教案包括教学目标、教学内容、教学方法、教学过程等内容,具有很强的操作性。教案的编写要注意教学资源的合理利用和创新运用,提高教学的趣味性和吸引力。以下是小编为大家整理的几份优秀教案范例,供大家参考和学习。
分数教案设计篇一
教学准备:
教学目标:
1、复习、整理本单元的知识,在练习中进一步加强分数的加减法的熟练性。
2、通过多种形式的`练习,巩固分数加减法,在游戏、应用中体验数学的趣味性。
基本教学过程:
一、基本练习。
1、说分数和小数的意义。
0.40.80.7。
2、同分母分数加减法。
3、简单的异分母加减法练习。
4、练习五的第1题(分数加减法的混合运算)。
这里重点练习分数的通分和运算顺序。
二、垃圾分类。
1、看图,理解图意。
2、提问:
废纸类与玻璃类共占几分之几?
看图表,根据图中的数据,你能提出哪些数学问题?
3、小组内提问,并组内进行解答,
4、全班汇报,集中交流。
三、解方程。
在复习解方程的过程中,进行分数加减法的练习。
四、找数字游戏。
猜一猜,这些数字可能是什么?与同学进行交流。
先进行分数和小数的互化练习,然后确定数字的范围。
教学反思:
五、分析统计图,回答问题。
1、根据统计图中的数据,回答:
读2本和3本书的学生数占全班人数的几分之几?
你还能提出哪些数学问题?组内自己解决自己提出的问题。
六、想一想,算一算。
先自己算一算,想一想:
你发现了什么规律?
用刚才发现的方法,不用计算,你能直接得出-的结果吗?
七、小结。
八、实践活动:建造“分数墙”
分数教案设计篇二
《百分数的意义和写法》是义务教育课程标准实验教科书六年级上册第五单元的内容。本单元包括百分数的意义和读写、百分数与分数、小数的互化、用百分数解决问题三个内容。
今天我说课的内容是本单元的第一课时,安排了百分数的意义和百分数的读写两部分内容,教材一开始就出现四幅与百分数有关的生活情境图,目的是引导学生联系生活实际认识百分数,理解百分数意义,感受百分数在生活实际中的应用价值。接着让学生结合已有的或自己收集的百分数,说说它们的具体含义,从而进一步理解百分数的意义,最后安排了百分数的读写。本节教材是在学生学过整数、小数和分数的意义及其应用的基础上来进行教学的,又是后面学习百分数与分数、小数互化和用百分数解决问题的基础。因此,这部分内容是本单元的重点,也是小学数学中重要的基础知识之一。
二、学情分析。
学生在五年级已系统学习了与分数有关的知识,知道分数表示的意义,会用分数解决实际问题,具备了探索百分数的知识和技能。在生活中,学生对百分数已有一定的经验积累,如衣服的标签上、牛奶的包装盒上等等。本节课的学习应有效的唤醒学生已有的分数知识,帮助学生由感性认识逐步上升到理性认识,正确理解百分数的意义。
三、教学目标。
基于以上对教材和学生的分析,结合课标的要求,我制定了如下三维目标:
(1)知识与技能:让学生经历从实际生活中抽象出百分数的过程,体会引入百分数的必要性,理解百分数的意义,会正确读写百分数。
(2)过程与方法:通过探究、观察、比较、归纳等学习方法,理解分数与百分数的联系与区别。
(3)情感、态度、价值观:提高学生收集、分析信息的能力,体会数学的应用价值,激发对数学的兴趣和应用数学的意识。
教学重点是理解百分数的意义,掌握它的读法和写法。
教学难点是理解百分数与分数的联系与区别。
为了使课堂教学能顺利完成,还需做一些课前准备:教师准备是多媒体课件,学生收集生活中的百分数。
四、说教法与学法。
接着我来谈谈本节课的教法和学法:
在教法上,我充分发挥“教师是数学学习的组织者、引导者与合作者”这一理念。通过创设情境引入,让学生根据课题进行质疑,大胆放手让学生带着问题整体感知教材内容,通过自学初步感知百分数的意义,唤醒原有的知识结构,再通过大量的感性材料,让学生在自主、合作、探究等活动中,加深对百分数的理解。教学中,我力求为学生提供一个可独立思考的、开放的课堂教学环境,突出以学生为主体的教学理念。
在学法指导上主要采用自主学习、合作交流,让学生亲身经历数学知识生成的过程,真正理解和掌握基本的数学知识和技能。
五、说教学过程。
结合本课的教学目标,我设计了以下几个教学环节:
(一)、创设情境质疑自探。
1、情境引入。
学生们对于篮球是非常熟悉的,利用学生熟悉的篮球运动员,来质疑:谁的投篮水平高?
