相遇问题五年级数学教案(热门19篇)

格式:DOC 上传日期:2023-11-29 15:07:16
相遇问题五年级数学教案(热门19篇)
时间:2023-11-29 15:07:16     小编:GZ才子

一个好的教案可以帮助教师提高课堂教学效率,实现学生的高效学习。教案的编写应当注重教学目标的明确性和操作性,能够帮助学生实现预期的学习效果。在编写教案时,教师可以结合具体的教学情境和学生的学习风格,设计个性化的教学方案。

相遇问题五年级数学教案篇一

教材分析:

1.课标中例1通过解答一个与长方形周长计算有关的实际问题,让学生初步感知一一列举的策略在解决问题过程中的作用。初步掌握运用一一列举的策略解决问题的基本思考过程和方法。在此之前学生已经学习过用列表和画图的策略决问题,对解决问题策略的价值已有了一些具体的体验和认识。通过这部分内容的学习,一面可以使学生进一步加深对现实问题增强分析问题贩条理性和严密性。

2.本节结合场景图提出问题:王大叔用18根1米长的栅栏围成一个长方形羊圈,有多少种不同的围法?这场景图既有助于学生准确地理解题意,又有助于学生从数学的角度展开对问题的分析和思考。

学情分析:

1.让学生通过观察、分析、独立思考、动手摆小棒的操作、合作交流等方式进行学习,学生学得轻松愉快,而且学习效果好。

2.解决本例题的问题关键有三个:第一,要认识到18根1米的栅栏的总长度就是围成的长方形的周长;第二,用18根1米长的栅栏围成长方形,其围法应该是多样的;第三,要知道一共有多少种不同的围法,就需要把符合要求的长宽一一列举出来,这就是学生认知障碍点,在这方面学生学得有点困难,所以教材先引导学生用小棒摆一摆。

3.通过摆小棒的操作,一方面可以使学生进一步明确围成的长方形的周长与它的长和宽的关系;另一方面也能使学生实实在在地感受到:要找出所有不同的围法,需要有条理地一一列举,再列表填一填。

教学目标:

1、使学生经历用一一列举的策略解决简单实际问题的过程,能通过有条理的列举分析有关实际问题的数量关系,并获得问题的答案。

2、使学生在对解决简单实际问题过程的反思和交流中,感受一一列举策略的特点和价值,进一步发展思维的条理性和严密性。

3、在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。

教学重点和难点:

重点:让学生体会策略的价值,并使学生能主动运用策略解决问题。

难点:在学习过程中,感受策略带来的好处,培养学生学习数学的积极情感。

教学环节:

一、创设情境、探索策略。

1.预设学生行为。

提出不同的问题,活跃学生的思维。同学们能积极讨论融入到火热的课堂中。

学生热情地投入各自的操作,组织展示、交流。

学生回答不只,有很多种,使学生更进一步去探问题。

学生很积极地说相信我们能。

学生积极地参与活动中。

学生回答:能!

学生积极融入学习中。每个小组把活动中不同的围法有条理地画在黑板上。

学生独立完成!积极回答老师提出的问题。

积极,认真投入作业中去!

2.设计意图。

激发学生的学习兴趣,调动学生的学习极性。培养学生独立思考的能力。

积极地想展示自己的能力。体会成功的乐趣,培养学生的学习兴趣。

培养学生勇于挑战的精神。

培养学生的互相合作的精神。

培养学生多动脑动手能力。

能举一反三列举规律,解决生活中的实际问题。

培养学生善于严准学习的习惯。使学生体会不重复,不遗漏的重要性。

能独立完成作业,加深应用能力!

二、动手操作验证策略。

1、出示例题及其场景图,指名读题。

2、提问:你们能根据题意,用18根同样长的小棒先围成一个长方形吗?

3、把学生分组活动,组织交流。

谈话:同学们通过操作找到了这么多种不同的围法,真是了不起呀!但是否还会有其他的不同的围法呢?我们再作进一步的分析。

三、联系实际,应用策略。

1、羊圈的周长是多少米?如果宽是1米,长是几米?宽是2米,长是几米?

2、从刚才解决问题的过程,能说说你们的体会吗?

四、应用巩固。

你们能算出围成的每个长方形的面积,并比较它们的长、宽和面积吗?

五、课堂作业。

出示练一练和想想做做,让同学独立完成。做练习十一的第1~3题。

相遇问题五年级数学教案篇二

《数学课程标准》指出:当学生“面对实际问题时,能主动尝试着从数学的角度运用所学知识和方法寻找解决问题的策略。”

本课所学内容就是通过日常生活中的简单事例,让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用,以及在解决问题中的运用。

优化问题是人们经常要遇到的问题,本课的教学设计力求从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、实验、推理、交流等活动寻找解决问题的方法,从不同的方法中选择最优方案,在解决问题中初步体会数学方法的应用价值,初步体会优化思想,培养学生良好的数学思维能力。

1、通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。

2、使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。

3、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。

一、创设情境,学习新知。

1、预设情景。

师:同学们,在节假里你家来了客人你准备做什么呢?

师:星期天的上午李阿姨到小明家来做客。

师:从图。.能得到哪些信息?

生:小明的妈妈让小明给李阿姨沏茶。

3、展示学生不同的方案师:谁愿意上讲台来展示你的设计方案?

师:刚才同学们帮小明设计的沏茶的方案是通过同时做几件事情才节省了时间,在烧水的同时做洗茶杯和找茶叶这两件事,也就是说洗茶杯和找茶叶共花得分钟时间可以在烧水的8分钟之内完成。

这样小明就可以在8分钟以内完成需要11分钟才完成的事情,也就让客人尽快地喝茶了。

4、小结师:我们在做一些事情时,应先确定好做事的先后顺序,然后在有效的时间内尽可能多同时做几件事,能同时做的事情越多,所用的时间就越短。

二、再探新知。

师:原来小明的妈妈要用最拿手的烙饼来招待客人。从图。

能得到哪些信息?(这一环节是通过创设出生活化的情境,激发学生的学习兴趣。

利用烙饼这一事例,调动学生已有的生活经验,使学生处于主动思考解决问题的最佳状态。)。

1、学生观察、理解图中的内容。

教师提问:“烙一张饼需要几分钟?““烙两张饼呢?”“爸爸、妈妈和小丽各吃一张饼,一共要烙几张饼呢?”“一共要烙3张饼,怎样烙花费的时间最少?”2、学生拿出准备好的圆片,圆片的正、反面上分别写上正、反两字来代表饼的正、反面。每烙完一面,就让学生在这一面上用铅笔做上记号。

先让学生试一试,思考烙3张饼,怎样才能使花费的时间最少,然后分小组讨论交流,说一说自己是怎样安排的,自己的方案一共需要多长时间,并把自己的实践结果记录在老师发的表格中,教师参与到小组活动中。(相信学生,放手让学生探索解决问题的方法,才能使学生成为学习的主人。)。

