2023年六年级数学下教学设计范文(19篇)

格式:DOC 上传日期:2023-11-29 14:30:18
2023年六年级数学下教学设计范文(19篇)
时间:2023-11-29 14:30:18     小编:FS文字使者

长期的自我总结发现,我们需要更加注重个人发展规划。写总结时要注意客观真实,既要总结成功的经验,也要诚实地反思失败的原因。通过对总结范文的分析和比较,我们可以提炼出一些通用的写作思路和方法。

六年级数学下教学设计篇一

我的发现:

聪明的同学:请你结合这节课所学的知识化简下面各比,说说你有什么发现?

序号。

我的方法。

(写出过程)。

1

14:21。

2

36:15。

3

1/6:2/9。

4

2/3:3/4。

5

1.25:2。

6

5.6:4.2。

我的发现:

六年级数学下教学设计篇二

教材第42页例2、例3。

1、知道什么叫做解比例。

2、会根据比例的性质或比例的意义正确地解比例。

3、培养学生认真书写和计算的习惯。

1、经历解比例的过程,体验知识之间的内容在联系和广泛应用,情感与价值观。

2、感受数学知识的内在联系,体验应用知识解决问题的乐趣,培养灵活的思维能力,激发学习数学知识的热情。

教学重点:

解比例。

教学难点:

解比例的方法。

突破方法:

引导学生小组合作探究、交流,掌握解比例的根据。

教法与学法:

教法:创设问题情境,引导发现。

学法:独立思考,自主探究。

ppt课件。

一、复习准备。

1、师:同学们,我们已经学习了比例的一些知识,谁来说一说上节课我们学习了哪些比例的知识?(比例的意义,比例的基本性质)。

3、利用比例的一些知识,还可以帮助我们解决一些实际问题。

出示比例:3:9=():15。

师:这个比例中的两个外项和两个内项分别是多少?

(外项是3和15,一个内项是9,另一个内项未知的。)。

师:你能利用比例的知识求出这个未知的内项吗?

可以根据比例的意义:比值相等的两个比可以组成比例。因为3:9=1/3,想():15=1/3(5比15等于1/3);还可以根据比例的基本性质“两个内项之积等于两个外项之积”,求未知项。

师:像这样,求比例中未知的项,叫做解比例。(课件出示)。

今天这节课就利用比例的有关知识解比例。(板书课题)。

二、探索新知。

1、出示埃菲尔铁塔情境图。这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道.你们能帮帮他们吗?那我们先来看看这道题。

2、出示例题,教学例2。学生读题。

师:1:10是谁与谁的比?

教师随学生的回答板书:埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:

10。

师:题中还告诉了我们一个什么条件?(埃菲尔铁塔的高度是320米。)师:这样在这组比例的四个项中,我们知道其中的几个项?还有几个项不知道?(知道其中的三个项,还有一个项不知道。)。

师:不知道这个项,我们把它叫做未知项。(在板书下面加上“未知项”三个字)。

板书:解:设这座埃菲尔铁塔模型的高度是x米。

x:320=1:10。

师:用比例的基本性质可以把这个比例改写成一个什么样的等式呢?

为什么可以写成这样的等式呢?引导学生讨论后回答:这是应用了比例的基本性质,把上面的比例写成两个外项的积等于两个内项的'积的等式。

师:对了,把上面的比例改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,不但把比例改写成了等式,这个等式还是一个什么样的等式呀?(含有未知数的等式。)。

师:我们知道这样含有未知数的等式,叫做——方程。同学们会解方程吗?把这个方程解出来。(在全班学生独立解答的同时,抽一个学生在黑板上解答。)。

师:这样我们就知道这个未知项是多少呀?(32)对了,这座埃菲尔铁塔模型的高度是32米。

那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们。

知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)。

出示比例的意义。我们解答得对不对呢?可以怎样检验呢?引导学生说出可以用比例的意义(把结果代入题目中看看对应的比的比值是不是能成比例.)或比例的基本性质来检验。

解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设x——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)。

3、巩固例2练习。

(1)出示练习题p44第8题。

(2)学生独立完成,二名学生板演讲解分析。

(3)小结:说一说你是怎样解比例。(解比例可以根据比例的基本性质把比例转化成方程,然后用解方程的方法求出未知数x)。

4、这个比例你能解答吗?出示例3:1.5/2.5=6/x。

(1)谈话引导学生理解例3,这个比例形式上与例2有什么不同?(这个比例是分数形式)。

(3)学生独立练习,求出未知项。

(4)同学间互相交流,发现问题及时解决。

5、指导学生梳理教材的知识点,完成p42“做一做”。

三、巩固练习。

课件出示基本练习和提高练习,学生独立完成,指名板演。

四、本课小结。

这节课主要学习了什么内容?

