数学文化读后感(通用18篇)

格式:DOC 上传日期:2023-11-29 15:26:10
数学文化读后感(通用18篇)
时间:2023-11-29 15:26:10     小编:字海

读完这本书之后,我受到了很多启发和感悟。在写读后感时,可以尝试结合自己的经历和感受,给出对作品的个人理解。以下是一些精选的读后感范文,希望可以给大家在写作时提供一些有益的参考和指导。

数学文化读后感篇一

文中指出:“课程形态的数学文化是反映数学文化研究的成果,它从可操作的实践层面为数学文化教育价值奠定基础;它从哲学的层次,用通俗的语言表达深刻的数学思想观念系统,并以一定的形式呈现给学习者。”“在数学教学中,教师应通过“数学文化”的传播、交流、体验和感悟,使学生加深对数学文化特性的了解和数学本质的认识,从而使学生树立正确的数学观。让学生在学习数学的过程中受到一定的文化感染,产生文化共鸣,体验到数学文化的品味和世俗的人情味。”怎样挖掘数学文化素材,融入平时的数学课堂教学?我觉得可以从以下几个方面进行尝试:

一、数学家与数学发明。

在平时的备课过程中,应该注意对一些数学家相关的故事进行收集并作熟悉的了解,这样当在课堂上讲到相关内容、与学生交流、数学课外活动时就可以信手拈来,随时插入课堂教学中对学生进行数学文化的人文价值教育。如,在解决“如果每对兔子每月可生一对小兔,每对小兔在第二月也可以生产一对小兔,如此继续下去,且不发生死亡,问一年中共可生兔多少对”这一问题时,可以向学生介绍意大利数学家斐波那契的斐波那契数列的知识;在进行“圆柱体体积计算公式”教学时,可以先介绍曹冲称象的故事;在讲解“等差数列求和公式”时可以向学生介绍德国的“数学王子”高斯的小故事等等。总之,以数学家为线索的数学文化源远流长、包罗万象,我们可根据教材所涉及的知识介绍不同层次的相关内容,激发了学生学习的兴趣。

文化的美学观是构成数学文化的重要内容.古代数学家、哲学家普洛克拉斯断言:"哪里有数,哪里就有美."开普勒也说:"数学是这个世界之美的原型."对数学文化的审美追求已成为数学得以发展的重要动力.以致法国诗人诺瓦利也曾高唱:"纯数学是一门科学,同时也是一门艺术.既是科学家同时又是艺术家的数学工作者,是大地上的唯一的幸运儿.在教学过程中应引导学生去发现数学中的美。符号是数学的一大特征。有些人见到一个个符号就犹如听到一个个美丽动听的音符;有些人见到了符号就眼花,搞得晕头转向、不知所以,这与他们对符号本身的认识程度有关,所以在课堂教学,适当介绍一些数学符号的来龙去脉,无疑有助于提高学生对符号的深刻认识,并从中得到乐趣。比如,在立体几何课应该适当提及到学生感兴趣的美术绘画,传授学生如何把立体的图形画在平面上。

当然,教师应该注意提高自身的美学修养,要有对学生进行美学教育的意识,让学生体会到数学是赏心悦目的,使追求和探索数学中的美成为学生学习数学的动力,并引导学生利用数学中的美陶冶性情,实现数学的文化教育功能。

数学和文学的思考方法往往是相通的。举例来说,数学课程里有“对称”,文学中则有“对仗”。对称是一种变换,变过去了却有些性质保持不变。数学中的轴对称,即是依对称轴对折,图形的形状和大小都保持不变。那么文学中的对仗是什么?以王维所云:“明月松间照,清泉石上流”为例来说,这里,上联对下联,其中字词句的某些特性不变,如“明月”对“清泉”,都是自然景物,没有变。形容词“明”对“清”,名词“月”对“泉”,词性不变,看其余各词均如此。不难发现,变化中的不变性质,在文化中、文学中、数学中,都广泛存在着。数学中的“对偶理论”,拓扑学的变与不变,都是这种思想的体现。文学意境也有和数学观念相通的地方。徐利治先生早就指出:“孤帆远影碧空尽”,正是极限概念的意境。

总之,要在数学教学中渗透数学文化离不开数学史,但又不能仅限于数学史,还应该有一些“非数学”的内容。教师只有结合学生实际,精心创设教学情境,努力诱发学生强烈的求知欲,为学生学习做好充分的课堂准备,才能将数学文化的魅力真正融入教材、到达课堂、溶入教学,才能让学生进一步理解数学,喜欢数学、热爱数学,从而主动探索,进而获取知识。

数学文化读后感篇二

上一学期,就断断续续地在阅读北京东路小学张齐华老师的《审视课堂:张齐华与小学数学文化》一书,假期中更是再次认真拜读了一遍。作者张齐华是一位年轻的教师,已经得到众多名家的认可,也受到广大老师的赞同。张齐华老师致力于在实践层面还原数学的本来面目,演绎数学的文化魅力,展现数学的意趣与价值。

张齐华老师的教学,给人以惊奇之感,有方法的领悟、思想的启迪、精神的熏陶。设计自然流畅、环节处理细腻、构思巧妙魅力、教学到位厚重,很是值得我学习。

张老师的座右铭“不重复别人的,更重复自己”,才让他不断地思考、不断地创新。《圆的认识》一课,在准备时“由外而内”的跨越,让我看到张老师在新一轮《圆的认识》的探索与实践,尽管困难重重,但张老师坚信:路总会重新走出来的,只要你愿意去开辟。在思考后一个个问题的出现,张老师坦然面对静心解决,使《圆的认识》一课再次呈现了一些别样的意味。看着实录,就像走进了张老师的课堂,俨然像在品一杯好茶,只有静心悟道才是至理。