3、展示学生的方案。

教师:“谁来给大家说一说,你们小组设计的`方案是什么?”在展示台上投影学生填写的表格。

小组代表来根据表格叙述设计方案,并用图片来演示。几个小组演示完毕后,教师让大家来比较。

“这些方案,哪一种能让大家尽快地吃上饼?”(烙3张饼的最佳方法是解决烙饼问题的关键。我让学生演示烙饼过程,学生通过动手操作,探索尝试,再进行比较,既可以有效地帮助学生理清思路,为后面的学习打下基础,又培养了学生的创新能力。)。

4、拓展延伸:

教师:刚才我们一起找到了烙3张饼的最佳方法。请大家想一想,如果要烙4张饼,怎样烙才能尽快吃上饼呢?”小组活动,并用表格记录。

小组代表发言。班内交流,并比较哪个小组的方法最好。

教师小结后提问:“如果要是烙5张饼,怎样才能让大家尽快地吃上饼?”小组活动,进行记录。通过小组交流,使学生找到最佳方法。

(通过以上活动,可以使学生找到最优方法,体会优化思想在解决实际问题中的应用。)教师:“如果要烙6张饼、7张饼……10张饼,怎样安排最节省时间?”小组讨论交流,说一说自己的发现。

学生在充分交流探讨的基础上,得出结论:如果要烙的饼的张数是双数,2张2张的烙就可以了,如果要烙的饼的张数是单数,可以先2张2张的烙,最后3张饼按上面的最佳方法烙,最节省时间。让学生仔细观察表格,看发现了什么?得出结论:每多烙一张饼,时间就增加3分钟,用饼数乘烙一面饼所用的时间,就是所用的最短时间。

教师:“谁能很快地说出烙11张饼用多长时间?烙15张饼呢?”呢?假如妈妈使用了新式电饼。

相遇问题五年级数学教案篇三

1.使学生经历解决简单实际问题的过程,学会用列表的方法整理实际问题中的信息,分析数量关系,寻求解决问题的有效方法,初步体会用列表的方法整理相关信息的作用。

2.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功经验。

教学过程。

一、动画引入,感受策略。

1.谈话:同学们喜欢看动画片吗?(播放动画《曹冲称象》的故事,播放至曹操质疑大象有多重呢)大象有多重?称大象,没有那么大的秤!又不能杀掉大象。在大家一筹莫展的时候,曹冲究竟想出了一个什么样的策略?(板书:策略)。

2.小结:曹冲想到把大象转化成同样重量的石头,称出石头的重量,就知道大象的体重了。这是一个很好的策略!

其实,在日常生活和数学学习中,为了解决实际问题,需要运用很多策略。(板书:解决问题)。

1.学会列表。

谈话:我校同学在小书虫俱乐部成员的带领下积极参与了读书快乐,快乐读书的各项活动,为了及时记下读书心得,大家利用假期到文具店购买笔记本。(出示例题情境图)。

引导:仔细观察情境图,你知道了哪些信息?

提问:题目中的信息比较多,怎样才能看得更清楚一些?

学生可能提出不同的想法:按不同人物将信息进行整理;从问题出发,找到有关联的信息。

引导:老师给大家介绍另一种整理信息的方法。出示表格:

可以先把题目中小明买笔记本的信息填在表格第一行,第二行填谁的信息?(小华)5本填在哪里?多少元填在哪里?完成下列表格:

小明。

3本。

18元。

小华。

5本。

回顾:为什么每人购买的本数和所用的钱数填在同一行?(买的本数和钱数是对应的,3本用的钱数是18元)。

你觉得列表整理信息有什么好处?(清楚、简洁)。

2.引导学生利用表格,分析数量关系。

引导:根据表格的第一行,小明买3本用去18元,可以先求出什么?(1本的价钱)再看表格的第二行,求小华买5本用去多少元,需要知道什么条件?(1本的价钱)。

提问:你能列式解决这个问题吗?

引导学生列式:183=6(元)。

65=30(元)。

提问:解决这个问题先求什么?再求什么?

3.尝试从问题想起,列式解答。

提问:刚才我们是根据表格从条件想起的。如果从问题出发,可以怎样想呢?(要求5本用去多少元,先要求出1本的价钱)。

提问:这样想该怎样列式?

小结:解决这个问题,我们采用了两种不同的思路。

(1)从条件想起:根据买3本用去18元,可先求出1本的价钱。

(2)从问题想起:要求买5本用去多少元,先要求出1本的价钱。

出示:如果小军用42元买笔记本,他买了多少本?你能先列表整理再解答吗?(学生自己填表)。

提问:要解决这个问题,可以怎样想?先在小组里说一说。

引导学生分别从条件和问题想起。

全班交流,列式解答。

提问:通过两次用表格整理条件和问题,你体会到什么?(利用表格分析数量关系比较容易)。

谈话:根据上面两题的解答结果和表格,如果把两次的表格合并起来,可以得到:

小明。

3本。

18元。

小华。

5本。

小军。

()本。

42元。

我们把这张表格再简化:

3本18元。

5本()元。

()本42元。

学生在书上第66页填出括号里的数。

1.完成想想做做第1、2题。(略)。

2.书法长卷。

介绍:我校的才女邱叶红同学是南京市十佳少先队员,小书法家。为迎接的北京奥运会专门书写了米书法长卷,已经被载入上海吉尼斯大全。

学生独立列表整理信息,并列式解答。

3.想想做做第3题。

引导重点理解照这样计算的意思。

4.投篮比赛。

出示相关信息:姚明在两场比赛中投篮30次,投中21次,得分为42分。奥尼尔在三场比赛中投篮40次,投中30次,得分为60分。

解决下面的问题:

(1)假设姚明保持这样的状态不变,下面的五场比赛中姚明一共能得多少分?

(2)姚明平均每场比奥尼尔多得多少分?

相遇问题五年级数学教案篇四

教学目标:

1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。

2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。

教学重难点:

1、理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的问题。

2、理解相向运动中求相遇时间问题的解决方法。

教学过程:

1、说一说速度、时间和路程三者之间的关系。

2、应用。

(1)一辆汽车每小时行驶40千米,5小时行驶多少千米?

(2)一辆汽车每小时行驶40千米,200千米要行几小时?

1、揭示课题。

师:数学与交通密切相联。今天,我们一起来探索相遇问题。

2、创设“结伴出游”的情境。

淘气和笑笑相约出去游玩。

3、引导学生找出有关的数学信息,解决第一个问题。

第一个问题时让学生根据信息进行估计,两人在何处相遇?因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。

4、画线段图帮助学生理解第二、第三个问题。

第二个问题,主要是要用方程解决相遇问题中求相遇时间的问题,关键是找出数量间的相等关系。

先让学生独立分析数量关系,并尝试用方程解决问题,再组织学生交流。说说怎样找出数量间的相等关系,并列出方程。

1、第1题,先观察图上的信息,让学生估计在何处相遇,并说说是怎么想的。

2、第2题,先独立完成,然后选几题让学生说一说解方程的方法,教师进行有针对性的指导。

今天这节课我们学习了什么?