五、布置作业。

p44第8题、第9题、第10题。

板书设计。

解比例。

例2模型高度:原塔高度=1:10。

未知项(x)320米。

解:设这座模型高x米。

x:320=1:10。

10x=320x1。

x=320÷10。

x=32。

答:这座模型高32米。

六年级数学下教学设计篇三

1、引导学生准确地找到单位“1”。

2、能准确找出数量关系。

3、能熟练地解答一步和二步的乘法应用题。

引导学生找准单位“1”,分析应用题的数量系。

让学生正确、独立地分析应用题的数量关系。

我们已经对分数乘法进行了学习,今天这节课我们就一些简单的分数应用题进行复习。

1、复习解答分数乘法应用题的步骤:

学校买来100千克白菜,吃了4/5,吃了多少千克?

如果想求出吃了多少千克,要分哪几步去思考?怎样分析这道题?

(1)找到题目中的分率句,确定单位“1”。

(2)找出数量关系。

(3)求出所要求的部分量。

1.指出下面每组中的两个量,应把谁看做单位“1”。

(1)男生人数占女生人数的4/5。()。

(2)甲的6/7相当于乙。()。

(3)乙的5/9与甲相等。()。

(4)男工人数是女工人数的1/8。()。

2、填空题。

(1)、学校买来新书240本,其中的1/8分给五年级。这里是把()看作单位“1”,如果求五年级分到多少本?列式是()。

(2)、小红有36张邮票,小新的邮票是小红的1/2,小明的邮票是小新2/3的`。如果求小新的邮票有多少张?是把()看作单位“1”,列式是()。如果求小明有多少张是把()看作单位“1”,列式是()。

3、应用题。

(1)、一堆煤12吨,又运来它的1/6,现在共有煤多少吨?

指生板演,集体订正,针对学生出现的问题进行评价。

六年级数学下教学设计篇四

1、通过该活动让学生了解椭圆式田径跑道的结构,学会确定跑道起跑线的方法。

2、让学生切实体会到数学在体育等领域的广泛应用。

教学重点:

如何确定每一条跑道的起跑点。

确定每一条跑道的起跑点。

一、提出研究问题。(出示运动场运动员图片)。

1、小组讨论:田径场400m跑道,为什么运动员要站在不同的起跑线上?(终点相同,但每条跑道的长度不同,如果在同一条跑道上,外圈的同学跑的距离长,所以外圈跑道的起跑线位置应该往前移。)。

2、各条跑道的起跑线应该向差多少米?

二、收集数据。

1、看课本75页了解400m跑道的结果以及各部分的数据。

2、出示图片、投影片让学生明确数据是通过测量获取的。

直跑道的长度是85。96m,第一条半圆形跑道的直径为72。6m,每一条跑道宽1。25m。(半圆形跑道的直径是如何规定的,以及跑道的宽在这里可以忽略不计)。

三、分析数据。

学生对于获取的数据进行整理,通过讨论明确一下信息。

1、两个半圆形跑道合在一起就是一个圆。

2、各条跑道直道长度相同。

3、每圈跑道的长度等于两个半圆形跑道合成的圆的周长加上两个直道的长度。

四、得出结论。

1、看书p76页最后一图。

2、学生分别计算各条跑道的半圆形跑道的直径、两个半圆形跑道的周长以及跑道的全长。从而计算出相邻跑道长度之差,确定每一条跑道的起跑线。(由于每一条跑道宽1。25m,所以相邻两条跑道,外圈跑道的直径等于里圈跑道的直径加2。5m)。

3、怎样不用计算出每条跑道的长度,就知道它们相差多少米?(两条相邻跑道之间的差是2。5)。

五、课外延伸。

200m跑道如何确定起跑线?

六年级数学下教学设计篇五

1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。

负数的意义和数轴的意义及画法。

1.通过丰富多彩的生活情境,加深学生对负数的认识。

负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。

2.把握好教学要求。

对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的.意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。

3.培养学生多角度观察问题,解决问题的能力。

教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。

建议共分3课时:

负数的初步认识2课时在数轴上表示正数、0和负数1课时【知识结构】

第1课时负数的初步认识(1)

负数的初步认识

(1)(教材第2页例1)。【教学目标】

结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。【重点难点】体会负数的重要性。【教学准备】多媒体课件。

1.教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)

2.引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)