张老师的《交换律》坚信了数学向着纵深处开掘的至理,读这份案例为其深度和细腻而震撼。对数学文化的追求正是本节课的显著特色,这种数学文化特质不仅外释为一份感性的素材,更内蕴成一种理性的思辨。“猜想—验证—猜想—验证—猜想”犹如泛起涟漪的思维波,思维的确定性、变通性、辩证性、得以相互印染,这种质辩的深入性正是我们孜孜以求的教学本质内涵和教学价值取向。《认识整万数》一课,让我了解到张老师是如何破解数学知识内在的结构的。

新颖的教学设计因为有了教师对教学内容本身的深刻理解作支撑,而获得了更加丰富的内涵。精彩的四十分钟,来自于课外日日夜夜,来自于教师对教材内容和数学知识结构的深入把握,对数学规律方法的深层次揣摩,更重要的是,对学生已有知识的调查了解。

张齐华老师带给我们的不仅是一节课、教学方法与理念,还有对教育、对专业的执着追求,感受到一名数学教师在艺术王国里演绎精彩的真实历程。张老师的教育理念给我指明了教学的方向,让我学习如何研究我们的数学,如何让我们的数学更有数学文化的味道。

数学文化读后感篇三

在没有读这本书之前,可能很多人都会觉得数学可能只有那些对抽象思维特别感兴趣的人才会去研究,才会去思考。数学与我们非常遥远,在我们的生活和文化观念中,数学最多起到为我们日常生活服务的作用,至于数学本身,无法给我们带来任何的快乐和满足。

如果您读完了这本书,您的上述观念无疑将发生根本性的转变。本书作者从历史的角度,详细地为我们描述了数学如何在与各种文化、思想和人类的旨趣互动的背景下产生、发展和成熟的。

对于数学的发展而言,从古希腊开始,就和人对美的追求,对灵魂的解放联系在一起,而到了近代科学,数学不仅和科学的发展联系起来,而且也为西方文化的发展,文明的进步,作出了许多贡献。而到了现代,数学所起的作用可能与我们更密切,当一般人极力逃避数学的时候,我们在生活中的各种行为和选择,却往往受到数学的影响,如概率统计在选举和天气上的作用,概率对决定论的破坏以及对人类自由的维护,等等。

本书作者没有将对数学与西方文化的关系的论述停留在空洞的哲学空话之中,相反,他从数学产生以来西方文化对数学发展的影响,以及数学如何反过来影响西方文化的各种具体的细节,用他生动的语言给我们再现出来,更难得的是,当涉及到许多哲学上的问题的时候,他既没有像一般科学史学家那样回避或忽视哲学问题和科学的联系,另一方面又能够以清晰的语言尽可能的把握住哲学的真正的观点。虽然有些地方依旧存在偏差或简化,但对于一个数学史学家来说,实在已经很不容易了。

通过本书的精彩论述,我们也可以看出,数学的发展单纯依靠实用的态度是不行的,如果数学家无法从数学研究中获得乐趣,那么,就会像古罗马那样,数学的传统迅速衰竭。而要让人能够从数学中获得乐趣和激情,那么惟有在合适的文化的土壤中,才是可能的。

而对于个人的发展来说,数学不仅仅是一门工具,还是具有内在价值的精神产物和文明成果,在一个人运用数学进行思维的过程中,所锻炼的不仅仅是他的思维方法,更重要的是,他的许多观念也会发生变化,他会对伦理上的决定论和非决定论,产生新的认识,从而更大和更深刻的.领悟人类的自由,他会了解所谓的客观的审美标准是什么,并意识到数学中存在的和谐、对称之美的本质及其独特性,他甚至会根据自然的数学化来重新认识和领会世界,并从而为之高声赞叹。

这本书揭示了数学世界中最引人入胜的一面,相信大多数人都能从这部书里面领略到数学对人性以及人的生活的魅力的。

数学文化读后感篇四

看着本该拥挤嘈杂的县城里,街上却寥寥无几的车与人,感受着疫情带来的恐惧与孤独,能与陪伴我的《审视课堂——张齐华与小学数学文化》一书为侣,也是一件幸事,一方面可以打发这苍白无奈的时间,还可以沉淀自己烦躁的心情,还真是一举两得。

这本书的序里,他的师傅张兴华对他如此评价:从最初课堂上蹒跚学步的‘丑小鸭’,到如今众多数学教师心目中追随的‘数学王子’,我见证了张齐华的成长历程。有人惊叹于他教学技艺的高速攀升,有人折服于他对数学课堂的深刻见解,亦有人陶醉于他对数学课堂的诗化演绎,而我却亲眼目睹了他——因为热爱、执着和超越,在小学数学教学的艺术王国里演绎精彩自我的真实历程。每一个人在教育这条路上,都是一番磨难走过来的,成功的花儿,人们只惊羡它现时的美丽。当初它的牙儿浸透了奋斗的泪水,洒遍了牺牲的细雨。我只看到了他成功的一面,他驾驭课堂的轻松,却不曾想,他背后付出了怎样的努力,没有人能随随便便成功,成功的前提是有付出。

张齐华执教的《圆的认识》一举获得了江苏省小学数学优质课评比一等奖,给听课的教师和学生留下了极其深刻的印象。可这堂课也引来了一些争议,五年后,当他再次执教《圆的认识》这一课时,全新的设计,朴素之美,简约之美,同样深深打动着每一个听课的教师。“不重复别人,更不重复自己”,这是张齐华的座右铭,更是他每一堂课留给大家的清晰印象。两次不同的课堂,第一次华丽,让人们享受一场数学文化的盛宴,第二次,质朴简约,他真正做到了不重复自己,可以想象他为了这节课多少次辗转难眠,翻遍了多少教学资料,开展了多少次教学调查!

磨课过程中所尝到的甜酸苦辣,也是不断累积的一笔巨大的经验和财富,每一次的焦灼和痛苦,换来的恰是他对数学以及数学教学更为清晰的质的飞跃与攀升!