师:生活中你见到过百分数吗?让学生说说在哪儿见过,看来生活中的百分数应用非常广泛,今天我们就来学习与百分数有关的知识,揭示课题。
2、根据课题,引导学生质疑:
师:看了这个课题,你想学习哪些与百分数有关的知识?
(二)、自主学习小组讨论。
1、带着问题自学课本p77―78的内容:
(1)什么是百分数?并结合主题图说说百分数的具体含义。
(2)怎样写百分数,要注意什么问题?
(3)百分数与分数的有什么区别与联系?
2、小组讨论,初步理解百分数的意义。
(1)交流学生自学后的收获。
(2)交流不明白的地方,请其他学生解疑。
(三)、合作交流精讲点拨。
先让学生说说什么叫百分数?然后结合情境图说说百分数的意义。
2、让学生把收集到的百分数写到黑板上,说说写百分数时要注意什么问题?并选一个百分数说说它表示的含义。
3、百分数与分数的区别。
让学生先说说他们找到的不同之处:分子不同,分母不同,写法不同等。学生讨论:
一只铅笔长17/100米,可不可以说“一只铅笔长17%米”?
一只铅笔用去了它的17/100,可不可以说“用去了它的17%”?
引导学生思考:分数不仅能表示一个数是另一个数的几分之几,而且能表示一个具体的数量。百分数只能表示一个数是另一个数的百分之几,表示两个数之间的倍比关系,因此百分数也叫做百分比。
辨析:分母是100的分数就是百分数,这句话对不对?
分数教案设计篇三
(二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
(三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。
教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给。
学具:每位同学准备三张相同的长方形纸片。
(一)复习准备。
1.口答:(投影片)。
根据120÷30=4,不用计算直接说出结果:
(120×3)÷(30×3)=();(120÷10)÷(30÷10)=()。
2.说一说依据什么可以不用计算直接得出商的?
3.说出商不变的性质。
教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。
(二)学习新课。
(1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“1”同样大)教师把三张纸分贴在黑板上。
教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。
教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。
学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:
教师:请比较这三个分数的大小?
你根据什么说这三个分数相等?
学生口答后老师用等号连结上面三个分数。
(3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。
学生口述分数基本性质的内容,老师把板书补充完整。
教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)。
用学生自己的例题说明后,用投影片再说明:
2.把一个分数化成大小相等,而分子或分母是指定数的分数。
(2)口答练习:(学生口答,老师板书。)。
教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。
分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。
在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。
在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。
新课教学分为两部分。
第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。
第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。
分数教案设计篇四
3.培养学生分析问题和解决问题的能力.。
教学重点。
明确分数乘、除法应用题的联系和区别.。
教学难点。
明确分数乘、除法应用题的联系和区别.。
教学过程。
一、启发谈话,激发兴趣.。
在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答。
二、学习新知。
(一)出示例8的4个小题.。
1.学校有20个足球,篮球比足球多,篮球有多少个?
2.学校有20个足球,足球比篮球多,篮球有多少个?
3.学校有20个足球,篮球比足球少,篮球有多少个?
4.学校有20个足球,足球比篮球少,篮球有多少个?
