主要有三种基本类型:追及问题、相遇问题和航行问题,而且三个基本量之间的基本关系“路程=速度×时间”保持不变。

解:设x秒后乙能追上甲。

根据题意得5x—3x=100。

解得x=50。

答:50秒后乙能追上甲。

小结:针对本题进行小结、归纳,它属于行程问题应用题(追及问题)。

中的同时不同地问题,以后遇到此类题,该如何解决。

分析:这个问题中,由于黄色马先跑1s(此时棕色马未出发),经过1s后棕色马再开始出发和黄色马同向而行,后来棕色马追上黄色马了。因此两马所跑路程是相同的,但由于黄色马先跑了1秒,所以就产生了路程差,那么这个问题就和前面例1一样了。也可以这样想:棕色马的路程=黄色马的路程+相隔距离。

解:设x秒后,棕色马追上黄色马,根据题意,得6x=5x+5解得x=5答:5秒后,棕色马可以追上黄色马。

小结:针对本题进行小结、归纳,它属于行程问题应用题(追及问题)。

中的同地不同时问题。

归纳小结:列方程解应用题的一般步骤:

审—通过审题明确已知量、未知量,找出等量关系;

设—设出合理的未知数(直接或间接);

列—依据找到的等量关系,列出方程;

解—求出方程的解;

验—检验求出的值是否为方程的解,并检验是否符合实际问题;

答—注意单位名称。

解答由学生完成。

本节知识归纳:

1、追及问题的特点是同向而行,在直线运动中两者路程之差等于两者间的距离;

2、而在圆周运动中,若同时同地同向出发,则二者路程之差等于跑道的周长。

3、用示意图辅助分析数量间的关系便于我们列方程。

通过本节课的学习,使学生进一步掌握列一元一次方程解应用题的.方法和步骤,并能熟练寻找追及问题中的等量关系,列出方程,解决追及问题。

数学实际问题与方程教学设计篇二

本课的教学内容是一个数(已知)是另一个数的几倍多(或少)几,求另一个数。教学注重的是解决问题的过程,也就是要让学生经历寻找实际问题中数量关系并列方程解答的全过程。让学生明确正确找出题中的等量关系是最为关键的。通过学习,增强学生用方程解决实际问题的意识和能力,进一步丰富解决问题的策略,帮助学生加深理解方程是一种重要的数学思想方法。

反思这一节课,做得好的方面是:一是从学生的认知水平出发,循序渐进,通过“句――式――方程”的思维过程,让学生感受方程解题的基本方法:即找到了等量关系,方程就自然而然,水到渠成了。二是练习形式多样,练习有层次。由简到难,有坡度,但目的只有一样,就是让学生通过这些练习能很快找到等量关系,正确列出方程。

不足的方面是:练习的重点在于找准数量关系式。课堂上大量提问了学生应用题的数量关系式是什么,并进行了专项训练,但在进行列方程解应用题时,只满足了让学生说出数量关系式是什么,应该让中下学生再再说说关键句是什么,是根据哪句话找出来的,分析题时可先用铅笔画出来,分清已知量和未知量,用相应的未知数和具体数字表示出来,转化成等式,从而把实际问题转化成数学问题,再利用已有知识解决问题。

数学实际问题与方程教学设计篇三

由"倍数关系"等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.

掌握用"倍数关系"建立数学模型,并利用它解决一些具体问题.

通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用"倍数关系"建立数学模型,并利用它解决实际问题.

1.重点:用"倍数关系"建立数学模型。

2.难点与关键:用"倍数关系"建立数学模型。

一、复习引入。

(学生活动)问题1:列方程解应用题。

下表是某一周甲、乙两种股票每天每股的收盘价(收盘价:股票每天交易结果时的价格):。

星期一二三四五。

甲12元12.5元12.9元12.45元12.75元。

乙13.5元13.3元13.9元13.4元13.75元。

老师点评分析:一般用直接设元,即问什么就设什么,即设这人持有的甲、乙股票各x、y张,由于从表中知道每天每股的收盘价,因此,两种股票当天的帐户总数就是x或y乘以相应的每天每股的收盘价,再根据已知的等量关系;星期二比星期一增加200元,星期三比星期二增加1300元,便可列出等式.

解:设这人持有的甲、乙股票各x、y张.