教学反思:

相遇问题五年级数学教案篇五

教学目标:

1、会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力。

2、经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信息和建立模型的能力。

教学重难点:

1、理解相遇问题的结构特点,能根据速度、时间、路程的数量关系解决求相遇时间的'问题。

2、理解相向运动中求相遇时间问题的解决方法。

教学过程:

一、复习旧知。

1、说一说速度、时间和路程三者之间的关系。

2、应用。

(1)一辆汽车每小时行驶40千米,5小时行驶多少千米?

(2)一辆汽车每小时行驶40千米,200千米要行几小时?

二、探索新知。

1、揭示课题。

师:数学与交通密切相联。今天,我们一起来探索相遇问题。

2、创设“结伴出游”的情境。

淘气和笑笑相约出去游玩。

3、引导学生找出有关的数学信息,解决第一个问题。

第一个问题时让学生根据信息进行估计,两人在何处相遇?因为淘气的速度快,笑笑的速度慢,所以估计相遇地点在邮局附近。

4、画线段图帮助学生理解第二、第三个问题。

第二个问题,主要是要用方程解决相遇问题中求相遇时间的问题,关键是找出数量间的相等关系。

三、试一试。

先让学生独立分析数量关系,并尝试用方程解决问题,再组织学生交流。说说怎样找出数量间的相等关系,并列出方程。

四、练一练。

1、第1题,先观察图上的信息,让学生估计在何处相遇,并说说是怎么想的。

2、第2题,先独立完成,然后选几题让学生说一说解方程的方法,教师进行有针对性的指导。

五、知识回顾,全课总结。

今天这节课我们学习了什么?

六、布置作业。

教学反思:

相遇问题五年级数学教案篇六

本单元教学用替换的方法解决实际问题。替即替代,换则更换,替换能使复杂的问题变得简单。本单元的教学要求是,让学生在解决问题的过程中初步体会替换,充实思想方法,发展解题策略。教材在编写上有以下特点。

第一,选择学生能够接受的素材创设问题情境。我国有经典的、应用替换方法解决的问题,如果用这些题来教学,学生只能被动接受解法,潜在的学习能力得不到开发。这些离开生活实际的题目虽然能引起学生短时间的好奇,却难以维持学习热情,更不会产生学习需要。教材联系生活实际设计需要用替换方法解决的问题,如把果汁倒入大杯与小杯、在公园租用大船和小船、布置展板、储钱罐里的硬币、乒乓球比赛时的单打和双打利用情境的趣味性,唤起积极性;利用问题的挑战性,调动主动性;利用素材的现实性,激活已有经验,变被动接受为主动探索。教材在你知道吗里介绍古代名题,让学生了解我国很早就有替换思想。现代与古代的题目合理配置,使本单元教学更有价值。

第二,着眼于积累思想方法,发展解题策略。替换作为一种思想方法,对学生的发展很有好处。用替换方法解决的实际问题,比大纲教材里教学的应用题稍复杂些,解答那些题目很少应用替换方法。编排本单元,不是为了增多题型、增加学习难度,而是为学生创造替换的机会,提供进行替换的载体。因此,两道例题只指点思路和方向,不出现题目的解法。两次练一练都提示可以怎样想,应该做些什么。练习十七的题量不多,控制了难度。尤其是例1里说说为什么这样替换说说解决这个问题的策略,例2里你准备怎样来解决这个问题,都是着眼于体会数学思想,积累数学方法,感受解题策略。

一、直观的情境引发替换。

例1用文字叙述,学生一般能读懂题意,但不会利用其中的数量关系思考。例题画出6个小杯和1个大杯,学生就能在图画里看到,如果把1个大杯换成3个小杯,就相当于果汁倒入了9个小杯;如果把6个小杯换成2个大杯,就相当于果汁倒入了3个大杯。这就是利用小杯的容量是大杯的1/3这个数量关系进行的替换活动,把较复杂的问题转化成简单的问题。可见,在学生的经验结构里有替换,不过是潜在的、无意识的。教学的任务是把沉睡的方法唤醒,使隐含的思想清晰起来。这是例题的编写意图,也是设计的教学思路。教材要求学生说说为什么这样替换,引导他们回顾刚才的替换活动,反思是怎样替换的,清楚地知道可以从哪个数量关系引发替换的思考。这是十分重要的教学环节,使例题的教学意义超越解答一道题目,得到一组答案,体会一种思想方法。

教材让学生列式解答,把替换的思考和方法用算式表示出来。部分学生可能会有困难,他们或者列算式7203=240(毫升),先算1个大杯的容量,或者列算式7209=80(毫升),先算1个小杯的容量。教学应指导学生在这两道算式的前面,先写出63+1=3(个)或者6+3=9(个),用算式表达自己的替换。也通过这样的算式,使替换时的思考数学化、模型化。

检验结果要抓住两点进行:一是果汁总量720毫升,二是小杯的容量是大杯的1/3,只有同时满足这两个关系的答案才是正确答案。教材把检验安排在写答句的前面,有两层意思:一层是先经过检验确认结果,再写出答句是解决问题的程序,也是良好的习惯。另一层是一种新的方法是否可行、是否可信要检验,这是严谨的态度与科学的精神,是教学应该倡导和培养的。

第90页练一练仍然用图画配合文字呈现问题情境,有助于学生进行替换。通过两个大卡通的提问,指导学生开展替换活动。每个大盒比小盒多装8个球,如果把2个大盒替换成2个小盒,会少装82=16(个)球,7个小盒一共装100-16=84(个)球。如果把5个小盒都替换成大盒,会多装85=40(个)球,7个大盒一共装100+40=140(个)球。学生看着示意图,容易理清这些变化。例1和练一练都有不同解法,这是由于替换策略有不同的具体应用。教材希望学生理解各种解法,体会应用策略的灵活性,但不要求他们一题多解。

例2里42人一共乘坐10只船,其中有几只大船、几只小船是要解决的问题。你准备怎样来解决这个问题不是要求学生说出解题的思路和步骤,而是鼓励学生选择解决问题的形式,正如猴子卡通用画图的方法,兔子卡通用列表的方法,丰富思考问题的手段。画图和列表都能用于解决实际问题,在前几册教材里已多次教学,这里只要稍加启发,学生能够想到。

猴子卡通画了10只船,每只船上画5个圆表示乘坐5人,先假设乘的都是大船,这些船一共可以坐50人,比实际多8人。于是从一只船上去掉2人,把这只大船换成小船;又从另一只船上去掉2人,也用小船替换大船照这样替换4次,6只大船和4只小船一共乘42人,和全班人数相同,得到了问题的答案。兔子卡通先假设乘了5只大船和5只小船,这些船一共可以乘40人,比全班人数少2人。为了让这2人也乘船,所以把其中1只小船换成大船,得到的答案也是租用6只大船、4只小船。