一个人如果想进步,谁也抵挡不住,机会总是留给有准备的人。

数学文化读后感篇五

读这本书是因为朋友的差评:“太无聊了,日本哥们压力大到用无聊解压,真的看不下去。”

我向来好奇心重,作者的大便书在国内外如此畅销,怎么会low到这个程度?好奇心就是动力,一定要评下无聊度数,反正姐也是亚历山大,实在无聊也顺便解压了。

带着这个有色眼镜,我开始批判性阅读。

没想到的是,从无聊开始,到有聊还没结束,我一直被这本书引领着,开启了更上一层的快乐生活。

作者的画风还是那么独树一帜,用最简单的笔画画出的却是传奇,看似小儿科,其实却是大家的范;文字不多,提纲挈领,点到为止,留更多的发挥空间让读者去思考,可谓仁者见仁智者见智;书中涵盖的内容非常宽泛,把抽象而枯燥的数字形象化具体化,引入生活、工作,通过思维的改变,让我们获得发现美和乐趣的能力。

通过这些小的图文并茂的实例,我掌握了送礼的艺术、定价的策略、消费的陷阱、目标制定的技巧、绩效方案的策略,并把这些融入到生活和工作中,起到了非常好的效果。同时了解了符合人性的思维架构并建立之,在很多方案的设计中运用,大大提高了方案通过的成功率!

关于竹节的篇章,我自己也受益匪浅,生活未必总是多姿多彩的,但如果我们拥有了发现和创造爱或美的能力,我们总会拥有快乐,因为我们拥有了创造快乐的能力。自己快乐了,我们会带给身边的人快乐,生活就不一样了!

看似浅显的漫画书,其实蕴含了很多的人生哲理,这个浮夸的时代,需要静下心来品读!

书是不是无聊,你也来试试!

数学文化读后感篇六

第一次看到书名《印度数学》,和封面上的小标题—世界上最神奇的数学课。我就在想,印度数学?它和我们学的数学有什么不一样么?数学还有不同的?“最神奇的数学”,为什么神奇?神奇在哪?难道不用加减乘除?带着满心的疑问,我翻开了书。

书里讲的也是加减乘除,那神奇在哪呢?它的神奇就在它算式的算法。咦?难道不是按个位,十位的竖式计算方法吗?没错,印度数学的计算方法还真不是这样,不信?我举个例子吧。比如两位数减两位数:92-43,它的计算方式是把92分成90+2,43分成50-7,再从高到低计算,整数相减,个位相加。

我最喜欢的是“结网计数”这篇,因为它完全是用画图来计数。

书里还有许多计算方法是我看不明白的,比如面积计算法,一元一次和两元一次的计算。

果然,印度数学的这些计算方法和我们学的很不同,但是真的很有趣。我真是第一次知道,原来数学还有这样的啊。

数学文化读后感篇七

问题恰在于此。认同某一事物具有文化性,并不等于这一事物就一定能在所有的境域中彰显出它的文化属性来。比方说,“鱼”很有营养价值,但糟糕的烹饪方式不仅会破坏其固有的营养价值,甚至还可能使其完全丧失营养、变成有害于健康的食物。

烹饪鱼是如此,教学数学又何尝不是这样?事实上,只要稍加辨析便不难发现,我们论定“数学是一种文化”,思考的对象是“科学范畴”里的数学,也即,我们探讨的还只是一般意义上的、以“学术形态”存在的客观的数学科学。此时的数学,它既是“人类创造活动的结晶”,同时,“对人的行为、观念、态度、精神等又具有重要影响”,无论从广义还是狭义上看,它都已具备作为一种文化的资格。然而进入学校视野、课堂范畴的数学,势必经历了一个从“科学数学”向“学校数学”,进而向“教育形态”的“课堂数学”的转换。转换的过程中是否消解了数学原有的文化属性,恰是我们深入探讨数学文化时应着力关注的话题。

现实境况不容乐观。反观当下的数学课堂,由于对知识、技巧等工具性价值的过度追逐,数学原本具有的丰富意蕴日益被单调、枯燥的数学符号所替代,并几乎成为了数学的全部,这使数学本该拥有的文化气质一点点被剥落、以致本属文化范畴的数学,正渐渐丧失着它的文化性。正是在这一意义上,重申“数学文化”,呼吁“还数学以文化之本来面目”,就成为数学实践层面迫切需要解决的问题。

如此看来,文化可以在课堂被消解,也同样可以在课堂被重拾。二者之间,差异恰在于视角的切换。所以我一直坚持,文化应该成为数学课堂理应选择的视角和姿态。唯有如此,数学课堂彰显其文化的本性方有可能。

在实践和探索的过程中,概念或命题的被误读已不是什么新鲜事,数学文化同样没能幸免。如何被误读,为何被误读,值得我们思考。

首先是概念的窄化。将数学文化简单等同于数学史,以为渗透了数学史,那就是一堂体现数学文化的课。应该说,数学史是数学文化的重要组成部分,但数学文化还远不是数学史能包容和涵盖的。

其次是概念的泛化。将数学文化和课堂文化混为一谈。课堂上人与人的不断对话、交往、互动无疑是一种文化现象,人们通常称之为课堂文化。事实上,不存在挣脱文化现象的课堂行为。然而,这里的“文化”关涉的是课堂活动本身,而并非指课堂中所承载的数学内容。一个充满着文化现象的数学课堂里,传递的未必就是带有丰富文化意蕴的数学内容,这足以表明二者的区别。不少教师将民主对话、平等交流等都纳入数学文化的领域,这显然不妥,是对数学文化的一种泛化,不利于我们认识数学文化本身,不利于我们准确把握数学真正的文化价值。