(二)学生试做.。
1.第一题。
解法(一)。
解法(二)。
2.第二题。
解:设篮球有个.。
解法(一)。
解法(二)。
解法(三)。
3.第三题。
解法(一)。
解法(二)。
4.第四题。
解:设篮球个.。
解法(一)。
解法(二)。
解法(三)。
(三)比较区别。
1.比较1、3题.。
教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有。
什么不同的地方?
(1)观察讨论.。
(2)全班交流.。
(3)师生归纳.。
这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?
2.比较2、4题。
(1)观察讨论.。
(2)全班交流.。
(3)师生归纳.。
分数教案设计篇五
教学内容:
苏教版义务教育教科书《数学》六年级上册第49~50页例5、试一试和练一练,第51页练习七第1~4题。
教学目标:
数”的简单实际问题,进一步体会分数乘、除法的内在联系,加深对分数表示的数量关系的理解。
教学重点:
列方程解答“已知一个数的几分之几是多少,求这个数”的简单实际问题。
教学难点:
理解列方程解决简单分数实际问题的思路。
教学过程:
一、导入。
1、出示例5中两瓶果汁图,估计一下,大、小两瓶果汁之间有什么关系?
出示:小瓶的果汁是大瓶的。
这句话表示什么?你能说出等量关系式吗?
如果大瓶里的果汁是900毫升,怎么求小瓶果汁里的果汁?自己算算看。
如果知道小瓶里的果汁,怎么求大瓶中的果汁呢?
2、揭示课题:简单的分数除法应用题。
二、教学例5。
1、出示例5,学生读题。
提问:你想怎么解决这个问题?
2、讨论交流:你是怎么想、怎么算的?
(1)用除法计算。
引导讨论:为什么可以用除法计算?依据是什么?
(2)用方程解答。
讨论:用方程解答是怎么想的,依据是什么?
让学生在教材中完成解方程的过程,并指名板演。
3、引导检验:900是不是原方程的解呢,怎么检验?
交流检验的方法。
4、教学“试一试”
(1)出示题目,让学生读题理解题目意思。
(2)讨论:这里中的两个分数分别表示什么意思?
这题中的数量关系式是什么?
(3)这题可以怎么解答,自己独立完成,并指名板演。
(4)交流:你是怎么解决这个问题的?
4、小结。
三、练习。
1、做“练一练”。
各自独立解答后,进行交流汇报。提倡学生用两种方法进行解答。
2、做练习十二第1题。
(1)读题,画出题目中的关键句。
(2)学生说题意。
(3)引导学生说出并在书上写出数量关系式。
(4)独立解答,并指名板演。
(5)集体评议并校正。
3、做练一练第2题。
启发:你是怎样分析数量关系的?为什么要列方程解答?
3、小结解题策略。
四、作业:练习十二第1、3、4题。
板书设计:(略)。
分数教案设计篇六
3.培养学生分析问题和解决问题的能力.。
教学重点。
明确分数乘、除法应用题的联系和区别.。
教学难点。
明确分数乘、除法应用题的联系和区别.。
教学过程。
一、启发谈话,激发兴趣.。
在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答。
二、学习新知。
(一)出示例8的.4个小题.。
1.学校有20个足球,篮球比足球多,篮球有多少个?
2.学校有20个足球,足球比篮球多,篮球有多少个?
3.学校有20个足球,篮球比足球少,篮球有多少个?
4.学校有20个足球,足球比篮球少,篮球有多少个?
(二)学生试做.。
(略)。
(三)比较区别。
1.比较1、3题.。
教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有。
什么不同的地方?
(1)观察讨论.。
(2)全班交流.。
(3)师生归纳.。
这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?
2.比较2、4题。
(1)观察讨论.。
(2)全班交流.。
(3)师生归纳.。
三、巩固练习.。
(一)请你根据算式补充不同的条件.。
学校有苹果树30棵,________________,桃树有多少棵,
(二)分析下面的数量关系,并列出算式或方程.。
1.校园里有柳树60棵,杨树比柳树多,杨树有多少棵?