则解得。

答:(略)。

二、探索新知。

上面这道题大家都做得很好,这是一种利用二元一次方程组的数量关系建立的数学模型,那么还有没有利用其它形式,也就是利用我们前面所学过的一元二次方程建立数学模型解应用题呢?请同学们完成下面问题.

老师点评分析:直接假设二月份、三月份生产电视机平均增长率为x.因为一月份是1万台,那么二月份应是(1+x)台,三月份应是在二月份的基础上以二月份比一月份增长的同样"倍数"增长,即(1+x)+(1+x)x=(1+x)2,那么就很容易从第一季度总台数列出等式.

去括号:1+1+x+1+2x+x2=3.31。

整理,得:x2+3x-0.31=0。

解得:x=10%。

答:(略)。

以上这一道题与我们以前所学的一元一次、二元一次方程(组)、分式方程等为背景建立数学模型是一样的`,而我们借助的是一元二次方程为背景建立数学模型来分析实际问题和解决问题的类型.

例1.某电脑公司20xx年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.

分析:设这个增长率为x,由一月份的营业额就可列出用x表示的二、三月份的营业额,又由三月份的总营业额列出等量关系.

解:设平均增长率为x。

则200+200(1+x)+200(1+x)2=950。

整理,得:x2+3x-1.75=0。

解得:x=50%。

答:所求的增长率为50%.

三、巩固练习。

(2)某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为__________.

四、应用拓展。

例2.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.

分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+20xxx·80%;第二次存,本金就变为1000+20xxx·80%,其它依此类推.

解:设这种存款方式的年利率为x。

整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0。

解得:x1=-2(不符,舍去),x2==0.125=12.5%。

答:所求的年利率是12.5%.

五、归纳小结。

本节课应掌握:。

利用"倍数关系"建立关于一元二次方程的数学模型,并利用恰当方法解它.

六、布置作业。

1.教材p53复习巩固1综合运用1.

2.选用作业设计.

一、选择题。

1.20xx年一月份越南发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是().

a.100(1+x)2=250b.100(1+x)+100(1+x)2=250。

c.100(1-x)2=250d.100(1+x)2。

2.一台电视机成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台售价为().

a.(1+25%)(1+70%)a元b.70%(1+25%)a元。

c.(1+25%)(1-70%)a元d.(1+25%+70%)a元。

3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降低的百分数)不得超过d%,则d可用p表示为().

a.b.pc.d.

二、填空题。

1.某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,第二年的产量为_______kg,第三年的产量为_______,三年总产量为_______.

2.某糖厂20xx年食糖产量为at,如果在以后两年平均增长的百分率为x,那么预计20xx年的产量将是________.

3.我国政府为了解决老百姓看病难的问题,决定下调药品价格,某种药品在1999年涨价30%后,20xx年降价70%至a元,则这种药品在1999年涨价前价格是__________.

三、综合提高题。

1.为了响应国家"退耕还林",改变我省水土流失的严重现状,20xx年我省某地退耕还林1600亩,计划到20xx年一年退耕还林1936亩,问这两年平均每年退耕还林的平均增长率2.洛阳东方红拖拉机厂一月份生产甲、乙两种新型拖拉机,其中乙型16台,从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐年递增,又知二月份甲、乙两型的产量之比是3:2,三月份甲、乙两型产量之和为65台,求乙型拖拉机每月的增长率及甲型拖拉机一月份的产量.

3.某商场于第一年初投入50万元进行商品经营,以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.

(1)如果第一年的年获利率为p,那么第一年年终的总资金是多少万元?(用代数式来表示)(注:年获利率=×100%)。

(2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.

答案:。

一、1.b2.b3.d。

二、1.6(1+x)6(1+x)26+6(1+x)+6(1+x)2。

2.a(1+x)2t。

3.