数学文化读后感篇八

在大学初学《数学史》时,我便对数学史产生了浓厚的兴趣,并由此爱上了数学这一学科。工作后,我成为了一名数学教师。我常常在想,如果能够把数学文化融入到课堂中来,那是一件多么有意思的事。于是,我仔细研读了《数学文化》一书,获益颇多。

众所周知,数学是人类文明的一个重要组成部分。最初牙牙学语地创造丰富多彩的记数制度,然后在花季雨季之中为数学建立越来越多、越来越详尽的分支,到如今,展现它花样年华之时耀眼夺目的数学成果。与其他文化一样,数学科学也是集齐了几千年人类智慧的结晶。

读完《数学文化》,心底不由得一阵感动。那是一种什么感觉呢?是一个对数学有着宗教般虔诚的仰望者的心动,是一个对历史有着无尽探索欲望的追求者的向往。每一代人都在数学这座古老的大厦上添加一层楼。当我们为这个大厦添砖加瓦时,有必要了解它的历史。通过这本书,我对数学发展的概况有了一个较为全面的了解。书中通过生动具体的事例,介绍了数学发展过程中的若干重要事件、重要人物与重要成果,让我初步了解了数学这门科学产生与发展的历史过程,体会了数学对人类文明发展的作用,感受到了数学家严谨的治学态度和锲而不舍的探索精神。

数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系。数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这使数学成为人类文化中最基础的学科。对此恩格斯指出:“数学在一门科学中的应用程度,标志着这门科学的成熟程度。”在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立……这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。

在数学那漫漫长河中,三次数学危机掀起的巨浪,真正体现了数学长河般雄壮的气势。第一次数学危机,无理数成为数学大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是最早发现根号2的希帕苏斯被抛进了大海。第二次数学危机,数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。但牛顿曾在英国大主教贝克莱的攻击前,显得苍白无力。第三次数学危机,“罗素悖论”使数学的确定性第一次受到了挑战,彻底动摇了整个数学的基础,也给了数学更为广阔的发展空间。但歌德尔的不完全性定理却使希尔伯特雄心建立完善数学形式化体系、解决数学基础的工作完全破灭。天才的思想往往是超前的,这些凡夫俗子的确很难理解他们。但是时间会证明一切!

数学是一门历史性或者说累积性很强的科学。重大的数学理论总是在继承和发展原有理论的基础上建立起来的,它们不近不会推翻原有的理论,而且总是包容原先的理论。例如,数的理论演进就表现出明显的累积性;在几何学中,非欧几何可以看成是欧氏几何的拓广;溯源于初等代数的抽象代数并没有使前者被淘汰;同样现代分析中诸如函数、导数、积分等概念的推广均包含乐古典定义作为特例。可以说,在数学的漫长进化过程中,几乎没有发生过彻底推翻前人建筑的情况。而中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。从远古以至宋、元,在相当长一段时间内,中国一直是世界数学发展的主流。明代以后由于政治社会等种种原因,致使中国传统数学濒于灭绝,以后全为西方欧几里得传统所凌替以至垄断。数千年的中国数学发展,为我们留下了大批有价值的史料。

从文化的角度去看数学,是一个新问题。不过我相信,一旦你踏进数学文化的门槛,就会惊奇地发现这是一个美仑美奂的奇异世界。而本文所提及的一些东西还只是隔岸观火的皮毛,相信随着人们对数学文化的深入研究,一定会呈现给人类一个更加精彩的世界。总之,数学文化是一个比较精彩的文化,是一个未知的我们广大青少年去了解的文化,慢慢体会,别有一般滋味在里面。

数学文化读后感篇九

古人说“腹有诗书气自华”。不敢说自己是一个气质华丽之人,也不敢说自己是一个酷爱读书之人,但学校组织读书沙龙以后,感觉如沐春风,我的生活真的充实了很多。

《黄爱华与活的数学课堂》成为了我真正的朋友,每天伴随着我。书页间飘散的墨香中,每每嗅出它那深藏的思想,也触发自己心底的思绪。说实话,我也曾有过美好的理想,但由于自己的惰性常会半途而废,自认为过得去就算了。读了黄爱华老师的书后,他的嗜书如命、执著追求以及精彩智慧的课堂深深打动了我,吸引着我,鼓舞着我。

黄爱华老师而立之年,风华正茂,却成为了全国的名师,从他的书中我了解到,他是个嗜书如命的人。从教以后,他流连书海,如痴如醉,页页精读,行行品味,字字琢磨。为了掌握教学规律,接受新的教育思想,寻求新的突破,业余时间几乎都用来钻研教材,翻阅资料,学习教育教学理论。

几年来,他研读过数学教学法,比较教育学,儿童心理学,以掌握儿童发展认知规律;分析过小学数学教材的知识体系,研究过国内外不同教法的特点,不断探索儿童认知的最佳建构过程。每年新年伊始他都会列出书目,制定详细的读书计划,每年至少读五本教育专著,读中外教育史,读中外教育名著,并做好阅读札记。书,是他最好的朋友。可以说一刻也没有放松过学习。他的案头、床边,随处都是书,光近几年的学习笔记就有几十万字。正是由于有厚实而广博的知识基础,他才在教学中高屋建瓴,深入浅出,挥洒自如。

黄爱华的课堂充满了生命的活力。三尺讲台前,他精心地去做一个智者,把他的所见所闻、所思所想巧妙地与数字结合起来,绘制了一幕幕令学生终生难忘的教学画面,勾勒出一次次专家同行眼中的“神来之笔”。他主张开放小教室,把生活中的鲜活题材,引入学习数学的大课堂;依据学生的生活实际,引出学生去思考和实践的数学问题;让学生做“数学实验”,亲身体会如何解决问题。把数学问题生活化,生活问题数学化。老师就是一个“适宜的点拨者、亲切的慰藉者、无私的协助者和诚挚的合作者”。