引出课题并板书:负数的初步认识(1)【新课讲授】教学教材第2页例1。

(1)教师板书关键数据:0℃。

(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

(3)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。

(4)刚刚同学回答得很对,读法也很正确。

学生讨论合作,交流反馈。

(6)请同学们把图上其它各地的温度都写出来,并读一读。(7)教师展示学生不同的表示方法。

(8)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。

六年级数学下教学设计篇六

1、通过搭积木比赛的游戏,从三个不同的位置观察由5个小正方体搭成的立体图形,能正确辨认和画出相应的图形,发展空间观念。

2、能按照指定的从两个不同位置看到的图形,用5个小正方体搭成的立体图形。

能正确辨认和画出从正面、侧面、上面观察一组立体图形的形状。

能按照指定的`不同位置看到的图形,用几个小正方体搭成立体图形。

电脑课件正方体木块若干。

谈话法情景引入发合作探究法。

一段:学什么。

知识回顾引入课题。

1、孩子们,看见大屏幕上的图片和黑板上的表格,你想到了什么呢?

对,这节课我们就来进行一场搭积木比赛。(板书题目)。

师:相信通过大家的努力,你们一定会品尝到合作的愉快,成功的甘甜。

2、课件出示学习目标:

(1)正确辨认从不同方向观察到的立体图形的形状,并画出相应的图形.

(2)能根据从不同方向观察到的平面图形还原立体图形。确定搭成这个立体图形需要的正方体的数量范围。

二段我来学。

第一场比赛:(独立完成)。

1、课件出示要求:

2、引导学生观察,并板书(观察)。

3、学生在方格纸中画出图形。

4、汇报交流。(重点说明怎样画出从左面看到的?)。

5、课件演示。

第二项比赛(同桌合作完成)。

师:下面我们进行第二项比赛,在第二项比赛中我们进行三个回和的较量。准备好了吗?

课件出示问题要求。

(1)同桌合作完成,看看哪桌搭的多?(两个方向)。

(2)指名汇报。

师:真是太棒了,同学们有了这么多的搭法。从两各方向观察,我们不能确定立体图形的形状,但可以确定搭成这个立体图形所需要的小正方体的数量范围。那么,搭这个立体图想最多需要几个小正方体,最少需要几个小正方体呢?先猜一猜。

(3)验证(同桌合作)。

(4)从三个方向看到的图形,还原立体图形(三个方向唯一性)。

课件出示结论填空。

第三项比赛(小组合作完成)。

看谁搭的多。用六个小正方形搭一个立体图形,从上面看到的形状是。

三段我来用。

1、学生完成答题卡。

2、指名汇报答案。

一思我来思。

本节课你有哪些收获?你的感受是什么?

师总结:我们平常观察物体的时候,一定要记住“认真”二字,认真观察,再加上自己的想象,你就可以确定这些立体图形或平面图形的样子,同时,我们的空间能力和想象能力也会得到进一步的提高。

六年级数学下教学设计篇七

1、通过图形直观的表征,让学生更加清晰求的都是同一个阴影部分的面积。从而让学生直观地看到了加减法算式之间的联系,越来越接近1,感悟极限思想。

2、培养学生利用图形来分析问题、解决问题的意识和能力。

3、重视利用图形来分析题意,理清思路,提高解决问题的能力。

计算出结果。

1、教学例2。

计算。

从第二个数开始,每个数是前一个数的。

我一个一个加下去看看,答案好像有点规律。加下去,等号右边的分数越来越接近于1。

可以画个图来帮助思考。用一个圆或一条线段来表示“1”。

从图上可以看出,这些分数不断加下去,总和就是1。

2、渗透极限思想。

如果不停地加下去,

1、猜一猜“和”是多少?

2、请用“形”来解释这个结果。

3、反馈:

如果不停地加下去,空白部分会怎么样?

那的结果怎么样?(无限接近1。)。

运用知识。

你能用所学知识解决下列问题吗?

我是这样想的。

所以原式的结果是1。

作业:第110页练习二十二,第3题、第4题、第5题。

六年级数学下教学设计篇八

1、使学生学会解比例的方法,进一步理解和掌握比例的基本性质。

2、联系学生的生活实际创设情境,体现解比例在生产生活中的广泛应用。

3、利用所学知识解决生活中的问题,进一步培养学生综合运用知识的能力及情度、价值观的发展。

使学生自主探索出解比例的方法,并能轻松解出比例中未知项的'解。

利用比例的基本性质来解比例。

1、什么叫做比例?