教材把替换留给学生进行。用猴子卡通的方法,可以在图画里划去一些圆,表示减少乘坐的人数,把大船换成了小船。教学时要让学生知道在一只船上只能而且必须同时划去2个圆,体会每划去2个圆就是进行了一次替换。用兔子卡通的方法,教材里有一张表格,里面填了兔子卡通的假设,空格是让学生替换时用的。要注意的是,教材没有要求学生列式计算。这里有两个原因:一是解决实际问题未必都要列式计算,画图和列表也是解题的形式。教学要鼓励解题形式多样化,发展个性和创造性。二是像例2这样的题算式比较难列,如果列式计算,不仅增加了教学的困难,而且会弱化替换活动,挫伤学生学习的积极性。

仅从表面看,两个卡通的解法是不同的。其实都应用了替换策略,都是先提出一个假设,再通过替换进行大船与小船的调整,逐渐逼近,直至获得准确结果。可见,例2应用替换策略的水平,比例1高了一个台阶。教材要学生研究两种方法的共同特点,就是要体会上述的替换策略。

在猴子兔子卡通的启发下,学生一定会提出其他的假设,如假设10只都是小船,假设1只大船和9只小船并希望按自己的假设画图或列表解答这个问题,甚至少数学生还会想到别的解题形式。教材满足学生的需要,让他们在小组里交流还可以用什么方法找出答案,再次经历解决问题的过程。比比各种假设进行的替换和次数,感受怎样假设能较快地解决问题,进一步体验替换思想和方法。

第92页的练一练安排两道题,仍然体现解决问题形式的多样和灵活。第1题适宜用画图方法解答,分三步指导学生画图。关键是理解给其中几只动物添2条腿的原因,以及给一个动物添2条腿后它成了什么动物,也就是要体会画图时的替换。第2题适宜列表解答,关键是看懂表格里的三点内容:一是开始时怎样假设两种展板块数的?二是用哪种展板替换哪种展板?什么原因?三是为什么一下子就用3块大展板替换3块小展板?明白了这几点,就知道接着该怎样替换,以及如何较快地得出结果。

相遇问题五年级数学教案篇七

《相遇问题》教学反思这节课准备的时间不短,期间也跟师傅和其他老师讨论了,经过他们的指点,也修改了很多地方,认为这节课能上成功的,可还是失败了。

一节课上完,并没有预期中的轻松,反而觉得心情很沉重,觉得好累,自认为准备的很充分,可到头来却一无是处。这节课失败之处在于教学环节详略不得当。本节课是以前学过的行程问题的延伸,有一定的难度,在推导公式环节,做为基础知识,本应当成重点来讲,我却讲的过于仓促,简单点出就过去了,于是从这里开始,后面学习活动的失败已是注定的了,公式没吃透,不理解,再加上例题与引入的题目有所不同,学生一下子懵了;我心里也犯嘀咕:“前边挺顺的,没讲错呀,学生怎么不会呢?”不会做的学生急在脸上,而我却急在心里,只能硬着头皮再讲,后面的反复讲,完全是弥补前半节课犯下的错误,费时、费力、还低效。

第二次在二班讲授这节课,由于已经有了经验,所以在公式推倒方面,比较注意,配上修改过的课件,将这一环节展开了去讲,讲得比较细,但本来5至7题是准备让学生说解法并说依据的公式,但怕时间不够,只让学生简单说了下所用公式,这点处理的不好,应让学生都说出来,这样印象更深,对题目吃得更透。在讲解例题时,本要放手的更多一点,其实有些学生在分析题目、说解决方法环节已经说的很不错了,但我还是过多包揽,讲得多了,引导的少了。

虽然这一块我已经比较注意了,但总是怕放开后,不好收回来,不觉得就说得多了,没有起到引导者的作用。在今后的备课过程中,要多与其他教师研讨,毕竟一个人不会将问题考虑的非常全面,要多汲取他人的经验,备课时要备教材,还要备学生,了解学生对相关知识的掌握情况,这样,就不会在课堂上发生自己无法预料和解决的问题了。

相遇问题五年级数学教案篇八

“让学生做学习的主人”已成为共识。。但如何转化为具体的教学行为,有一个重要的方面,就是如何设计有效的学习活动。小学数学《新课程标准》也明确就指出:“要重视学生获取知识的思维过程》。”思维从动作开始,切断了动作与思维的联系,思维就得不到发展。

在这节课的教学过程中,老师让男生和女生分别扮演客车司机和货车司机来演示相遇过程,充分调动了学生的积极性和主动性,学生在一次次愉快地操作过程中,很容易地掌握了新知识。

本节课最大的特点是以“活动”代替教师的讲解,激发了学生的学习兴趣和求知欲,使全班同学都参与到“活动”中来,课堂气氛愉快、热烈,学生学得轻松、学得牢固,从而大大提高了课堂教学效率。

《数学课程标准》指出:“数学内容的呈现形式应多样化,以保证学生积极、主动地参与整个学习过程,使他们的数学学习活动是一个生动活泼、主动的和富有个性的过程。”很多数学老师经常在“导入、新授”环节,就拿几道练习题或者是翻开书本第几页之类的措施。我认为教师应想方设法多为学生创设“内化知识”的情境,把枯燥、令学生恐惧的内容以喜闻乐见的形式展示给学生,从而淡化“学”的痕迹,使学生产生学习愉悦。

相遇问题五年级数学教案篇九

教学目标:

1、运用画线段图的方法整理已知条件和问题,理解和差问题的解题思路,掌握和差问题的解题方法。

2、掌握画线段图分析问题的方法,感受画线段图的策略在分析问题中的好处,培养学生运用线段图进行分析问题的意识。

3、培养学生良好的逻辑思维能力,鼓励学生在合作交流中激发自主探究、创新的精神。

教学重点:理解和差问题的解题思路,掌握和差问题的解题方法。

教学难点:掌握画线段图分析问题的方法,培养学生运用线段图进行分析问题的意识。

教学准备:课件。

教学过程:

一、谈话引入。

1、课件出示:小明买3本故事书用了27元,小军买了5本同样的故事书需要多少元?

(1)将题目中的信息整理到下面的表格中。

(2)分析表格中的信息,明确解题思路。

引导学生明确:可以先算出一本故事书多少元,再计算出5本故事书多少元。

(3)学生独立解答。

一本故事书:27÷3=9(元)。

5本故事书:9×5=45(元)。

2、谈话导入。

他的解决问题的策略,同学们想学吗?今天我们就一起来学习新的解决问题的策略。(板书课题)。

二、交流共享。

1、课件出示教材第48页例题1。

让学生读题,说说题目中的已知条件和所求的问题。

已知条件:小宁和小春共有72枚邮票;小春比小宁多12枚。

所求问题:两人各有邮票多少枚?

提问:想一想:这道题我们用列表的方法来分析,能找到解题思路吗?