在教学方法上,关注学生在“数学思考、解决问题、情感与态度”等方面的发展,让学生愿意亲近数学、了解数学,学会用“数学的眼光去认识自己所生活的环境与社会”。课堂教学中力求:引人人胜地创设问题情境、激情四射地开展探索研究、意犹未尽地实践延伸。比如:在循环小数一课里,他用尽人皆知的:从前有座山,山里有座庙,庙里有个老和尚,他对小和尚说,从前有座山,山里有座庙,庙里有个老和尚,他对小和尚说,从前……这样一个有趣的童谣,作为本课的“开场白”,形成了轻松、愉悦、民主的学习气氛,使学生一下子进入了最佳学习状态。

整除的学生依次出教室,全场的学生都要说出谁是几的倍数。当最后剩下学号是质数的同学时,他便问:“老师出一个什么数时,我们都可以离开教室?”学生们大声回答:“l”……总之,在教学中他关注学生的发展,为学生发展而教;尊重学生,与学生“和”“平”相处。在教学艺术上,求“实”,求“活”,求“美”,求“趣”,求“新”,求“效”。

黄爱华老师的教学注重非智力因素的培养,教学设计时,考虑到情感因素,努力创设情境,让学生的情绪受到感染。他教学“分数的基本性质”时,一上课,先给学生听一段“猴王分饼”的故事,引起学生的好奇心,接着让学生思考故事中提出的问题“哪只猴子分得的多?”激起学生探索新知的欲望。

得出结果后,再让学生说出故事中猴王的想法,要求学生帮猴王想办法,使学生始终兴趣盎然,精力集中。当学生聪明地运用所学知识帮助猴王想出办法时,黄老师就会给一句“你比猴王还聪明”的评价,使学生获得成功的满足。他曾用音乐课的“节奏练习”来教学“循环小数”,用学生的学号数来教学“质数和合数”。他的“趣”“实”“活”的教学风格已经形成。他把情境教学、游戏教学、愉快教学融为一体,不断把学生带入新的境界。

通过读书,我深切的感到,读书本身并不是目的而是智慧,学无止境,我坚信:向书本学习,因书本而智慧;向他人学习,因他人而智慧;向万物学习,因万物而智慧;无所不学则无所不智也。黄老师的课堂让人耳目一新,令人陶醉。教学有法,但无定法,好书成为了我教学的“掌中宝”,在以后的工作实践中,不是机械地模仿,而是创造性地加以应用,这也是我追求的一种教学境界。

数学文化读后感篇十

近日我认真拜读了《新课程理念与小学数学课堂教学实施》一书,这本书是们学校发的。读完这本书让我受益匪浅,颇有心得。

《新课程理念与小学数学课堂教学实施》是王丽杰、吴文信所著,由首都师范大学出版社出版发行。全书八个部分:

第一部分“为了每一位学生的发展“主要位我们剖析了新课程这一核心理念。

第二部分“走向生活”,让我们把握课程要面向学生的生活世界和社会实践和教学活动必须尊重学生已有的知识与经验这两个基本理念。

第三部分“为了孩子美好的明天”介绍了新课程基本理念之三;提倡自主、合作、探究的学习方式。

第四部分“参与是课程实施的核心”让我们明确了这个基本理念。

第五部分“让课堂教学充满创新活力”是围绕新课程改革的主旋律是培养学生的创新精神和实践能力这一基本理念而讲的。

第六部分“教是为了学”阐明的基本理念是教师是学习活动的组织者、引导者、参与者。

第八部分“发展才是硬道理”从第二部分到第七部分,还提供了许多教学片段或课例及简明的点评,并总结出课例所蕴含的理念,还为读者总结提供行动策略。

真正是课例鲜活而富有内涵,理念阐明通俗易懂、深入浅出;行动策略具体详尽,可操作性强,做到课例、理念、行动策略的“三点一线”。

1.教师和学生的关系。

旧课程观认为教师是知识的传授者,教师是教学活动的中心,学生只是知识的接受者,是被动的。而新课程观则认为,学生获取知识的过程是自我建构的过程,教师与学生都是课程的开发者,共创共生,形成"学习共同体".每个学生都带着自己的经验背景,带着自己独特的感受,来到课堂进行交流,这本身就是课程建设.

2.课程和教材的关系.

旧课程观认为课程就是教材,教材又是知识的载体,因而教材是中心,而新课程观则认为课程是教材、教师、学生、环境四因素的整合.学生从同学身上.教师身上学到的'东西远比从教材中学到的多.

3.课程与教学的关系.

数学新课程理念之一就是课程要面向学生的生活世界和社会实践,这里是指课程的内容要贴近学生的生活实际,要反映现实生活的内容;课程要成为学生生命历程的重要组成部分;课堂学习要与社会生活实践紧密结合。《新课程理念与小学数学课堂教学实施》举了很多鲜活的例子来反映新课程所提倡的理念。本书的课例提供的行动策略也给我带来了收获。比如以前如何让学生参与教学我比较盲目,现在我知道要做到以下的几点:

1、给每一个孩子以同样的表现机会;

2、让孩子学得有兴趣;

3、把孩子们领进精彩的问题空间;

4、精心设计学生的活动;

5、把时间和空间还给学生;

6、注重过程,注重体验。

其中“面积和面积单位”教学片断给我留下了深刻的印象。

数学文化读后感篇十一

一个酋长要分给一位名叫纪塔娜的美丽女神一块土地,这块土地的大小可以用一张灰鼠皮围起来。纪塔娜接过鼠皮,并没有把它直接铺在地上,而是把它剪成了很细很细的皮条,把这些皮条连接成了一条很长的皮绳,她用这条皮绳靠着海岸,围出了一块很大的半圆形的土地,结果她就分到了一块很大的土地,自作聪明的酋长这下可傻了眼。原来,用一定长度的绳子,围出一块面积,其中,围成的圆的面积是最大的,二如果围成一个完全的圆形,那它的面积确是有限的。纪塔娜利用了海岸线,把海岸线当成了这个半圆的直径,这样围得的土地是最多的。