三、1.平均增长率为x,则1600(1+x)2=1936,x=10%。

2.设乙型增长率为x,甲型一月份产量为y:。

即16x2+56x-15=0,解得x==25%,y=20(台)。

3.(1)第一年年终总资金=50(1+p)。

(2)50(1+p)(1+p+10%)=66,整理得:p2+2.1p-0.22=0,解得p=10。

数学实际问题与方程教学设计篇四

运用一元一次方程解决现实生活中的问题,进一步体会建模思想方法。

(1)通过数学活动使学生进一步体会一元一次方程和实际问题中的关系,通过分析问题中的数量关系,进行预测、判断。

(2)运用所学过的数学知识进行分析,演练、合作探究,体会数学知识在社会活动中的运用,提高应用知识的能力和社会实践能力。

通过数学活动,激发学生学习数学兴趣,增强自信心,进一步发展学生合作交流的意识和能力,体会数学与现实的联系,培养学生求真的科学态度。

1、重点:经历探索具体情境的数量关系,体会一元一次方程与实际问题之间的数量关系会用方程解决实际问题。

2、难点:以上重点也是难点。

3、关键:明确问题中的已知量与未知量间的关系,寻找等量关系。

投影仪,每人一根质地均匀的直尺,一些相同的棋了和一个支架。

一种商品售价为2.2元件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品n件,讨论下面问题:

这个人买了n件商品需要多少元?

教师活动:

(1)把学生每四人分成一组,进行合作学习,并参入学生中一起探究。

(2)教师对学生在发表解法时存在的问题加以指正。学生活动:

(1)分组后对活动一的问题展开讨论,探究解决问题的方法。

(2)学生派代表上黑板板演,并发表解法。

解:2.2nn100。

2.2100+2(n-100)n100。

问题转换:

一种商品售价为2.2元/件,如果买100件以上超过100件部分的售价为2元/件,某人买这种商品共花了n元,讨论下面的问题:

(1)这个人买这种商品多少件?

(2)如果这个人买这种商品的件数恰是0.48n,那么n的值是多少?

教师活动:同上学生活动:同上。

解:(1)n220。

100+n220。

(2)=0.48nn=0。

100+=0.48nn=500。

本活动课前布置学生做好活动前的准备工作:

1、准备一根质地均匀的直尺,一些相同的棋子和一个支架。

2、分组:(4人一组)。

开始做下面的实验:

(1)把直尺的中点放在支点上,使直尺左右平衡。

(2)在直尺两端各放一枚棋子,这时直尺还是保持平衡吗?

(3)在直尺的一端再加一枚棋子,移动支点的位置,使两边平衡,然后记下支点到两端距离a和b,(不妨设较长的一边为a)。

(4)在有两枚棋子的一端面加一枚棋子移动支点的位置,使两边平衡,再记下支点到两端的距离a和b。

(5)在棋子多的一端继续加棋子,并重复以上操作。根据统计记录你能发现什么规律?

以上实验过程可以由学生填写在预先设计的记录表上。

实验次数棋子数ab值a与b的关系。

右左ab。

第1次11。

第2次12。

第3次13。

第4次14。

第n次1n。

由学生谈本节课的收获。

1、课后了解实际生活中的类似活动问题,并举出几个例子。

2、课本,第110页活动2。

数学实际问题与方程教学设计篇五

本节课的重难点在于设未知数和找等量关系,通过这两道题的练习,为第三道题的变式练习做准备。

3.养殖场有白兔和黑兔,白兔的只数是黑兔的4倍。

(1)白兔和黑兔一共230只,白兔和黑兔各有多少只?

(2)白兔比黑兔多138只,白兔和黑兔各有多少只?

请同学们先独立完成第一问,然后我们进行交流。

第二问请大家认真思考,观察与第一问的区别,独立完成后,进行交流。

四、课堂小结。

通过本节课的学习:

数学实际问题与方程教学设计篇六

一、细心填写:

1、20米是16米的()%,20米比16米多()%;。

16米是20米的()%,16米比20米少()%。

2、完成计划的百分之几=()()。

读了全书的百分之几=()()。

实际比计划节约百分之几=()()。

今年比去年增产百分之几=()()。

二、解决问题:

1、电视机厂五月份计划生产电视机台,结果多生产500台。超产百分之几?

2、电视机厂五月份生产电视机2500台,比原计划多生产500台。超产百分之几?

3、一种彩电原价每台2500元,现在价格降低了400元。降价百分之几?

4、一种彩电现价每台2100元,比原来降低了400元。降价百分之几?

6、鸡的只数比鸭少20%,鸭的.只数比鸡多百分之几?

7、老王花1260元买了一台洗衣机,比促销前便宜了240元。便宜百分之几?