2.校园里有柳树60棵,杨树比柳树少,杨树有多少棵?
3.校园里的杨树比柳树多,杨树有25棵,柳树有多少棵?
4.校园里的柳树比杨树少,杨树有25棵,柳树有多少棵?
四、归纳总结.。
分数教案设计篇七
_____________________________________。
2.桶里装有一些油,用去了60%,恰好是48千克,原来桶里装有多少千克的油?
_____________________________________。
3.一条绳子长48米,剪去全长的75%,还剩多少米?
_____________________________________。
4.一条绳子,剪去全长的.75%,还剩下12米,原来绳子长多少米?
_____________________________________。
5.生产车间上个月制造零件1280个,本月比上月超产15%,本月制造零件多少个?
_____________________________________。
6.生产车间本月制造零件1472个,比上个月超产15%,上个月制造零件多少个?
_____________________________________。
7.小丽身高126厘米,正好是父亲身高的70%,父亲身高多少厘米?
_____________________________________。
_____________________________________。
_____________________________________。
_____________________________________。
分数教案设计篇八
教学内容:本课时的教学内容是百分数及百分数的应用。
教学目标:
知识与技能。
进一步理解百分数的意义,巩固求百分率的方法,掌握百分数与分数、小数的互化方法。
能应用百分数的相关知识,解决简单的实际问题。
过程与方法。
通过小组合作学习,交流探究等活动,增强合作学习的意识。
经历回顾、梳理、反思所学知识的过程,加深对复习内容的理解。
情感、态度与价值观。
在学习活动中,激发探究欲望,养成善于回顾和反思的学习习惯。
体验数学与生活的密切联系,增强应用数学知识解决实际问题的意识。
难点:掌握关于“增加百分之几”和“减少百分之几“的实际问题的解题方法。
教学设计:通过复习,系统、全面的整理了本学期所学的百分数知识,帮助学生构建合理的知识体系,使学生更好地理解和掌握所学概念、意义和解题方法,进一步培养学生的数感,提高学生的解题能力。本节课对百分数及百分数的应用的相关知识做了系统的复习,只要体现在以下两点:
1、突出核心知识,围绕重点展开复习和训练。
本课时的复习紧紧围绕百分数的认识及应用百分数解决实际问题这两方面内容,引导学生通过回顾、交流,进一步巩固对百分数的认识和运用百分数解决实际问题的方法,以“抓重点,带相关”的复习方式展开训练,提高学生的解题能力。
2、注重知识间的内在联系。
加强知识间的内在联系,帮助学生构建合理的知识体系,本节课通过对比血虚,进一步明确了百分数的意义和百分数应用题的解题思路,提高了学生的审题能力,使学生能够根据不同的要求,灵活选择不同的解题方法。
3、数形结合,为以后的学习打下基础。
分数教案设计篇九
学习内容:
教材第70、71页例3、例4,及“做一做”。
学习目标:
1.我能认识带分数,知道带分数是一部分假分数的另一种书写形式。
2.我能掌握把假分数化成整数或带分数的方法。
学习重难点:
认识带分数,能把假分数化成整数或带分数。
学习过程:
一、导入新课。
二、合作探究、检查独学。
1.小组内检查独学部分的题目完成情况,质疑探讨。
2.根据独学部分的题目自学例3、例4。小组内讨论交流。
(1)什么样的假分数能化成整数?化成整数的依据是什么?
(2)比较把假分数化成整数和化成带分数的方法有什么共同点和不同点?
3.小组代表展示、汇报。
4.总结升华。
5.我能行:完成71页“做一做”。
分数教案设计篇十
2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。
3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。
联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。
多媒体课件长方形白纸、圆片,彩色笔等。
一、创设情境,激趣导入。
生1:四、五、六年级分的地一样多。
生2:……。
师:到底校长分的公平不公平,我们来做个实验吧?