3、比例有几种表示形式?(板书:a:b=d:ca/b=d/c)。

同学们,你们知道吗?比例的基本性质有两个作用,一个就是我们刚才用来判断两个比能否组成比例,而另一个是什么呢?同学们想不想知道?这节课我们就来研究研究。

1、出示埃菲尔铁挂图。

这是法国巴黎有名的塔叫埃菲尔铁塔,高320米。我国的旅游景点北京公园里有这座塔的一具模型,这具模型有多高呢?到北京公园游玩的游客都想知道。你们能帮帮他们吗?那我们先来看看这道题。

2、出示例题。

(1)读题。

(2)从这道题里,你们获得了哪些信息?

(3)在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)。

(4)这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)。

(5)还有一个条件是什么?(埃菲尔铁塔的高是320米)。

(6)我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)。

(7)这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。

(8)根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书:x:320=1:10)。

(9)这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?

(10)不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)。

(11)指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)。

(12)为什么可以写成这样的等式呢?10x=320*1(根据比例的基本性质)。

(13)对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)。

(14)这样含有未知数的等式,叫做方程。那么求出方程中的未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。

(15)我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例。)。

(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。)。

(17)解比例在生活中的应用十分广泛,我们处处都有可能用到,要是遇到这样的问题怎么来解决呢?我们先来总结总结:(在这道题里,我们先根据问题设x——再依据比例的意义列出比例式——然后根据比例的基本性质把比例转化为方程——最后解方程)。

现在同学们会用解比例的方法来解决问题了吗?

2、教学例3。

(1)出示例3,问:这题与刚刚那个比例有哪些不同?

(2)解这种比例时,要注意些什么呢?(找出比例的外项、内项)。

(3)在这个比例里,哪些是外项?哪些是内项?

(4)解答(提问:你们是怎么解答的?)、检验。

(5)12/24=3/x。

3、巩固练习。

4、课堂小结。

(1)这节课主要学习了什么内容?(板课题:解比例)什么叫解比例?怎样解比例?(先依据比例的基本性质,把比例转化为方程,再解方程求解。)。

(2)现在你们知道比例的基本性质的另一个作用是什么了吗?(用来解比例)。

5、拓展延伸。

六年级数学下教学设计篇九

一、教学背景分析:

1、教学内容分析:本课是苏教版国标本第十一册第五单元认识比的起始课,在遵循教材编写原理的基础上,对教学题材进行了重组,提供现实背景,改变呈现方式,让学生在充分参与解决问题的过程中,学会合作、学会表达、学会交流,更好地帮助学生理解知识,形成技能,发展思维。

2、学生情况分析:学生已经掌握了除法和分数的意义,在此基础上教学一些关于比的基础知识,能够发展学生对除法和分数的认识,进一步沟通知识间的联系。二、教学目标:

1.让学生在具体情境中理解比的意义,掌握比的读写方法,知道比的各部分名称,会求比值。

2.使学生经历探索比与分数、除法关系的过程,初步理解比与分数、除法的关系,会把比改写成分数的形式。

3.让学生在活动中培养分析、综合、抽象、概括能力,在解决实际问题的过程中,体会数学与生活的联系,在学习过程中领略到发现的乐趣与数学的美。三、教学重点:理解比的意义,理解比与分数、除法的联系。四、教学难点:经历建构比的意义的过程,形成初步的探究意识。五、教学过程:

(一)积累丰富的感性材料,帮助学生理解概念。

比的意义在教学中既是重点也是难点,同时这个意义概括得又比较抽象,学生很难用自己的语言表达出什么叫做比。为了让学生能真正体会到两个数的比表示两个数相除,在教学时,我设计了一些各有侧重点,同时又互相关联、循序渐进的例题。在学生对比有了丰富的感性认识后,再概括比的意义,这样有利于学生真正理解比的意义。

1.教学同类量的比,分四个层次进行。

首先利用学生感兴趣的动画片大头儿子和小头爸爸的身高,引导学生对两个同类量进行比较,学生通过已有知识与经验认识到,用减法可以表示两个数量的相差关系,用分数或除法可以表示两个数量之间的倍数关系,而这里认识的比则专门框定于后一种情况,这样可使教学建立在一个清晰的前提条件下。其次又重点引导学生认识比,使学生体会到比是对两个数量进行比较的又一种数学方法。在理解9比17和17比9的不同意义时,帮助学生明确比是一个有序的概念,这样的教学安排符合学生的认知规律,也显得层次清晰,条理有序。接着,我请学生利用课前谈话中提到的身高信息,结合卡通人物的身高,再来说说比。一是给学生说的机会,让他们会说谁与谁的比,二是引导学生发现,同类量的比较先要把单位统一以后才能比。

最后,让学生举一反三,列举生活中比的例子,通过交流,让学生感受比在实际生活中的运用。

2.教学不同类量的比。通过体重与身高的比来引入,让学生初步体会到两个不同类量间的关系也可以用比来表示,然后再举路程与时间的比,进一步完善对比的认识。最后通过观察板书,让学生概括出两个数的比表示两个数相除这一意义。