数学实际问题与方程教学设计篇七

预设5:

解:设海洋面积为x亿平方千米。那么陆地面积可以表示为实际问题与方程教学设计亿平方千米。

地球表面积-海洋面积=陆地面积。

预设:第一种方法最好,解方程的过程最简单。

师:同学们你们简直太聪明了,想出来这么多解决这道题目的方法,不过我们要在这么多的方法之中选择最优的做法,一般遇到这类求两个未知量的题目,我们要设一倍量为x,再利用题目中的等量关系来解决问题。

师:接下来请同学们思考,列方程解决实际问题一般需要哪几个步骤呢?

(3)总结方法。

1、设(找出未知数,用字母x表示)。

2、找(找出题目中的等量关系)。

3、列(根据等量关系列出方程)。

4、解(运用等式的性质解方程)。

5、验(将解出的结果代入方程检验)。

6、答(完整地写好答话)。

三、巩固练习。

1、果园里苹果树和梨树一共300棵,梨树是苹果树的5倍,苹果树和梨树各有多少棵。下列说法正确的是()。

a、解:设梨树为x棵,则苹果树为5x棵。

b、解:设苹果树为x棵,则梨树为5x棵。

通过这道题目的练习,使学生更深一步掌握设两个未知量的方法。

2、找出下列各题中的等量关系。

数学实际问题与方程教学设计篇八

本节课是以成本下降为问题探究,讨论平均变化率的问题,这类问题在现实世界中有很多的原型,例如经济增长率、人口增长率等等,联系生活实际很密切,这类问题也是一元二次方程在生活中最典型的应用。本节课主要是讨论两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型。

学情分析。

1、由于我们的学生对列方程解应用题有畏惧的心理,感觉很困难,根据探究1学生的掌握情况来看,决定把探究2作为一课时,来专门学习。

2、学生对列方程解应用题的步骤已经很熟悉,而且有了第一课时连续传播问题的做铺垫,适合用自主探究,合作交流的学习方法。

3、连续增长问题的中的数量关系、规律的发现是本节课的难点,所以我把问题分解了让学生逐个突破,由于九年级学生具有一定的解题归纳能力,所以采用从一般到特殊的`探究方式。

教学目标。

知识与技能:

1、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。

2、能根据具体问题的实际意义,检验结果是否合理。

过程与方法:

1、经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。

2、通过成本降低、能源增长等实际问题,学会将实际应用问题转化为数学问题,发展实践应用意识。

情感与态度:通过用一元一次方程解决身边的问题,体会数学知识的应用价值,提高学生学习数学的兴趣。

教学重点和难点。

重点:利用增长率问题中的数量关系,列出方程解决问题。

难点:理清增长率问题中的数量关系。

数学实际问题与方程教学设计篇九

《列方程解稍复杂的百分数实际问题(一)》这节课是在学生已经学过稍复杂的分数实际问题和认识百分数的基础上教学的,学生已经有了列方程解决实际问题和稍复杂的分数实际问题解答经验及解题方法。本课教学目标是:1、引导学生在已学会的一些基本的百分数实际问题的基础上,引出列方程解一些稍复杂的百分数实际问题的方法。2、能根据题中的信息,熟练地找出基本的数量关系,培养学生的分析解题能力。

在教学本课时我以复习题引出例题。复习题:朝阳小学美术组有36人,女生人数是男生人数的五分之四。美术组男、女生各有多少人?让学生列式计算,交流是怎样想的?这里学生有两种种解法:(1)用方程;(2)按比例分配。针对方程的解法和学生一同回忆用方程解答时关键是什么?要注意写什么?这时我把复习题的“女生人数是男生人数的五分之四”这个条件改成“女生人数是男生人数的80%”,让学生自己解答,通过这样的知识迁移学生很轻松的解决了问题。引导学生进行了两次比较,第一次引导学生比较几种解答,使学生体会到用方程解答的好处;第二次引导学会上比较复习题一例题在题目及解答上的异同,使学生对于知识的学习成系统。在巩固练习的安排上我设计了这样一题:梨树和桃树一共有96棵,根据下面的条件算出梨树和桃树各多少棵?(1)桃树的棵数是梨树的5倍。(2)梨树的棵数是桃树的五分之一。(3)梨树的棵数是桃树的20%。引导学生将此题的三个条件相比较,沟通百分数问题和倍数、分数问题的联系。