读了这篇故事,我体会到做事情不能只看事物的表面,有时一个小小东西的应用得当,可以创造出很大的成就。这个故事还告诉我们考虑事情要从事物的多个角度出发,如果没有仔细考虑,就得出来的结论只是片面的、不一定是最好的。

数学文化读后感篇十二

《数学教学的激情与智慧》,郑老师在书的第一辑里讲述了她生命化教育心路的历程。当儿时的梦想已成真,踏上了梦想中的三尺讲台,烦琐,机械性的劳作慢慢侵蚀着教师梦,使人感觉到了现实与梦想之间的差距。是啊,十多年了,一成不变,毫无生机的教学工作,永远做不完的事情常常使我感觉自己就像一只陀螺,在鞭子的抽打下不停地转啊转啊,慢慢地失去了自我。

任教十几年来,对自己的工作还是比较满意的。但最近几年,总觉得自己在课堂上缺少了一些激情,课堂语言太平淡,语言不精练,所以学生的兴趣不能被完全的调动,课堂学习的氛围也不是很浓厚。读了这本书,从郑老师的教学案例中我得到了很大的启示。优秀的课堂语言修养,可以使教师教得生动活泼,学生学得有情有趣。在很大程度上,教师的语言、动作、表情决定着课堂教学的效率和质量。郑老师在书中介绍了几种数学教师的语言艺术。第一,以情激情,教师的语言要具有感染力;第二,深入浅出,教师的语言要具有启发性和目的性;第三,寓教于乐,教师的语言要具有趣味性;第四,严密准确,教师的语言要具有规范性;第五,机智敏锐,教师的语言要具有灵活性。郑老师通过这五点分别举了相应的教学案例,让我受益匪浅。其次,教师的动作,教师的表情也是引起学生注意,让学生感兴趣的法宝。在课堂上只有充满激情的老师才会有投入地忘我学习的孩子。

除了语言的修炼外,一个优秀教师还得充满智慧。郑老师在书中介绍了改进教学策略,促进学生主动学习的方法。第一、创设问题情景,鼓励学生主动参与;第二、适时,适度地点拨,为学生主动学习创设时空;第三、营造主动探究氛围,使学生享受成功。

创设情境是数学教学中常用的一种策略,它有利于解决数学的高度抽象性和小学生思维的具体形象性之间的矛盾。在自己多年的教学过程中也发现,如果课前的情境创设得很好,能很好的调动学生学习的积极性,很顺利的引入讲授内容。反之,则画蛇添足。那么到底应该怎样创设数学学习的情境才是有效的呢?郑老师根据多年的教学经验,也给了我一些启示:情境创设要有目的性,实效性,真实性和吸引力。遵循这几条规律,我相信自己在以后的教学中一定能创设很好的有助于教学的情境。

读完这本《数学教学的激情与智慧》,我还明白了一个道理,要想成为一名优秀的'教师,首先要充满爱,只有内心充满爱的老师,才能让学生健康地成长。其次,要全面,不光会上精彩的课,还要能育人,用自己高尚的人格魅力去感染每一位学生。最后才能达到书中一学生对郑老师师生情的升华总结:感动,感激,感怀,感佩,感知。从书中我了解了郑老师的教育心路的历程,欣赏了她的优秀的教学设计,学习了她的教学经验,我相信在我以后的从教历程中,这将是一份宝贵的财富。

我要感谢这本书,是它让我找回了这几年丢失的东西——激情,它让我对以后的教学充满了期待,我不会再像陀螺那样在鞭子的抽打下无奈的转动,而应乘着课改的春风在教学之路上自由地飞翔。

数学文化读后感篇十三

一个最小的自然数,它非正非负,乘或除以任何数,结果都等于0,而且没有倒数,是谁呢?没错,这个数就是0。

最近,我读了一篇趣味数学小故事,名叫0和它的数字兄弟,故事的大意是这样的:1234567890十个兄弟去了森林,9自豪的以为自己是最大的数字,大家一致认为0是最小的,除了0,每个数都有自己的本事,所以,没人和0玩。可是,大象掉进了大洞爬不出来了,1到9都来帮忙,组成了最大的数字987654321,使出浑身解数都救不了大象。最后,0也来帮忙了,组成了9876543210,力量突然扩大了10倍,救出了大象。

读完这个故事,我深有所悟。原来,一个小小的0,也能释放出这样大的力量啊!那么,我们比不上小小的0吗?答案一定是否定的。为什么有人数学很差,正是他把一个“0”给忽略了,只要你比别人多花一点时间,上课认真听了,作业还好完成,就会一点一点的进步。记住,数学不是靠看看就能会的,而是靠你的大脑去思考,数学很简单。

我们一定不能看低自己,也不能像9一样自大骄傲,要怀着谦虚的心态去学习。遇到什么事,大家都要团结,只要齐心协力就能打倒困难,天生我材必有用。

数学文化读后感篇十四

最近,我读了一本书,叫《数学司令》。它主要讲了自称“数学司令”的牛牛,运用数学知识解决生活中的实际问题的故事。开始时,妞妞非常骄傲,自己碰巧的了第一名,就到处炫耀。但是,后来在实际应用中,觉得自己的只是远远不够用,觉得自己应该继续虚心学习、认真听课。知识的海洋是无边无际的`,应该不断的探索,从那以后,他就比以前更加努力。

读了这本书,我在想:我们在学习中,在生活中,不要有半点骄傲情绪,应该不满足于现状,继续努力学习,争取更大的成绩。可是,我们的学习中往往有一些这样的人。小明是一个很聪明的小学生,但是他非常骄傲,上课不认真听,听了一半就以为自己全都会了,就在下面玩东西。所以,他的成绩很差。小丁一般般,但是他非常努力地学习,没有半点骄傲情绪,正是因为这样,小丁的成绩越来越好。