第1页。

(二)放手让学生自学,引导学生学以致用。

本节课的学习内容较多,不仅要让学生理解比的意义,还要学会比的读写、比各部分的名称、求比值的方法以及比、除法和分数之间的关系等,这么多的内容,如果全部由老师教给学生,就会显得多、杂,并且枯燥。考虑到这些内容的难度不大,学生能够通过看书自学解决问题,所以在教学完比的意义后放手让学生自学,让学生在小组里交流所学所想,这样不仅能培养学生的自学能力,而且能拓展课堂的宽度,同时也使教学重点得到强化。在交流时允许学生无序交流,但对应的练习要相机出示,让学生运用所学知识去解决问题,发展他们的能力。比与除法、分数的联系,我是引导学生通过回忆、观察、思考、讨论等活动来完成的,在交流完比的后项不能为0后,让学生分析一场足球比赛,两个队的比分为2比0。这个比与我们今天学的比相同吗?它的后项为什么可以是0?让学生从矛盾、冲突中领悟两者的差别。又如巩固练习第一题,书中将它放在例1的下面进行教学,目的是让学生初步体会到比与除法、分数之间的内在联系,但从学生的实际情况来分析,这是有一定难度的,所以此处进行了重组,将它放到交流完比、除法和分数的关系之后,这样处理既巩固了这三者的关系,又加深了学生对比的意义的认识。练习第2题,一方面巩固新知,另一方面在汇报过程中,发现比与比值的不同,引导学生寻找比值可以是分数、整数,也可以是小数。

(三)结合学生的生活实际,培养学生的应用意识。

抓住契机,结合学生身边的事物进行教学,有利于学生的发展。在最后的实践运用中,主要联系人身体上的数学问题来展开研究,让学生在观察、估计、实践中欣赏到数学的美,体会到数学的价值所在。这个过程既帮助学生加深了对比的意义的理解,又积累了丰富的数学活动经验,大大拓展了学生的知识面,提高了数学思考能力。我设计了以下四个环节:

1.读一读,了解人身体上的两个1比1,由于比较易懂,所以请学生自由读,借此机会活动一下。

2.体重与身高的比。在前面的新课教学中已经涉及这一知识,但前面只是初步理解体重与身高也能用比来表示,这时再次让学生计算体重与身高的比值,使学生深切感受到比和比值的意义。

3.头长与身高的比。先让学生看夸张的漫画,在笑的过程中回味、探索人体的比例,此时相机介绍不同时期人的头长与身高的比。

家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。而对那些特别讲授“武事”或讲解“经籍”者,又称“讲师”。“教授”和“助教”均原为学官称谓。前者始于宋,乃“宗学”“律学”“医学”“武学”等科目的讲授者;而后者则于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。“助教”在古代不仅要作入流的学问,其教书育人的职责也十分明晰。唐代国子学、太学等所设之“助教”一席,也是当朝打眼的学官。至明清两代,只设国子监(国子学)一科的“助教”,其身价不谓显赫,也称得上朝廷要员。至此,无论是“博士”“讲师”,还是“教授”“助教”,其今日教师应具有的基本概念都具有了。

第2页。

4.黄金比。借助多媒体的图、文、声、色来展示迷人的黄金比,令人赏心悦目。这个过程既加深了对比的意义的理解,又使学生积累了丰富的数学活动经验,大大拓展了学生的知识面,提高了数学思考能力。

我国古代的读书人,从上学之日起,就日诵不辍,一般在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。为什么在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在1978年就尖锐地提出:“中小学语文教学效果差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时间,二千七百多课时,用来学本国语文,却是大多数不过关,岂非咄咄怪事!”寻根究底,其主要原因就是腹中无物。特别是写议论文,初中水平以上的学生都知道议论文的“三要素”是论点、论据、论证,也通晓议论文的基本结构:提出问题――分析问题――解决问题,但真正动起笔来就犯难了。知道“是这样”,就是讲不出“为什么”。根本原因还是无“米”下“锅”。于是便翻开作文集锦之类的书大段抄起来,抄人家的名言警句,抄人家的事例,不参考作文书就很难写出像样的文章。所以,词汇贫乏、内容空洞、千篇1律便成了中学生作文的通病。要解决这个问题,不能单在布局谋篇等写作技方面下功夫,必须认识到“死记硬背”的重要性,让学生积累足够的“米”。