学生交流得出:由于两人的邮票数量都是未知的,用列表的方法进行分析,不容易找到解题思路。

引导:接下来我们就来学习用画线段图的策略来分析这道题。

3、根据题意画线段图。

(1)提问:题目中有几个相关联的量?应该用几条线段来表示呢?学生回答后课件出示:

小宁:

多枚()枚。

小春:

(2)追问:你能根据题意把线段图填写完整吗?

让学生在教材的线段图上填一填,完成后组织汇报交流。

小宁:

多(12)枚(72)枚。

小春:

4、看线段图,分析数量关系。

提问:观察线段图,想一想可以先算什么?

(1)学生独立观察思考后,小组交流讨论。

(2)全班交流解题思路。

汇报预测:

解题思路一:先算出小宁有多少枚邮票。两人邮票的总数减去12枚,等于小宁邮票枚数的2倍。

解题思路二:先算出小春有多少枚邮票。两人的总数加上12枚,等于小春邮票枚数的2倍。

5、学生独立解答。

引导学生选择一种自己喜欢的方法解答。

6、组织检验。

(1)提问:我们用什么方法进行检验?

(2)追问:检验要分几步进行?

(3)学生独立进行检验,并写出答案。

7、回顾反思。

先让学生在四人小组内说一说自己的体会,再组织全班交流。

8、交流讨论。

在之前的学习中,我们曾经运用画图的策略解决过哪些问题?

三、反馈完善。

1、完成教材第49页“练一练”。

这道题和例题1相似,只不过要让学生自己从线段图中获取已知条件,通过这样的练习可以培养学生的读图能力。

2、完成教材第52页“练习八”第1题。

这道题也和例题1相似,但题目要求先把线段图补充完整,组织练习时要把重点放在线段图的画法上。

3、完成教材第52页“练习八”第3题。

这道题练习的重点应放在观察线段图、分析数量关系上,引导学生从线段图上看出下层图书的2倍就是60×2=120(本)。

四、反思总结。

通过本课的学习,你有什么收获?还有哪些疑问?

相遇问题五年级数学教案篇十

本节课是青岛版小学数学四年级上册第六单元《快捷的物流运输―解决问题》信息窗中第二个红点问题,即构建相遇问题的数学模型,并借此解决生活中的实际问题。因为相遇问题牵扯到两个物体的运动情况,其中的数量关系比较复杂,学生理解起来有一定困难,因此学生要首先理解和掌握速度、时间和路程三者的关系,然后在此基础上,创设他们感兴趣的、贴近生活的情境,在一步步解决问题的过程中构建数学模型,积累数学活动经验。

1、在具体情境中,御用模拟演示和画线段图等方法理解速度、时间和路程的数量关系,初步构建相遇问题的数学模型。

2、在解决问题的过程中,经历“发现问题----提出问题----分析问题----解决问题”的过程,积累数学活动经验。

3、在合作交流中体验学习的乐趣,培养学习数学的积极情感。

用画线段图的策略分析“相遇问题”的数量关系,构建其数学模型。

理解“相遇问题”的基本特征,构建数学模型“速度和×时间=总路程”和“路程1+路程2=总路程”。

多媒体课件,两个能在一条线上自由活动的小人。

一、情境导入,复习旧知。

谈话:同学们,你们知道刘老师家住哪儿吗?悄悄告诉你们吧,刘老师家离着人民公园非常近,到底有多近呢?你们来看。

ppt出示:刘老师从家出发步行去人民公园,每分钟走60米,5分钟后到达。

根据这个信息,你能提出什么问题吗?

ppt出示:刘老师家距离人民公园有多远?

你会解决吗?

ppt:60×5=300(米)。

这60表示什么?5呢?300呢?

通过这个小例题,我们总结出速度、时间和路程三者间的关系是:速度×时间=路程(课件出示)。

今天我们就在这个关系式的.基础上来研究点新问题,好不好?

二、合作探究,构建数学模型。

1、初步感知相遇问题。

预设:让学生用语言或者肢体动作来解释这几个词的含义。

把这几个关键词搞明白了,大家再来读这个题。思考这个问题:我们之前学的行程问题是几个物体在运动?今天研究的问题是几个物体在运动?而且是怎么运动的?(同时出发、相对运动、最后相遇)我们就把这类问题称作“相遇问题”,板书课题。

此处通过学生之间的交流和表演,使他们在头脑中形成两个物体相对运动的表象,理解并抓住相遇问题的基本特征:同时、相对、相遇。

2、合作演绎相遇问题。

现在你能和你的同桌合作把这个题目表演出来吗?用2只笔分别代表小明和李老师,同时从桌子的两端出发相对而行,只走一遍,相遇了就停在相遇点别动了。

学生活动,教师巡视。

(询问不同的小组)你们相遇在哪里?相遇点离谁家比较近?为什么?

预设:出现相遇点在中间和相遇点不在中间两种情况。

通过同桌两人的模拟表演进一步理解相遇问题的运动过程和基本特征,同时学生们也在“相遇点在哪儿”的讨论和交流中进一步理解了:速度不同,相遇点不可能在中间,而是离速度慢的一方较近,从而培养学生认真审题、动脑思考的好习惯。

3、理解速度和。

老师制作了两个可以自由活动的小人分别代表小明和李老师,请两名同学上台来慢放一遍刚才的相遇过程,生边操作老师边提问:

一分钟后他俩分别走了多少?一共走了多少?

两分钟后他俩又走了多少?一共走了多少?

三分钟?四分钟?五分钟呢?

通过两个可活动的小人一分钟、一分钟地走,帮助学生理解“单位时间内他俩一共走的路程”,即速度和。同时能够直观地看到相遇点离速度慢的一方较近。

4、画线段图。

你能根据刚才的演绎把相遇过程和题目中的已知条件及问题在线段图中表示出来吗?

投影学生作品,点评。你能看明白他的线段图吗?还有哪些补充和改正的?

学生补充和完善自己的线段图。

师出示课件演示画线段图的过程。

5、自主解决问题。

你会解决这个问题了吗?自己动手试试。做的快的同学你还有没有别的方法?两种方法都做出来的同学组织一下自己的语言,争取一会儿发言时让大家都能听明白你的意思。

找2生板书2种方法,点评。

回顾这两种方法,我们是怎么解决相遇问题的?

小结:方法1:路程1+路程2=总路程。

方法2:速度和×相遇时间=总路程。

6、体会线段图的好处。

对比题目文字和线段图,你有什么感觉?

小结:线段图能够使抽象的数学问题变得更直观,便于我们理清楚题目中的数量关系。像这样把抽象的数学语言、数量关系与直观的图形结合起来,使复杂的问题简单化,抽象的问题具体化的思想就是数学上非常重要的“数形结合思想”,在今后的学习中同学们还会用到。

三、巩固练习,拓展应用。

1、两列火车分别从甲、乙两地同时相对开出,4小时后相遇。甲车的速度是110千米/时,乙车的速度是100千米/时。求甲、乙两地间的路程。(先画图整理条件和问题,再解答)。

2、

两队分别从两头同时施工,4个月开通。这条隧道长多少米?(只列式不计算)。

3、两人同时打印一份稿件,甲的打字速度是85字/分,乙的打字速度是65字/分。1小时后两人共同录完。请问这份稿件一共多少字?(只列式不计算)。

刚才这些问题也不是相遇问题呀,为什么你还用这种方法呢?