读了这本书,我们要学习牛牛,学习牛牛敢于认识自己的错误,勇于改正缺点,善于动脑,在知识的海洋中不断地遨游,有句这样的名言“虚心使人进步,骄傲使人落后”。

小朋友,我们一起努力学习文化知识,将来做一个名符其实的数学司令,做一个对社会有用的人。

数学文化读后感篇十五

数学比较抽象、枯燥、严谨,而音乐则比较丰富、有趣、充满着情感及幻想。但两者却有着千丝万缕的联系,音乐虽然旋律多变,但都由七个音符组成,数字1~7在音乐中是神奇的数字;音乐中的节奏、强弱等都存在着数学中量的差异。因此,在组织数学活动中,将抽象的数学知识和生动的音乐紧密结合起来,充分发挥音乐的魅力,为数学活动注入新的生命力。

西尔威斯特说过:“难道不可以把音乐描述为感觉的数学,把数学描述为理智的音乐吗?”无锡市惠山区实验幼儿园针对音乐与数学领域的互补作了研究,从三个视角反映多个镜头:

镜头一:小班学习方位词。创编小老鼠捉迷藏的动作情节,学习方位词。

镜头二:中班学习序数。改编歌曲《打电话》的部分歌词为方位词。

镜头一:大班学习数的组成。选用音乐游戏《开汽车》,1名幼儿当司机,听着音乐开汽车,当音乐停,司机去邀请一位小朋友,教师告诉幼儿:1天上1是2,2里面有2个1,从而明白,1和1合起来是2。

镜头二:中班比较数的多少。玩音乐游戏《抢椅子》当音乐停,会有一位或者几位幼儿没有抢到椅子,引导幼儿用一一对应的方法比较,感知几比几少,几比几多,少多少,多多少。

镜头一:音乐游戏《蝴蝶找花》,当音乐开始,幼儿分别扮演蝴蝶在花丛中飞舞,按要求寻找花朵,如花的数量、大小、颜色等来排列。

镜头二:学习5的组成。改编音乐游戏《钓鱼》。现在音乐声中钓鱼,当钓到5条鱼后,音乐停止,把5条鱼放在两个盆中,边分鱼边记录。

从以上一个实例,认为两个领域内容在整合的过程中要注意三个问题:

1.挖掘音乐材料本身蕴含的数学关系。

在众多歌曲中,有些有明显的数学关系,如“数高楼”、“我的朋友在哪里”、“十个小矮人”等。又如“逛公园”和“拔萝卜”游戏存在着按高矮大小差异排序的`内容。

2.在幼儿熟悉的音乐中渗透数学内容。“找朋友”游戏幼儿很熟悉。幼儿在愉快的氛围中边唱边跳,寻找与自己数量相等、颜色或形状相同的朋友,思维辨别能力明显加强。使得数学方法纳入认知结构中,内化经验,形成新知识。

3.音乐游戏中应具有让幼儿独立思考的成分。

阅读文章再反思,认为两个领域的整个是双向双线相互渗透的。通过音乐材料的直观性帮助幼儿学习抽象的数学,化难为易。在音乐活动中渗透数学概念,丰富音乐的内容,深化游戏的玩法,体现游戏的可玩性和延续性。数学是一门基础性的学科,存在于生活的每一个环节,也可以称实用科学。它可以渗透在许多的领域中。比如,数学与健康的组合。数学与科学的组合,数学与美术的结合等等。仔细回顾和搜集我们平时的教学能采撷不少精彩的案例,在这些案例中,数学的渗透有时以活动难点呈现、有时则为解决难点的一种策略,总之,数学概念的整合能进一步深化有效教学。

数学文化读后感篇十六

《数学史》把数学几千年的发展浓缩为这本编年史中。从希腊人到哥德尔,数学一直辉煌灿烂,名人辈出,观念的潮涨潮落到处清晰可见。而且,尽管追踪的是欧洲数学的发展,但并没有忽视中国文明、印度文明和阿拉伯文明的贡献,是一部经典的关于数学及创造这门学科的数学家们的单卷本历史著作。读了这本书,让我对数学学习有了新的认识和感悟,也让我更深层次的了解到数学的魅力和伟大,以及对前人的崇敬。

数学源于人类的生活与发展。书中说,“人类在蒙昧时代就已具有识别事物多寡的能力,从这种原始的‘数觉’到抽象的‘数’概念的形成,是一个缓慢的,渐进的过程。”人类为了便于生活生产的需要,开始以手指头计数,手指数不够了,开始用石头计数,结绳计数,刻痕计数。又经过几万年的发展,随着几种文明的诞生与发展,记数系统在各种文明中都有了表示方式。古埃及的象形数字,巴比伦楔形数字,中国甲骨文数字,中国筹算数码等等。

但是,为什么时至今日我们最习惯和擅长使用的是十进制计数的方式呢,难道就是因为老师们一代一代这样教出来的吗?很多人可能就是这样认为的,或者根本并未思考过。书里写到:“十进制在今天的普遍使用,只不过是解剖学上一次偶然事件的结果而已:我们中的大多数人,生来就有10个手指、10个脚趾。”经历过扳着手指头数数的过程,可能十进制早已在我们的心中留下了牢固的烙印。这就是一个知识的自然形成。

通过对书中一些知识的'阅读与思考,可以感觉到许多知识并不是那些先驱者凭空乱想出来的,是根据某种需要而研究出来的规律,而且是一些自然存在的规律,我们今天所学的知识正是这些已经总结出来的规律。“坐标系”这个词,对很多人来说可能并不陌生,即使他的数学知识已经“还给老师”很多年了,他也许还知道什么是“经度纬度”。为什么会出现这样的现象呢,也许是因为后者在生活中出现的更多一些,但其实两者的实质都是一样的。一个小故事说:“笛卡尔小时候在一次晨思时看见天花板上有一只苍蝇在爬,他的头脑中闪现出智慧的火花,如果知道苍蝇和相临两个墙壁的距离之间的关系,就能描述它在天花板上的位置与运动路线。”这个故事可能是编造的,但最终形成了我们今天所知的“笛卡尔坐标系”。这样的思想广泛的应用在天文,地理,物理等许多的学科中。