第3页。

六年级数学下教学设计篇十

1、要求学生认识百分数,理解百分数的意义,会读写百分数;在认识百分数的基础上,会读写百分数;本节内容在教材中是独立的,是学生新认识的,与前后内容无关联。

2、百分数在现实生活中有着广泛的应用,因此认识百分数势在必行。

1、本节课的内容是学生初步接触的知识,老师若充分调动学生的积极性,学生会学的很有兴趣的。学生在课后的作业中表现的也不错,都能正确的读、写百分数。

2、学生认知发展分析:由于我们是农村的学生,他们对百分数的了解不是太多,因此在教学百分数的`意义时学生理解起来是有难度的。

3、学生认知障碍点:学生对百分数意义的理解有困难。

1、知识与技能:

(1)、联系生活实际,理解百分数的意义,能够正确读写百分数。

(2)、了解分数与百分数的区别与联系。

2、过程与方法:

通过观察思考、比较分析、综合概括,经历百分数意义的探索过程,让学生主动参与,学会交流讨论。

3、情感态度与价值观:

通过学习培养学生自主探究的学习欲望,充分感受数学知识在生活中的应用价值。

教学重点和难点。

理解百分数的意义。

了解百分数与分数的区别与联系。

范文作为一名人民教师,总归要编写教学设计,教学设计是对学业业绩问题的解决措施进行策划的过程。教学设计要怎么写呢?以下是小编整理的范......

作为一名教学工作者,往往需要进行教学设计编写工作,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。优秀的教学设计都具备......

六年级数学下教学设计篇十一

教学目标:

1、学生通过小组合作学习对单元知识进行概括,建立知识结构;。

2、会解决实际问题;。

3、归纳整理的能力及解决问题的能力;。

4、积极探索、团结协作的精神,获得收获的成功感。

教学重点:运用所学知识解决实际问题。、

教学难点:归纳整理,形成知识脉络。

教学方法:引发矛盾,引入课题小组合作,归纳整理多元评价,建构知识应用实际,解决问题强化总结,拓展迁移。

教学过程:

一、引发矛盾,引入课题。

猜一猜:老师今年多少岁了?

猜这个谜语,我们需要哪些数学知识呢?

齐读课题,你想到什么?

那好吧,我们就开始复习。

二、梳理知识,形成脉络。

1、集中呈现。

现在请大家以小组为学习单位,按照你们的想法,把学过的数。

2、逐个梳理。

1)小组活动:请大家在小组中,每人挑1至2个名词说说意思。

2)全班交流(根据学生的发言提示随意在黑板上贴出各个名词)。

3)整理完善知识结构。

在数的整除这部分首先学习的是整除,这是为什么?请大家讨论一下,再推荐代表发言。(巡视,参与学生讨论。)。

组织学生汇报交流、讨论。

提示:整除是基础,整除前提下产生了约数与倍数,它们是相互依存的关系。(逐步引出公倍数、公约数、最小公倍数、最大公约数、互质数、合数、质数、质因数、分解质因数、奇数、偶数等。)。

说得真好!这些知识之间是有密切联系的。

对于今天整理出来的数的整除脉络图,大家有什么想法?

通过整理,可以使这部分知识更加条理化、系统化。

3、自学课本,看一看还有什么不清楚的问题?

三、应用、解决问题。

1、填空题。

在1----20的自然数中,有()个奇数,有()个偶数,有()个质数,有()个合数,奇数中的()是合数,偶数中的()是质数,既不是质数也不是合数的数是()。

2、能同时被2、5、3整除的最小两位数是(),最大三位数是()。

3、选择题。

(1)一个合数的约数有()。

a)1个b)2个c)3个d)4个。

(2)如果a和b是互质数,那么它们的最小公倍数是()。

a)ab)bc)abd)1。

4、判断题。

(1)整除一定是除尽,除尽不一定整除。()。

(2)相邻的两个自然数一定互质。()。

(3)所有偶数都是合数。()。

(4)24分解质因数24=22231。()。

(5)一个自然数的最大约数一定等于它的最小公倍数。()。

5、把下面的数按照不同的标准分成两类,你能想到几种?

21581720。

四、强化总结,拓展迁移。

老师想把自己的手机号码告诉大家,大家以后有什么问题都可以和我联系,好吗?

老师的手机号码是11位数字,每一位数字依次是:

1)是质数也不是合数;。

2)最小奇数与最小质数的和;。

3)最小的自然数;。

4)质数中最小的两个数的和;。

5)既是质数,又是偶数;。

6)最小质数与最小合数的积;。

7)有约数2和3的一位数;。

8)自然数中最小的奇数;。

9)最大约数与最小倍数都是7的数;。

10)所有自然数的约数;。

11)最大的一位数。

同学们以后有事需要老师帮忙,随时call我。

这节课上到这里可以吗?