小结:他们的题型都跟相遇问题差不多,所以解决问题的方法和思路都是一样的。

四、总结。

这节课你有什么收获?学会了什么?

德州市实验小学刘丽。

相遇问题五年级数学教案篇十一

1、使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、确定解题思路,并有效地解决问题。

2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。

3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。

教学重点:使学生理解并运用假设的策略解决问题。

教学难点:当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。

1.直接出示你知道吗?鸡兔同笼问题是我国古代的数学名题之一。它出自于我国古代的一部算书《孙子算经》。书中的题目是这样的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?师:你能理解这句话的含义吗?学生回答。

2.师说明:解答鸡兔同笼问题时,我们会用到一个新的解决问题的策略假设,同时要用到以前的策略画图或列表。教师板书:解决问题的策略假设。

1.教师出示题目:鸡和兔一共有8只,数一数腿有22条。你知道鸡和兔各有多少只?教师边出示边说明:为了解答方便,老师适当的改了几个数据。师:看到这个题目,是否觉得比较难?师:这样吧,我们用以前的一种策略画图来解决。师让学生上台画鸡或兔,当学生有疑问时,问:这样画鸡或兔是否很麻烦,能否用其他方法来代替?师应引导学生用圈来表示鸡或兔,用2脚与4脚区分鸡与兔。问:能不能马上确定鸡兔各有几只?因此,我们画图时不能马上画出几只兔几只鸡。师:这时我们可以假设全部是鸡或兔了。

分别板书:假设都是鸡假设都是兔。师:我们先来假设都是兔,兔有几条腿?我们就用短线段表示脚,请同学们把所有的脚都画上。数一数,一共有几条腿?为什么会多腿?(要求学生一定说出因为把鸡当成是兔)了多几只腿?一只兔比一只鸡多几条腿?师:因为每只鸡比每只兔少2条腿,所以我们每次拿走2条腿。要拿走几次,你是怎样算的?师:现在你能发现什么吗?现在兔有几只?鸡有几只了?你能否把刚才的过程表述出来?请同桌互说把刚才的过程表述出来。

师:刚才的过程我们还可以用式子表示,谁来说明?教师根据学生回答分别板书。84=32(条)。

表示实际多画了10条腿。4-2=2(条)。

表示一只兔比一只鸡多2条腿。102=5(只)。

表示鸡有5只。8-5=3(只)。

表示兔有3只。教师重点多次提问要求学生回答出每句话的含义。

教师小结:我们可以首先假设全部是兔,然后数出兔的腿与实际的腿的差距,因为一只兔比一只鸡多2条腿,所以看这个差距里有几个2,所求出的与假设相反的鸡,最后求兔。

兔的只数。

腿的条数。

和22条腿比较。

师根据学生的回答分别板书。

4442+44=24。

多了2条在这里多了2条,表明什么?按照刚才的假设兔4只太多了还是太少了?如何调整?如果在这里少了4条,表明什么?该如何调整?师小结:此种方法我们首先假设各有一半,然后按照这种假设算出腿的总数,根据与题意差距,合理地调整。

4、师:要知道我们所求的答案是否正确,我们还应检验,如何检验?教师根据学生的回答板书检验。

5、小结:刚才我们用了三种方法解答了鸡兔同笼问题,都是采用的假设法,可以假设一种全是,也可以假设另一种全是,还可以假设各有一半,在解答时,可以选择你比较喜欢的一种来解答。

1、师:刚才我们采用假设法解决鸡兔同笼,我们回到刚才的你知道吗。老师把题目转化了。出示题目。现在你会解决了吗?这样吧,行的话你们可以直接完成,不行的话半分钟后会出现提示,还是不行的话一分钟后可以两人或四人商量商量。学生独立解决,完成后要求学生检验。

2、交流时在实物转换仪展示学生作业,师提问学生每步的意义。

兔的只数182023。

腿的条数171512。

小结:对于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。

1、师:刚才我们解答了两道鸡兔同笼问题,知道了此类题目的方法,接下去老师来考考你。(出示例题)全班51人去公园划船,一共租了11条船。每只大船坐5人,每只小船坐3人。租用的大船和小船各有几只?学生独立完成,教师帮助有困难的学生。交流时要求学生说明理由。

2、师:现在你能归纳这种方法的解答过程吗?小结:于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。

你什么收获?

相遇问题五年级数学教案篇十二

《相遇问题》这节课的教学目标是使学生会分析简单实际问题中的数量关系,提高用方程解决简单实际问题的能力,经历解决问题的过程,体验数学与日常生活密切相关,提高收集信息、处理信信息和建立模型的能力。教学本节课时,首先创设了“淘气、笑笑同时从家里出发,路途相遇“的情境,让学生结合情境图中的信息,完整地描述数学问题,理解情境中给出的数学信息和所要解决的问题。

其次,鼓励学生尝试独立完成题目。给学生足够的时间和空间去思考,分析和解决问题,比如提示学生要先想办法找出等量关系,再列出方程,由于学生已有列程的解决问题的基础,所以大多数学生都能正确的列出符合题意的'方程。

再次,小组合作交流,在交流时,主要让学生交流解决问题的思路。有的学生是通过画线段图找到等量关系的,要让学生结合线段图说说“相遇时两人行驶的全部路程是多少”从而分析得出“笑笑走的路程+淘气走的路程=840”的数量关系,然后列出方程。

最后,要和学生梳理如何列方程解决问题,第一要根据题意找等量关系,第二根据等量关系列出方程,第三解方程,第四检验结果是否正确,从而提高学生分析问题、解决问题的能力。少部分学生找等量关系有困难,需要加强练习和个别辅导。

将本文的word文档下载到电脑,方便收藏和打印。

相遇问题五年级数学教案篇十三

数学课程标准指出“学生的数学内容应当是现实的、有意义的、富有挑战性的,这些内容有利于学生主动地进行观察、实验、猜测、验证、推理与交流数学活动”。基于这样的要求,在组织课堂教学时,如何创设教学情境,激发学生的求知欲望,提高教学质量此文来自优秀斐斐,课件园已越来越受到广大教师的重视。我认为数学课上的情境创设不仅仅是为了活跃课堂气氛而设置的,更不是为所谓的“体现课程标准”而设置,其根本目的是为学生学习数学服务,要让学生用数学的眼光去关注情境,由此发现数学问题,解决数学问题,提高数学能力。