本课在教学中对于学生出现的生成资源我处理的较好的。教学中我比较注重引导学生用方程解答,但在方法的多样化没能给学生充分的时间交流,还要处理好解法多样化与优化的关系。

一节课下来,觉得自己上的比较累,学生学习效果也不那么满意。

这个例题是用方程解决“已知一个数量,以及一个数量比另一数量多(少)百分之几,求另一个数量(单位”1”)”的实际问题。

例题教学,出示例题后,先让学生尝试画线段图,在交流中完善精致化。先画什么?(单位1,九月份用水量)再画什么?十月份用水量这条线段画多长?这个问题的目的是引导学生理解“比九月份节约20%”:节约的用水量是九月份的2/10或1/5。学生修改线段图的过程实际也是进一步理解题意的过程。

课堂上老师最累和学生最怕是找出适合列方程的数量关系式。引导学生观察线段图中各线段,在各线段的关系中寻找等量关系,仍有部分学生有困难。学生提到九月份的用水量+十月份比九月份节约的用水量=十月份的用水量,九月份的用水量-节约的用水量=十月份的用水量,九月份的用水量-十月份的用水量=节约的用水量。我没有引导学生及时选择合适的,而是让学生自己选择适当的进行列方程,让学生在自己的思考下,尝试中找到适合的等量关系。在全班交流中明确等量关系。

这个环节让我真切感受到部分学生对于寻找数量关系有困难。猜测着可能他们不清楚题目中的数量,也可能不会选择哪个数量关系式才适合列方程,还可能画线段图本身对他来说就是很困难的。到底平时作业不可能每道题目去画线段图(而且学生画线段图能力参差不齐),所以对部分学生来说找出合适的数量关系式困难啊。

正确检验也是本课的难点,不是所有的学生掌握,也没有要求学生全部理解。其中检验是否如何“比九月份节约20%”这个条件,这种检验方法掌握的学生不多。

后来,从小学数学教学网上看到有老师这样设计了准备题:

440×80%   440÷80%   440×(1-80%)。

与其他老师有同感,觉得这样的填空设计非常富于启发性。

数学实际问题与方程教学设计篇十

教学目标:

1、使学生进一步掌握稍复杂的百分数应用题的分析与解答的方法,提高学生的分析解题能力。

教学重点:分析应用题的数量关系.

教学难点:找应用题的等量关系.

教学过程:

一、基本训练:

(一)找出单位“1”

1.一本书已经看了。

2.实际比计划节约。

3.今年产量比去年提高。

4.乙数比甲数少。

(二)根据所给信息,说出数量间的相等关系。

1、一条路,已修了全长的60%。

2、一种彩电,现价比原价降低10%。

3、松树的棵数比柏树多。

(三)复习题:

找关键句,说基本数量关系式。

二、新课教学:

1、教学例6。

1、读题,理解题意。找出关键句。

2、分析题意。说数量关系式。

问:十月份用水量比九月份节约20%,这里的20%是哪两个数量比较的结果?

这两个数量比较时,要把哪个量看作单位“1”

九月份用水量的20%是哪个数量?

3、让学生画图,根据图进一步理解以上3个问题。单位“1”知道吗?

4、用字母或含有字母的式子表示相关数量。

5、找出数量间的相等关系:

九月份用水量—十月份比九月份节约的用水量=十月份用水量。

6、让学生列方程解答。

7、检验:

可以用十月份比九月份节约的除以九月份,看是不是20%;也可以用九月份减十月份比九月份节约的,看是不是440立方米。

2、进行对比。将复习题和例6进行对比,找出异同。

3、教学“练一练”

(1)做第1题,先审题。

问:比舞蹈组人数多20%应该怎么理解。

题中的数量间的相等关系是怎样的?

学生解答。

(2)做第2题。

先帮助学生理解比原价降价15%的意思及等量关系。

再让学生解答。

三、补充练习:

1、列式计算:

(1)一个数的75%比30的25%多1.5,求这个数。

(2)一个数的25%比它的75%少30,求这个数。

2、对比练习。

(1)某工厂六月份用煤60吨,六月份比五月份少用煤25%,五月份用煤多少吨?