二、动手操作,探究新知。
1、小组合作,实验探究。
师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。
2、汇报结果。
师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。
生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。
生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大。
生5:……。
3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)。
(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)。
师:三个年级分的地一样多,那么你们觉得、这三个分数的大小怎么样?
生:相等。
师:同学们请看这组分数有什么特点?(板书=)。
生:分数的分子分母发生了变化分数的大小不变。
生:分子分母同时乘2,……。
师:谁能用一句换来描述一下这个规律?
生:给分数的分子分母同时乘相同的数。(师随着板书)。
师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?
生:分数的分子分母同时除以相同的数。
师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书分数的基本性质)。
师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?
生:0除外。
师:为什么0要除外?
生:因为分数的分母不能为0.
师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?
生:同时相同0除外。
师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?
生:商不变的性质。
师:为什么?
生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。
师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。
三、应用新知,练习巩固。
(一)练一练。
(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。
(二)判断(抢答)。
1、分数的分子、分母都乘过或除以相同的数分数的大小不变。()。
2、把的分子缩小5倍,分母也缩小5倍分数的大小不变。()。
3、给分数的分子加上4,要是分数的大小,分母也要加上4。()。
(四)测一测。
1、把和都化成分母是10而大小不变的分数。
2、把和都化成分子是4而大小不变的分数。
3、的分子增加2,要是分数大小不变,分母应增加几?
四、总结。
1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?
2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)。
五、作业。
练习册2、4题。
分数教案设计篇十一
2.培养学生观察、分析、思考和抽象、概括的能力.。
3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.。
教学过程。
一、谈话.。
我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、
整数的互化方法.今天我们继续学习分数的有关知识.。
二、导入新课.。
(一)教学例1.。
出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.。
1.分别出示每一个圆,让学生说出表示阴影部分的分数.。
(1)把这个圆看做单位1,阴影部分占圆的几分之几?
(2)同样大的圆,阴影部分占圆的几分之几?
(3)同样大的圆,阴影部分用分数表示是多少?
2.观察比较阴影部分的大小:
(1)从4幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)。
(2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)。
3.分析、推导出表示阴影部分的分数的大小也相等:
(1)4幅图中阴影部分的大小相等.那么,表示这4幅图的4个分数的大小怎么样呢?
(这4个分数的大小也相等)。
(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).。
4.观察、分析相等的分数之间有什么关系?
(1)观察转化成,的分子、分母发生了什么变化?
(的分子、分母都乘上了2或的分子、分母都扩大了2倍.)。
(2)观察。
(二)教学例2.。
出示例2:比较的大小.。
1.出示图:我们在三条同样的数轴上分别表示这三个分数.。
2.观察数轴上三个点的位置,比较三个分数的大小:
从数轴上可以看出:
3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.。
(1)这三个分数从形式上看不同,但是它们实质上又都相等.。
(教师板书:)。
(2)你们分析一下,、各用什么样的方法就都可以转化成了呢?
1.观察前面两道例题,你们从中发现了什么变化规律?
“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)。
2.为什么要“零除外”?
3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”
教师板书字母公式:
1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?
(和除法中商不变的性质相类似.)。
(1)商不变的性质是什么?
(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)。
(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.。
我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解。
决一些有关分数的问题.。
3.教学例3.。
例3把和化成分母是12而大小不变的分数.。
板书:
教师提问:
(1)?为什么?依据什么道理?
(,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以,)。
(2)这个“6”是怎么想出来的?
(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)。
(3)?为什么?依据的什么道理?
(,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以,
分数教案设计篇十二
一、导入。
教师提问:
“如果你家中有一些暂时不用的钱,将怎么办?”让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:
“为什么要把钱存入银行呢?”多让几个学生发表意见。
教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。
“你们知道利息是怎样计算的吗?”