六年级数学下教学设计篇十二

人教版六年级上册第八单元总复习第2课时《百分数的整理与复习》。“百分数”这一单元主要包括百分数的意义和写法,百分数和分数、小数的互化以及用百分数解决问题等内容,是在学生学习了整数,小数,特别是分数概念和用分数解决实际问题的基础上进行教学的,同分数有着密切的关系。在总复习时,应将复习重点放在百分数的应用方面,同时要注重与分数乘除法问题的对比,分析百分数问题与分数乘除法解决问题在解题思路上的一致性,加强知识间的联系,深化学生对知识之间内在联系的理解,促进学生原有认知结构的优化。通过总复习,既可以帮助学生构建合理的知识体系,也可借助解决生活中的实际问题培养学生应用数学的意识。

【设计理念】

百分数在实际生活中有着广泛的应用,如发芽率、合格率等。所以同学们必须熟练掌握本单元的基础知识,才能轻松地运用这些知识来解决生活中的问题。让学生亲身体验自主探索、合作交流基础上,经历体验问题的形成和解决过程,引发学生对百分数问题的结构特征,解题策略和规律的深层次思考,克服学生消极接受的惰性,培养学生发现问题,解决问题的意识和能力,促进学生主动构建自身知识体系。

【教学策略】

本节课通过获取信息,提出数学问题,解决问题,集体交流,小结方法等环节,引导学生自己对百分数应用题进行整理和复习,深化了学生对知识之间内在联系的理解,促进了学生原有认知结构的优化。数学教学不应局限于知识的传授,应重视培养学生从生活中收集数据、获取数学信息,并从中选取有用的信息解决简单实际问题的能力,使“生活化”、“数学化”得到和谐统一。

【教学目标】

知识与技能:

1、通过对百分数单元知识的归纳和整理,巩固所学的知识,加深对百分数意义的理解,感受百分数在生活中的应用,并运用所学知识解决百分数问题。

2、在百分数知识的迁移与综合运用中使学生经历一个整理信息、利用信息的过程,培养学生分析、综合、比较、抽象、概括等初步逻辑思维能力。使学生体会到数学的价值。

3、在百分数单元复习的过程提升数学思考。发展学生思维,激发起进一步学习的兴趣。

4、使学生形成积极的学习情感,养成良好的学习习惯。

过程与方法:

经历百分数的回顾和应用过程,体验归纳整理、构建知识体系的方法。

情感、态度、价值观:

体验数学知识间的相互联系,感受数学知识在生产、生活中的应用价值,培养学生应用数学的意识及乐学的情感。

【教学重点难点】

重点:1、掌握百分数的意义,以及与分数、小数之间的联系。

2、理解百分数应用题的解题思路,找准量和率之间的对应关系是教学中的重点。

难点:税后利息的计算。

【教学准备】

多媒体课件。

【教学过程】

(一)复习百分数的意义。

教师谈话:我们上段时间学习的哪些知识?这节课,我们就一起来复习百分数的相关知识。 (板书:百分数的整理与复习)

1、复习百分数的意义。

(表示一个数是另一个数的百分之几的数,叫做百分数,百分数也叫百分比或百分率。)

2、判断:“4/5=80%,4/5米=80%米。请同学们说明理由。(分数既可以表示一个数,也可以表示两个数的比;百分数只能表示两个数的比,后面不能带单位名称。)

3、复习分数、小数、百分数之间的互相转化的方法以及注意事项。

小数化成百分数:先把小数点向右移动两位,同时添上百分号。

百分数化成小数:先把百分号去掉,同时把小数点向左移动两位。

分数化成百分数:先把分数化成小数,再化成百分数。

百分数化成分数:先把百分数写成分母是100的分数,再化简。

(二)根据信息,请同学们提出相关的百分数问题。

(小组讨论、交流)

老师今年36岁,丁俊同学今年12岁。

问题:1、老师的岁数是丁俊同学的百分之几?

2、丁俊同学的岁数是老师的百分之几?

3、老师的岁数比丁俊同学的大百分之几?

4、丁俊同学的岁数比老师的少百分之几?

(三)复习稍复杂的百分数应用。

我校男生人数比女生少10%。

问:1、男生人数是女生人数的百分之几?

(指名回答)

2、已知女生人数有500人,求男生有多少人?

(单位“1”是已知的)

3、已知男生人数有450人,求女生有多少人?

(单位“1”是未知的)

(四)复习百分数在生活中的应用:折扣、纳税、利息。

1、商店有时降价出售商品,叫做打折扣销售,通称“打折”。几折就表示十分之几,也就是百分之几。

问:什么等于折扣?