行程问题是数学教学中的'一个典型问题,“相向而行”、“反向而行”、“同向而行”、“同时出发”、“相遇”等数学术语,以及两地的路程与物体的关系,对于初学的学生来说在理解上有一定的困难。为此,在教学时,我设计这样的教学情境,首先,请两名学生分别在a、b两端,同时出发,迎面走来,在表演时,叫他们站在相遇点,并组织学生讨论在刚才的情境中,蕴含了那些数学问题,怎样求ab两地间的路程,使学生明白了运动方向(相向而行),两人同时出发(在相遇时两人用的时间相等),求ab间的路程实际上就是求两人行走路程和其次,让相遇的学生继续往前走分别到a、b两地,帮助学生理解现在的运动方向是反向而行,而求ab两地的路程还是两人行走的路程和。有了这样的认识,学生在解决这类基本题时,已不觉得有任何难度。同样,在数学变式题时,我也充分利用教学情境,让学生明白不同速度的两个物体同向而行后,会发生的数学问题,即经过一段时间,两物相距的路程就是它们所行的路程差。当两个物体沿封闭图形周长。通过教学。让学生在生活情境中理解数学、应用数学,使学生知道了数学知识的来龙去脉,把“生活化”与“数学化”较好地结合起来,提高了学习效率。

当然,在创设教学情境时,我们要力求避免“生活味”过浓,不能把“生活化”作为数学课的单一求甚至是唯一求,因为数学问题并不完全等同于生活问题,数学来源于生活,又高于生活,有其独特的抽象性和逻辑性。只有把“生活化”与“数学化”有机地结合起来,合理地选择数学素材,创设现实的、有意义的和富有挑战性的教学情境,才能真正提高教学效率,培养学生的创新精神的实践能力。

相遇问题五年级数学教案篇十四

课本第11页上的内容。

1、通过找因数,观察它们的特点,初步理解质数和合数的含义。

2、培养孩子的观察、比较、抽象、概括能力,通过探索找出寻找质数的简单的方法。

3、使学生初步认识数学与人类生活的密切联系,体验数学活动充满着探索与创造。

在教学活动中,帮助学生理解质数和合数的意义。

培养孩子的观察,通过探索找出寻找质数的简单的方法。

投影仪、小正方形纸片等。

1、先复习自然数按能不能被2整除的.分类。

2、教师引入:同学们已经学习并掌握了找因数的方法,这一节课,我们再一起学习找质数。

板书课题:找质数。

活动:拼一拼。

1、用12个小正方形拼成长方形,看谁拼的方法多,动作还快。

(同桌用12个小正方形拼长方形,可以合作,并完成书第10页的表格。)。

2、学生汇报,教师填表(投影出示下表)。

小正方形个数(n)拼成的长方形种数n的因数。

(1)让学生观察左表中各数的因数,看看有什么发现?

(2)结合上面的发现,将2—12各数分为两类,说一说这两类数分别有什么特点。

3、教师提示质数和合数的意义。

一个数只有1和它本身两个因数,这个数叫做质数;

一个数除了1和它本身以外还有别的因数,这个数叫做合数。

4、教师:1是质数还是合数呢?(1既不是质数,也不是合数。)。

(做一做)。

通过今天这节课的学习,你有什么收获?你还有什么要问的?

优化作业。

相遇问题五年级数学教案篇十五

1、在具体的情境中,进一步认识分数,发展数感,体会数学与生活的密切联系。

2、结合具体情境,进一步体会“整数”与“部分”的关系。

二、重点难点

重点:理解整体“1”,体会一个分数对应的“整体”不同,所表示的具体数量也不相同。

难点:充分体会“整数”与“部分”的关系。

三、教学过程

(一)复习旧知,导入新课

2、今天我们一起来学习《分数的再认识》。

(二)创设情境,学习新知

活动一:分笔游戏,体会单位一

1、分笔活动,找4名同学拿着自己的笔来到讲台。(笔数是2的倍数:4、4、6、8)

2、请你们4名同学拿出自己笔的1/2,看谁拿的又快又准。

3、另找4名同学检查。

4、同学们自己说说是怎么分的。(把全部铅笔平均分成两份,拿出其中的一份。)

5、师提问:他们都是拿出全部笔的1/2,可是拿出来的笔却有的一样多,有的不一样多,这是为什么呢?(每位同学的总数不一样)

活动二:教材p34说一说。

1、带着新的认识,我们来判断两个小朋友看的书一样多吗?

2、小刚和小明都看了各自书的1/3,他们看得页数一样多吗?为什么?学生独立思考一会,同桌交流,再全班反馈。

3、师总结:因为书的薄厚不同,也就是总页数不同,所以两人看的页数也不同。(整体不同,相同分数表示的数量也不同。)

4、在什么情况下,他们读的一样多呢?(整体相同,相同分数表示的数量也相同。)

(三)巩固练习

1、教材p34画一画。

2、教材p35练一练第一题、第二题。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)

四、板书设计

分数的再认识

整体不同,相同分数表示的数量也不同。

整体相同,相同分数表示的数量也相同。

五、教学反思

本节课的教学,我采取以小游戏为开篇来引导学生进一步认识分数,理解分数的意义。在教学和练习中我重点强调了“平均分”和体会“整数”与“部分”的关系。学生在练习时,也能体会到整体不同,相同分数表示的数量也不同,如“印度洋海啸捐款”一题。但在练一练第一题写分数时出现错误很多,其主要原因在于书中没有平均分,而是要画一条辅助线和旋转图形。

相遇问题五年级数学教案篇十六

分数数的加法和减法异分母分数加、减法。

分数加减混合运算。

1.理解分数加、减法的算理,掌握分数加、减法的计算方法,并能正确计算出结果。

2.理解整数加法的运算定律对分数加法仍然适用,并会运用这些运算定律进行一些分数加法的简便运算,进一步提高简算能力。

3.体会分数加、减法运算在生活、生产中的广泛应用。

1.加强直观,凸显过程,培养数感。

学习分数加、减法的关键是让学生理解“只有相同单位的数才可直接相加、减”的算理。为了帮助学生理解,在教学过程中,一方面应注意充分利用数形结合的方法,加强直观认识,借助直观图的演示或学具操作,建立表象,理解算理;另一方面要为学生创设参与、探索、概括计算法则的空间,让学生经历观察、操作、猜想、验证的过程,鼓励学生有条理地表达自己的思考过程,揭示算理,概括法则,培养数感。

2.加强对比,沟通联系,促进迁移。

本单元中教材从同分母分数加、减法的法则推导到异分母分数加、减法的法则推导,从整数和小数加、减法的意义,计算法则,加减混合运算顺序到分数加、减法的'计算法则、加减混合运算顺序直至加、减法运算定律和性质的推广,无一不体现着知识之间的内在联系。教学中,应充分利用这种内在联系,注意对比和沟通,利用学生已有的知识和经验,感悟新旧知识之间的共同点,让学生通过自己的探索学习新知,这样不仅省时、突出重点,还培养了学生学习过程中的迁移、类推能力。重视口算,强化关键,培养能力。本单元中,分数加、减法中的分子、分母一般都不大,很多计算题可以直接口算出来,因此在计算正确的基础上,提倡能口算的尽量口算,以便提高学生的计算熟练程度和口算能力。