教师:今天我们就来学习一些有关利息的知识。
板书课题:“利息”
二、新课。
出示例题:小丽1月1日把100元钱存入银行,存定期一年。到1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的5.67元,共105.67元。
先请学生读题,然后教师再说明:题目中有“存定期一年”表示什么呢?一般来讲。储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是“定期―年”,即小丽在银行存的100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。
教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:“存入银行的钱叫做本金”
存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。板书:“取款时银行多付的钱叫做利息”
这5.67元的'利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:“利率就是利息与本金的比值”这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。
根据国家经济的发展变化,银行存款的利率有时会有所调整。10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。
按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少。
元?提问:
“二年期的定期整存整取的年利率是5.94%是什么意思?”(到期取款时每100元可得5.94元的利息。)“小丽的本金是300元,到期时她每一年应得利息多少元?”(300元的5.94%。)学生口述,教师板书:300×5.94%。
“二年应得利息多少元?”学生口述,教师接着板书:×2。
小丽的存款到期时可以得到的利息是35.64元。
“小丽的存款到期时,她可以取出本金和利息一共多少元?”(335.64元。)如果有条件可以让学生看一看活期储蓄、定期储蓄的存款和取款的凭条。
三、巩固练习。
做第2页“做一做”中的题目和练习一的第2题。先让学生独立做,然后再共同订正。
四、作业。
练习一的第1题。
分数教案设计篇十三
教学内容:
人教版小学五年级下册数学49—50页内容。教学目标:
1、让学生理解分数与除法的关系;
2、通过学习,学生会用分数表示两个数相除的商;
3、让学生经历分数与除法关系的过程,进一步培养学生观察、比较、分析、推理的能力;
4、创设探究活动情境,促进学生在自主探究、合作交流的学习过程中,获得研究性学习的经验和成功的体验。教学过程:
一、复习旧知识,启动研究问题(课件出示题)。
1、把8块饼干平均分给4个小朋友,每个小朋友分得几块饼干?如何列算式解答(生答略)。
2、现在老师只有1块饼干,把它平均分给4个小朋友,每个小朋友分得几块饼干?
(1)如何列算式解答?
生答,老师板书在黑板上?
1÷4=(生可能会回答)。
(2)请同桌的同学们用一张纸片表示饼干,把平均分饼干的过程表现出来(学生动手操作,老师巡视)(3)让学生代表说一说,并把过程演示出来。
3、老师:那么会不会任意两个整数相除,都可以用分数表示结果呢,这节课我们就来研究这个问题。(板书课题:分数与除法的关系)。
二、讲授新课。
老师:孩子们过生日都要吃什么啊?(生:蛋糕)老师:今天啊,正好是小红的生日,我们一起看看,小红是怎么过生日的,好吗?(课件出示例题)。
1、课件出示例题:今天是小红的生日,爸爸妈妈和弟弟为她准备了一块精美的蛋糕,同时在外地的舅舅和外婆分别给小红邮寄了一块蛋糕,现在平均每人分得几块蛋糕?(1)、如何列算式:
生答:老师板书3÷4=(2)老师:每个小组有3张纸片表示3个蛋糕,亲自分一分,看看结果是多少。(同桌合作,老师巡视)(3)学生交流汇报:
a、把每块蛋糕平均分成4份,一共12份,每人吃了3份,就是(把3份拼在一起,其实就是一块蛋糕的)。
b、把3个蛋糕叠在一起,平均分成4份,取其中的一份,就是3份,再拼在一起,也是。
个蛋糕。
2、老师:大家一起观察算式。
1÷4=。
3÷4=同桌一起研讨下:这两个除法算式,等号的左边是除法,等号的右边是分数,那么除法和分数之间有什么联系?又有什么区别呢?(学生讨论)。