(2)某工厂六月份用煤60吨,五月份比六月份多用煤25%,五月份用煤多少吨?

a、独立练习,小组交流。

b、指名板演,师生评议。

四、指导完成课堂作业:练习四第5-8题。

1、练习四的第8题:先解答;交流比较;小结:虽然一个条件和所求的问题相同,但由于另一个条件不同,表示单位“1”的量不同,所以解题方法也不同。

2、练习四第9题:引导学生画图;分析写出数量关系;列式解答。

数学实际问题与方程教学设计篇十一

学生在解方程的基础上进一步学习用方程解决实际问题,通过我的教学实践和教学反思,我觉得“重视关键句分析训练,让学生感悟方程的思想。”

解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。由于我知道我们现在的.数学课堂教学对等量关系式的训练不够重视,于是我课前谈话中用了很多时间对等量关系式的写法进行了训练。先从倍数关系,再到相差关系,然后两种关系合并,要求学生分别写出等量关系式,为本节课的教学打下良好的基础。为了突出根据关键句写等量关系式,我出示例题后,直接问:“三句话中你觉得哪一句最重要,为什么?”让学生根据“的东北虎只数比的3倍还多100只,写出三种等量关系,有三种关系式就对应着三种解法,哪一种关系式最容易想到。让学生感受到要提高正确率,我们可以从最容易的入手,学生已经掌握了“求一个数比另一个数的几倍多几(或少几)”的实际问题,我们就要引导学生,充分利用已有的知识经验解决新的问题。学生是学习的主体,出示问题后让学生尝试解决问题,教师通过巡视,充分了解学生的困难以及想法,然后才能很好的组织交流。为了使学生认识到方程的思想,我故意让学生先交流用倒推策略解决问题,当交流完列式后让学生说出每一步所表示的意识时,学生感到困难,再次问学生用倒推策略解决时,还可能出现什么错误,这样从两个方面让学生认识到用倒推策略解决的不足,才能更好的让学生主动愿意来学习用方程来解。方法的优劣是比较出来的,当然也是因人而异的。方程为什么要写设语,方程是怎样列出来的,把未知转化为已知条件,才能更好的利用我们最容易想到的等量关系式列出方程才能大大提高正确率。解完例题再次比较总结,列方程是怎样想的,而倒推策略是怎样想的。然后再总结列方程解决问题的一般步骤,只有让学生充分感受到方程的作用和价值,学生才会自愿用列方程来解决新的问题。

数学实际问题与方程教学设计篇十二

教学目标。

知识技能。

教学思考。

1、通过一元二次方程的引入,培养学生建模思想,归纳、分析问题及解决问题的能力。

2、通过一元二次方程概念的学习,培养学生对概念理解的完整性和深刻性。

3、由知识来源于实际,树立转化的思想,由设未知数、列方程向学生渗透方程的思想,从而进一步提高学生分析问题、解决问题的能力。

解决问题。

在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。

情感态度。

1、培养学生主动探究知识、自主学习和合作交流的意识。

2、激发学生学数学的兴趣,体会学数学的快乐,培养用数学的意识。

重点。

难点。

1、由实际问题向数学问题的.转化过程。

2、正确识别一般式中的“项”及“系数”。

教学流程安排。

活动流程图。

活动内容和目的。

活动1。

创设情境引入新课。

活动2。

启发探究获得新知。

活动3。

运用新知体验成功。

活动4。

归纳小结拓展提高。

活动5。

布置作业分层落实。

复习一元一次方程有关概念;通过实际问题引入新知。

通过类比一元一次方程的概念和一般形式,让学生获得一元二次方程的有关概念。

回顾梳理本节内容,拓展提高学生对知识的理解。

分层次布置作业,提高学生学习数学的兴趣。

数学实际问题与方程教学设计篇十三

设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。于是可列方程:

1+x+x(1+x)=121。

解方程得x1=10,x2=—12(不合题意舍去)。

因此每轮传染中平均一个人传染了10个人。

三、例题分析。

例1、例2、例3。

四、课堂小结。

五、当堂训练。

六、小结。

数学实际问题与方程教学设计篇十四

总复习的编排注意知识间的内在联系,便于在复习中进行整理和比较,以加深学生对所学知识的认识。培养学生灵活运用知识解决问题的能力。

教学目标:

1、培养学生用所学的数学知识解决简单的实际问题。

2、进一步发挥学生的想象力。

3、让学生在交流中参与解决问题的全过程,培养学习数学的积极性。

教学重点:培养学生合理利用各种信息解决问题的意识。

教学难点:根据情境图的资源,提出问题和解决问题。

一、基本练习。

二、创设情景。

三、用数学。

四、小结:

1、指名口算:

2、填未知数:

(1)6+=1114-()=10。

讨论:,括号里该填几?怎么想?指名回答。

(2)练习:

9+()=138+()=1512-()=2。

5-()=47-()=1()+7=14。

学生做完后,问是怎样想的。

1、出示书上第108页的第10题。

(1)学生观察,你能提出两个数学问题并解答吗?