除重视口算训练外,还应注意练习的针对性,抓住分数加、减法的重点、难点和关键进行练习。当学生计算熟练后,要注意指导学生的计算法则,适当省略式题计算的思考步骤,简缩思维过程,培养求简思维。同时根据计算式题的具体特点,鼓励学生选择灵活的算法或进行简便运算,培养学生的计算能力及思维的灵活性。

4.认真审题,自觉检查,培养习惯。

在教学过程中,老师要重点关注学生审题能力的培养,要引导学生整体感知算式的特点,确定题目的运算顺序。教学中还应重视教给学生险验的方法,培养学生良好的检验习惯。

相遇问题五年级数学教案篇十七

新课标认为,数学教学是数学活动的教学,是师生之间、学生之间交往与共同发展的过程。数学教学,要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动,使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学的角度观察事物、思考问题,激发对数学的相遇问题是在学习了速度、时间和路程的数量关系的基础上进行教学的,由一个物体运动的特点和数量关系为基础来探索两个物体运动的特点和数量关系。

本节课我从“书本数学”向“生活数学”转变,大胆“舍弃”书本过于知识化、形式化的例题,对教材合理整合,使学生学现实的、有意义的、有价值的数学,使学生感受到数学源于生活,又用于生活,从而增强学生学好数学的信心,激发学生学习数学的兴趣。因此我在设计上力求体现让学生在活动中学数学这一思想,创设了课件两个走路的情境,先是一个人走路,让学生带着问题观察、思考,复习速度、时间、路程的有关计算,为新课的学习做好铺垫。接着是两个人走路,两个人相对而立,同时出发,知道碰到为止。让学生观察后描述他们走路的情况,揭示出同时、相对、相遇等术语的含义。进而探究两个人走路中的实际问题,即相遇问题。根据本班学生特点,老师利用课件演示走1分钟两个人分别走了多少米和两个人共走了多少米,接着演示2、3、4分钟两个人分别走了多少米和两个人共走了多少米,并用线段图表示出两个人所走的路程,在此基础上,学生顺利地列出了求两地距离的两种算式,并比较了两种方法的不同之处,()但此时忽略了让学生选出更为简单的方法,导致练习时学生用速度和乘时间这种方法的人不是很多。另外,本节课的教学内容涉及到的情况较多,既相向运动有求路程的,又有求相遇时间的。

学生在一次次愉悦的演示过程中,感受理解相遇应用题的规律和特征。在一次次演示过程中,老师问学生:你们从活动中感悟到了什么?发现了什么规律?学生都纷纷举手发言:面对面行驶,时间相同,途中相遇,速度不同,所以行驶路程不同等,把相遇应用题的特征、规律给揭示出来了。

这节课我采用让学生在比较中掌握新知的方法进行教学的,放下权利,让学生自己去探索发现规律,获取新知。在解决方法上特意引领学生在同中求异,注重培养学生的创新意识,对那些能够灵活解答问题,有新意的学生给予及时的鼓励。并且充分发挥了学生间的合作精神,让他们在合作中解决问题。

相遇问题五年级数学教案篇十八

1、能够认识长方体和正方体,具有初步的立体空间想象能力。

2、结合具体的多个长方体和正方体的堆放情景,经历探究多个长方体和正方体堆放时露在外面表面积的过程,能够准确的计算出多个长方体和正方体堆放时露在外面的表面积。

3、使学生感受到长方体和正方体的表面积与生活的密切联系,培养学习数学的良好兴趣。

能够准确的计算出多个长方体和正方体堆放时露在外面的表面积。

师生共同归纳和推理。

多个正方体盒子。

一、复习导入。

教师让学生顾回上一节课学习的长方体和正方体的表面积,并对学生进行提问。

学生回答:长方体的表面积=(长×宽+长×高+高×宽)×2;正方体的表面积=边长×边长×6)。

二、讲授新课。

学生观察图片并计算露在外面的面积是多少平方厘米?

教师提问学生回答这个问题。(露在外面的面有3个;露在外面的面积是50×50×3=750(平方厘米)。

教师提问学生回答这个问题,(有9个面露在外面,露在外面的面积是50×50×9)。

教师让学生用自己的4个正方体学具换一种堆放方式来试一试,露在外面的面积是否有变化,同桌之间相互讨论交流。

三、课堂小结。

同学们,这一节课你学到了哪些知识?(提问学生回答)。

板书设计:

露在外面的面。

从正面、侧面、上面看一看,一共有几个面露在外面?

相遇问题五年级数学教案篇十九

教学环节设计:教材上直接给出了两人同时相对而行的情境,而我在教学时,先让学生读题充分理解题意,知道题中出现了哪些量,然后理解“相向而行”“相遇”和“同时出发”这几个相遇问题的要素。然后两名学生按相遇问题的要求演示其他学生观察思考“你发现了什么?”然后师生一起完成例题中的线段图。然后学生看线段图思考独立列数量关系式,把已知条件和问题带入等量关系式尝试列方程解答。

上述教学过程,通过创设情境,把抽象的数学知识转化为活动,激起了学生的探究欲望,使学生感到学数学是为了解决生活中的问题,并不是与己无关的、枯燥无味的,而是生活中所必需的。从而唤起学生的数学思维,将孩子们带进数学天地。著名科学家爱因斯坦说过:“提出一个问题比解决一个问题更重要。一个人只有发现问题才能提出问题,只有提出问题才有可能解决问题。”问题意识、问题能力是创造能力的基础。因此,数学教学要注重培养学生发现问题、解决问题的能力,从数学情境中发现问题并提出问题,让学生带着浓厚的兴趣去研究、去探索。

学习方式的转变是这节课的一大特色,如何提升学生在课堂中的'学习水平是当前一个重要的课题,学生通过活动认识了相遇问题形成的条件和模型,通过对模型特征的探究活动,探究出了相遇问题的等量关系式,用方程解答比较简单,通过合作学习,实现了知识上的互补,从而解决了本课的重点问题。学生体验到学习成功的愉悦,同时也促进了自身的发展。

新课程倡导主动参与、乐于探究、合作交流的学习方式,让学生在主动探究、合作的学习氛围中获取知识、构建能力,自我养成对待学习的积极的情感态度。这是新一轮课程改革在教学层面上的三大要素,也是在教学方法上所追求的最高境界。因此,好的教学方法就是引导学生自己去发现,主动去探究。课堂上给学生多一点思维的空间和活动的余地,凡学生能独立思考的决不暗示;凡学生能探究得出的决不替代;学生能独立解决的决不示范。给学生多一点表现的机会,多一点体验成功的愉悦,让学生的思维能力和创造能力得到发展。

【本文地址:http://www.xuefen.com.cn/zuowen/16419476.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档