(1)、学生交流汇报:除法算式中的被除数相当于分数的分子,除法算式的除数相当于分数的分母,除号相当于分数线。
(2)区别:除法是一种运算,分数是一个数。(3)教师小结(利用课件表格总结)。
3、刚才大家借用学具研究了3÷4=?的问题,如果不借助学具,你能说出7÷8的结果吗?为什么?(生答,因为被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线)。
三、巩固练习。
1、课件出示练习题。
(引导学生口答,说原因,师小结)。
2、布置课堂作业:教材51页2、3、4题。
四、课堂小结:(利用课件演示小结)。
分数教案设计篇十四
教学目标:
1、在操作、探究活动中,逐步理解一个整体,建立单位“1”的概念,理解分数的意义。
2、在学习过程中,培养学生的思维能力和应用意识。
3、体会数学与生活的密切联系,进一步增强学好数学的信心。
l教学重点:
理解单位“1”和分数的意义。
l教学难点:
理解单位“1”和分数的意义。
l教学准备:
教具准备:自制教学课件。
学具准备:小棒、练习纸。
l设计意图:
《小学数学新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在课前通过与学生的谈话引出分数后,短短的一句“关于分数,你已经知道了什么”唤起学生已有的知识经验,找到了新知与旧知的链接点,接着又借助媒体教学手段向学生介绍分数的由来,适时渗透了数学文化思想。使学生的思维开始了“起跑”。
作为学生学习的组织者、引导者与合作者,我力求引在核心处,拨在关键处,让学生自主探究、补充概括,借助于课堂这个思维“运动场”,不着痕迹地引导学生理解分数的真正含义。从引导学生“起跑”到“加速”,最后“冲刺”,水道渠成,促使每个学生获得成功的体验。
l教学过程:
一、谈话导入。
1、通过师生之间的谈话引出分数。
2、关于分数,你已经知道了什么?
3、提出要求:
二、分数的产生。
1、板书课题。
师:课前我们一起聊到了分数,今天这节课我们继续来认识分数。
师:你知道古人是怎样表示分数的吗?让我们一起来看一看。
三、理解分数的意义。
1.理解一个整体。
(1)、找出各种材料的1/4。
师:今天老师带来了一些材料,你能分别找到它们的四分之一吗?
师:那就请同学们开动脑筋,分一分、涂一涂,找出它们的1/4。
然后同桌之间说一说,你是如何找到它们的1/4的。听明白了吗?
(2)、汇报交流。
教师进行规范:
生:我把正方形平均分成4份,这样的一份就是这个正方形的1/4。
生:我是把这条线段平均分成4份,这样的一份就是这条线段的1/4。
突出整体:
师:这里的1/4是如何得到的呢?
生:我把4个苹果平均分成4份,这样的一份就是这个整体的1/4。
师:这是他的想法,还有不同想法吗?
生:把4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。
师:说得不错。只要把这4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。
进行知识迁移:
生:我是把8个三角形看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。
(3)小结:
提问:刚才我们在不同的材料里找到了四分之一,找的过程中有什么相同的或不同的地方。
不同点:材料不同。
跟进:但我们都把这些材料看成了一个整体,这个整体可以是一个物体也可以是多个物体。
相同点:都是把这个整体平均分成4份,表示了这样的一份,得到了这个整体的四分之一。
2、理解单位“1”。
(1)深化理解一个整体。
学生自主创作:
师:现在,老师为同学们准备了一些小棒。同桌合作,任选一些小棒,分一分、找一找他们的1/4。开始吧。
交流汇报:
师:你用几根小棒表示1/4?你把几根小棒看作一个整体?你能说说这个1/4的含义吗?(多说几个)。
学生说4根小棒、8根小棒,师:4根小棒、8根小棒都可以看作一个整体。
(2)揭示单位“1”。
师:说的真好。在数学中,通常把一个整体叫做单位“1”。把单位“1”平均分成4份,这样的一份可以用1/4来表示。(板书单位1)。
师:如果一个菠萝用三分之一表示,他是把什么看作单位1呢?——果然如此。
师:如果2个橘子用五分之一来表示,她的单位1,又是多少呢?你是怎样想的?