(2)同桌先说一说,再全班交流。

学生独自列式。

2、书上第108页第8题生独立完成。

1、书上第109页第11题。

(1)分组讨论,说一说图中讲的是一件什么事情?

(2)引导学生看图,结合文字理解内容。

(3根据问题列式计算,并说说你是怎样算的?

(4)举例说一说日常生活中的有关数学知识方面的问题?

2、思考题:学生先思考,分组讨论,互说想法,然后再指名说一说你是怎样想的?

说一说你的收获?

作业设计:1、课堂作业本。

板书设计:总复习:用数学。

不同角度不同的列式原来有多少?

数学实际问题与方程教学设计篇十五

本节课是在学生已经学过用字母表示数和数量关系,掌握了求未知数x的方法的基础上学习的。通过学习使学生理解方程的意义、方程的解和解方程等概念,掌握方程与等式之间的关系,掌握解方程的一般步骤,为今后学习列方程解应用题解决实际问题打下基础。

(1)使学生理解方程的意义、方程的解和解方程的概念,掌握方程与等式之间的关系。

(2)掌握解方程的一般步骤,会解简单的方程,培养学生检验的习惯,提高计算能力。

(3)结合教学,培养学生事实求是的学习态度,求真务实的科学精神,养成良好的学习习惯。渗透一一对应的数学思想。

理解方程的意义,掌握方程与等式之间的关系。

天平一只,算式卡片若干张,茶叶筒一只。

一、创设情境,自主体验。

本课以游戏导入,通过创设学生感兴趣的学习情境,以激趣为基点,激发学生强烈的求知欲望。让学生在操作、观察、交流等活动中感知平衡,自主体验,积累数学材料,为更好地引入新课,理解概念作铺垫。并且无论是生活中有趣的平衡现象,还是天平称东西的实际状态,都无不放射出科学的光芒,它们带给学生的不仅仅是兴趣的激发,知识的体验,更有潜在的科学态度和求真求实的精神。

二、突出重点,自主探索。

理解方程的意义,掌握方程与等式之间的关系是本课教学的重点,让学生通过列式观察,自主探索,分析比较,逐次分类,讨论举例等一系列活动去理解方程的意义,掌握方程与等式之间的关系。使学生把知识探究和能力培养溶为一体,锻炼了学生科学的思维方法,使学生学得主动,学得投入。同时层层深入的设疑和引导也渗透了教师对学生科学思维的鼓励和培养,使学生在探索与实践中不断亲历求知的过程,如剥茧抽丝般汲取知识的养分。

三、自学思考,获取新知。

在教学解方程和方程的解的概念时,通过出示两道自学思考题。

(1)什么叫方程的解?请举例说明。

(2)什么叫解方程?请举例说明。”改变了以示范、讲解为主的教学方式,让学生带着问题通过自学课本,将枯燥乏味的理论概念转化为具体的例子加以阐明,既培养了学生独立思考的能力,也解决了数学知识的抽象性与小学生思维依赖于直观这一矛盾。

正是基于以上考虑,在教学解方程的一般步骤和检验方法时,也采用了让学生通过自学来掌握检验的方法及规范书写格式。

四、使用交流,注重评价。

要探索知识的未知领域,合作学习不失为一条有效途径。新的教学理念使合作学习的意义更加广泛,有生生合作、师生合作等等。生生合作有助于相互验证、集思广益。师生合作体现在“师导”,尤其在学生思维受阻,关键知识点的领会上,在本课中,有多处让同桌互说互评互查的过程,合作的力量必将促使学生认知水平的提高,自评与互评相结合的评价方式也将更好的有利于学生端正学习态度,掌握科学的学习方法,促进良好的学习习惯的形成。