数学源于生活,高于生活,最终也将服务生活,运用于生活。在一般人看来,数学是一门枯燥无味的学科,因而很多人视其为畏途,从某种程度上说,这也许是由于我们的数学所教的往往是一些僵化的、一成不变的数学内容,如果在数学教学中渗透数学史内容而让数学活起来,这样也许可以激发学生的学习兴趣,也有助于学生对数学认识的深化,让更多的学生懂得数学。

数学文化读后感篇十七

数学真是这样吗?当然不是,那小学数学是什么?什么是有价值的数学?数学教师首先应该关注的是数学还是学生的心灵?如何建构生命课堂?……董文华老师《让小学生恋上数学》一书给出了回答。

基于以上的思考,董老师把关注“教师如何教”转变为为关注“学生如何学”。她力求把课设计得更“朴实”,更“体贴”,让课堂更贴近学生的已有知识经验和生活经验这两层“厚土”。上课前,她努力把课堂向前延伸,围绕着学生的认知困难来设计教学;课堂上,她努力构建一个师生情感交融、共同成长的生命场,怀着极大的耐心,尊重、启发、引领、关注每一个学生,尤其是那些弱势群体,让学生在“心理安全、心灵自由”的教学氛围中去经历、体验、尝试和控究,让“先学后教,少教多学,以学定教”的理念在课堂中得到最大的体现;课堂40分钟结束了,并不意味着教学课程的结束,不代表数学学习的停止,课后,她会让孩子们精心设计一些弹性作业,比如,写数学日记,开展课后小实践、小调查等活动,让学生学习数学的视角延伸到生活这个大课堂中来,努力拓展数学的宽度和厚度,实现“大数学”的教育观。

董老师的课堂,那些冰冷的符号和规则都能闪耀学生智慧的光芒,学生能在课堂上享受到思维的大餐,感受到数学的丰富和神奇,体验到“征服”数学、应用数学的乐趣;她的课堂能给学生一双数学的眼睛,一对善于倾听的耳朵,一个思考的头脑;每个孩子都能在她的课堂中记住一些属于自己的东西。事实也证明,学生们学习数学的激情一旦被激发出来,他们就会用各种各样的方式来表达学数学、用数学的热情。他们乐此不疲地记录贴近生活的小实践、小调查,写下了大量的数学日记和学习数学的心灵体验。那些数字、符号、概念都带着鲜活的体温,赋予了生命的色彩。

透过文字,让我这个阅读者也感受到了学生学习数学的喜怒哀乐,触摸到学生思维跳动的脉博,也能品尝到数学在促进学生发展中显示出的强大力量。这样的数学,师生就像一个生命的共同体,是一对共同成长的伙伴,在老师的引领下行走其中,向课堂的更深处漫溯。

数学文化读后感篇十八

今年暑假,我迷上了数学绘本,一口气把李毓佩爷爷的“数学故事系列”全套读完了。我已经对这套书如痴如醉了,有时候几个小时赖在书桌上,不肯挪动;有时老妈叫我几十遍“吃饭了!”我都没听见。七本书中,我最痴迷的要数《数学西游记》了!《数学西游记》是在原版《西游记》的故事情节上改写的,把更多的数学知识融入了精彩的名著中,这样,让我们学起数学来更加生动有趣了。

其中我最感兴趣的一个情节是数学猴和猪八戒智斗公蜘蛛精的故事:猪八戒打败了母蜘蛛精,扛着钉耙,嘴里哼着小曲,独自往前走:“打死妖精多快活!啦,啦,啦!再找点好吃的多美妙!啦,啦,啦!”突然一只大蜘蛛精拦住了八戒的去路,原来是公蜘蛛精来为“爱妻”报仇雪恨,猪八戒与那公蜘蛛精大战了有一百回合,八戒渐渐不是对手,决定“三十六计,走为上策”可那公蜘蛛精不依不饶,紧紧追赶,半路又跑出些蜻蜓精、蝉精支援公蜘蛛精,正当走投无路的时候,数学猴出现了,它一把把八戒拉进山洞里,并告诉八戒蜘蛛,蜻蜓,蝉都怕鸟,必须请鸟来帮忙!

但是到底有几只蜘蛛,几只蜻蜓,几只蝉,得请几只鸟来帮忙呢?八戒忙于逃跑,只记得三种妖精总共有18只,共有20对翅膀,118条腿,于是就产生了一个“鸡兔同笼”的数学问题:蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和一对翅膀,假设这18只都是蜘蛛精,应该有8×18=144(条)腿。实际腿数少了144-118=26(条)腿,蜻蜓或蝉币蜘蛛少2条腿,26÷2=13(条)腿,说明18只昆虫中有13只或是蜻蜓,或是蝉。18-13=5(只),所以这里有5只蜘蛛精,假设13只都是蜻蜓精,应该有2×13=26(对),但实际上只有20对翅膀,每只蜻蜓比蝉多出一对翅膀,26-20=6对,说明有6只是蝉精,7只是蜻蜓精。

《数学西游记》中的猪八戒贪吃可爱,沙僧忠厚老实,孙悟空有勇无谋,数学猴聪明机灵,这些形象栩栩如生。《西游记》本身就是一本深受中国孩子们喜爱的魔幻小说,经过李毓佩爷爷幽默的笔触,把数学故事融入其中,让我们更快、更生动地了解数学,爱上数学。

【本文地址:http://www.xuefen.com.cn/zuowen/16424994.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档