师:同学们真是了不起!已经能很快地找到单位1了。
3.理解分子、分母的含义。
(1)、找其他分数。
那就请同学们动手涂一涂,用阴影表示出这个分数,并把这个分数写在下方,再和你的同桌说一说这个分数的含义。
(2)、汇报交流。
师:谁愿意和大家交流一下你所找到的分数?
生:把4个苹果看作单位1,平均分成4份,这样的2份就是2/4。
(3)比较:
师:在刚才同学们动手涂一涂,写一写的时候,老师发现,有些同学找到了,这几个分数。(课件使用说明:点击课件出现:
师:观察这些分数,你发现了什么?
生:分母都是4。
师:为什么分母都是4呢?
生:因为都是平均分成了4份。
师:把什么平均分成4份?——单位“1”。
师:要是单位“1”平均分成5份,分母是几呢?——5。平均分成6份——分母就是——6。
师:分母其实就是表示——平均分的份数。
师:同学们的观察力可不一般呐。还有什么发现吗?
生:分子各不相同,都差1。
师:分母为什么会不一样呢?
生:取的份数不同。
师:平均分成4份,取这样的一份就是1,两份就是——2,三份就是——3。
师:分子其实就是表示——取的份数。
师:同学们不仅观察能力强,分析、概括能力也很出色。
4.揭示分数的意义。
(1)逐步理解分数的意义。
师:我们通过动手分一分,涂一涂等方法已经认识了很多的分数。
现在老师再写一个分数5/9,你能说说它的含义吗?
生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。
师:已经会用单位1来说了,真好。谁也愿意来试一试呢?
生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。
师:说的真好。如果不是平均分成9份,板书5/,那么它的含义是什么呢?
生:把单位“1”平均分成很多份,取这样的5份,就是5/()。
师:很多份可以是几份?——2份,3份……。
师:我们可以用一个词来表示(板书:若干份)。
师:如果取的份数也不是5份了,板书()/(),那么这个分数的含义是什么呢??
生:把单位“1”平均分成若干份,取这样的若干份,就是()/()。
师:可以取这样的一份,也可以取这样的……几份。
小结:像同学们所理解的,把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。(板书)这就是我们今天所学的分数的意义。我们一起来读一读。
(2)理解分数单位。
师:分数和整数一样,也有计数单位。像这样表示其中一份的数我们叫做分数单位。
1/4,2/4,3/4,4/4的分数单位就是——1/4。
师:5/9的分数单位?
生:1/9。
师:5/99。
生:1/99。
师:()/1000。
生:1/1000。
师:老师都还没说分子呢,你怎么就知道分数单位了?
生:分数单位就是表示一份的数。
师:也就是说一个分数的分母是几,这个分数的分数单位就是——几分之一。
师:那3/4里有几个这样的分数单位呢?5/9里有几个这样的分数单位呢?
5.总结:今天这节课,我们一起合作学习了什么?你有什么收获?
四、练习巩固。
师:看来同学们的收获还真不少。请同学们在括号里填上适当的分数。
1.填一填。
(1)说说3/5的意义。
(2)同意吗?
(3)3/8的分数单位是多少?有几个这样的分数单位。
2、点击生活。
哪位同学愿意来读一读,并说说其中分数的意义。
(1)、我校五年级学生约占全校学生的1/6。
(2)、长江约3/5的水体受到不同程度的污染。
师:还有几分之几的水体没受污染呢?
师:受污染水体多还是没受污染的水体多?——怎么想的?
师:有什么想说的?——要保护环境。
师:看来同学们很有环保意识。那你希望,长江受污染的水体占长江水体的几分之几呢?
师:大家都有美好的希望,那就让我们拿出实际行动,共同来保护环境。
(3)、姚明的头部高度约占他身高的1/8。
师:我们的身体中还蕴藏着很多分数,有兴趣的同学课后可以去查一查资料。
五、总结全课、质疑问难。
师:这节课我们学习了什么?你有什么收获?还有什么问题?
【本文地址:http://www.xuefen.com.cn/zuowen/16412548.html】