数学实际问题与方程教学设计篇十六

在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,由此通过自我理解、生成、连接,形成自己的知识系统。本课《方程的意义》的教学设计,基于对数学概念及概念教学的再把握,相对于传统的教学,有了比较大的变化。这是我们的尝试,也是一种思考和探索。

整体的把握:

数学概念不仅是局部的,而且是全局的;不仅是静态的.,而且是动态的;不仅是学科的,而且是儿童的。所以对方程概念及其教学应从多个层面加以把握:

形式层面——含有未知数的等式(是关系的一种)。这是一种静态的结论。

发现层面——经历方程模式的生成过程,它来源于现实又回到现实,寻找等量关系并用方程来表示。这是一个动态的过程。

直观具体层面——举出正例或反例。

直觉层面——一种数学的意识、一种方程的感觉。

这样才能形成一个有力的认知结构(其中包含知识结构、方法结构和经验结构)。

目标的把握:

经历从现实问题到方程概念建立的过程,(方程是从现实生活到数学的一个提炼过程,一个用数学符号提炼现实生活中特定关系的过程。)体会方程是刻画现实世界的数学模型。

渗透方程思想的三个方面:设立未知量,将其当作已知数,参与到问题中事实的表达;建立等量关系,用方程表示(方程是说明两件事情是等价的);区别未知量与己知量,只要经过运算,就可用已知数表示未知量。

过程的把握:

统揽全局基础上的局部聚集,突出“知识胚胎”的生成。学生的认识不是线性发展的,而是整体式推进的。各个部分知识的拼装不可能产生真正意义上的有生命的知识,只有胚胎式的整体推进才能领略到知识生命的意蕴。所以概念教学须克服原有的分割式、部分式教学,突出“知识胚胎”的生成。传统教学注重从部分到整体,形成一个结构。现代教学应更重视从整体到部分再到整体,形成更有意义和活力的结构。

本课方程概念的教学,力图围绕目标形成一个包括知识技能、思维方式和方程思想的整体结构,在其后的教学中再对方程的各个部分进行深化,形成所谓同心圆结构的知识生成模型,这是儿童认识的规律,也许可以解决数学教学中知识太“散”的问题。

经历“问题情景——数学模型——解释与应用”的全过程。从“问题情景——数学模型”展开数学化和结构化的过程。再从“数学模型——解释与应用”展开结合现实寻找意义的过程。方程整体概念生成必须经历这样的过程,才能使目标的各个部分协调地组合在一起,产生一种数学的意识和方程的观念。

参考文献:

(2)林永伟、叶立军编著.《数学史与数学教育》第65页.方程产生历史的启示意义。

(3)《全日制义务教育数学课程标准(实验稿)》北京师范大学出版社。

数学实际问题与方程教学设计篇十七

今天我说课的内容是人教版初中数学九年级上册第二十二章、第22.3节《实际问题与一元二次方程》的第四课时实验与探究。它是继传播问题、百分率问题、长宽比例问题这几个基本问题的学习后的探索活动课,对于本节课我将从教材分析与学生现实分析、教学目标分析,教法的确定与学法指导,教学过程这四个方面加以阐述。

(一)教材分析与学生现实分析。

一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的基础,它是研究现实世界数量关系和变化规律的重要模型。本节课以一元二次方程解决的实际问题为载体,通过对它的进一步学习和研究体现数学建模的过程帮助学生增强应用认识。

大量事实表明,学生解应用题最大的难点是不会将实际问题提炼为数学问题,而列一元二次方程解决实际问题的数量关系比可以用一元一次方程解实际问题的数量关系要复杂一些。对于初中学生来说他们比较缺乏社会生活经历,收集信息处理信息的能力较弱,这就构成了本节课的难点。

(二)数学新课程标准要求:

人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的发展。

我根据新课标对方程的具体要求和初三学生的认知的特点,确定了如下教学目标的:。

1、知识与技能:能根据问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。以一元二次方程解决实际问题为载体,加强学生对数学建模的基本方法的掌握。

2、过程与方法:经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。

3、情感、态度与价值观:通过用一元二次解决实际问题,体会数学知识应用的价值,了解数学对促进社会进步和发展的作用。激发学生学习数学的兴趣,体会做数学的快乐,培养用数学的意识。

【本文地址:http://www.xuefen.com.cn/zuowen/16485737.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档