2、缴纳的税款叫做应纳税额。应纳税额与各种收入的比率叫做税率。

问:应纳税额等于什么?

3、存入银行的钱叫做本金;取款时银行多支付的钱叫做利息;利息与本金之间的比值叫做利率。

问:什么是利息?如何计算利息?在计算利息时要注意什么?

(五)综合练习:

2、昨天我们班有2人请假了,大家能计算出昨天我们的出勤率吗?

问:出勤率等于什么?

(六)课堂小结:

今天我们复习了什么内容?你有哪些收获?

我们今后要用99%的努力+1%的灵感去创造100%的成功。

【板书设计】

百分数的整理与复习

意义 互化 应用 找准单位“1”

单位“1”是已知(用乘法计算)

单位“1”是未知(用除法或方程计算)

六年级数学下教学设计篇十三

1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。

一、教学例1。

1、出示例1中的两个已知条件,要求学生各自画线段图表示这两个数量之间的关系。

提出要求:根据这两个已知条件,你能求出哪些问题?

引导学生分别从差比和倍比的角度提出如“实际造林比计划多多少公顷”“原计划造林比实际少多少公顷”“实际造林面积相当于原计划的百分之几”“原计划造林面积相当于实际的百分之几”等问题。

在学生充分交流的基础上提出例1中的问题:实际造林比原计划多百分之几?

小结:要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数相当于原计划的百分之几。

启发:根据上面的讨论,你打算怎样列式解答这个问题?

学生列式计算后追问:这里得到的125%与刚才得到的25%这两个百分数有什么关系?

联系学生的讨论明确:从125%中去掉与单位1相同的部分,就是实际造林比原计划多的百分数。

提出要求:根据上面的讨论,要求“实际造林比原计划多百分之几”,还可以怎样列式?

二、教学“试一试”

1、出示问题:原计划造林比实际少百分之几?

启发:根据例题中问题的答案猜一猜,这个问题的答案是什么?

学生作出猜想后,暂不作评价。

2、学生列式计算后讨论:这个答案与你此前的猜想一样吗?为什么不一样?

小结:“试一试”与例题中的问题都是把实际造林面积与原计划造林面积进行比较,但由于比较时单位1的数量不同,所以得到的百分数也就不同。

三、指导完成“练一练”

1、要求学生自由读题。

学生讨论后,要求他们各自列式解答。

3、根据学生在解答过程中的表现,相机提问:计算中有没有遇到什么新的问题?

学生提出问题后,引导他们自主阅读本页教材的底注,并组织适当的交流。

四、指导完成练习一第1~3题。

1、做练习一第1题。

可以鼓励学生独立完成填空。如果有学生感到困难,可启发他们先画出相应的线段图,再根据线段图进行思考。

2、做练习一第2题。

先让学生说说对问题的理解,再让学生列式解答。可提醒学生把计算的商保留三位小数。

3、做练习一第3题。

先鼓励学生独立解答,再通过交流让学生说清楚思考的过程。可提醒学生利用计算器进行计算。

五、全课小结。

六年级数学下教学设计篇十四

1.在熟悉的生活情境中初步认识负数,能正确地读写正数和负数,知道0既不是正数也不是负数。

2.初步学会用负数表示一些日常生活中的实际问题。

3.能借助数轴初步理解正数、0和负数之间的关系。

【重点难点】。

负数的意义和数轴的意义及画法。

【教学指导】。

1.通过丰富多彩的生活情境,加深学生对负数的认识。

负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起学生已有的生活经验,激发学生的学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。

2.把握好教学要求。

而是描述性的定。

义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。

3.培养学生多角度观察问题,解决问题的能力。

教材创设了开放性的思维空间,在解决问题时应着眼于让学生自主地理解数学信息、寻找解题思路。教师要有意识地引导学生从不同角度寻找答案,对于学生有道理的阐述,教师要积极鼓励,激发学生求知的欲望,逐步增强学生学好数学的内驱力。

【课时安排】。

建议共分3课时:

负数的初步认识2课时在数轴上表示正数、0和负数1课时。

【知识结构】。

第1课时负数的初步认识(1)。

【教学内容】。

(1)(教材第2页例1)。

结合生活实例,引导学生初步理解正、负数可以表示两种相反意义的量。

【重点难点】。

体会负数的重要性。

【教学准备】。

多媒体课件。

【情景导入】。

1.教师利用课件向学生展示教材第2页主题图。(有条件的可播放天气预报视频)。

2.引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-3℃和3℃各代表什么意思?)。

引出课题并板书:负数的初步认识(1)。

【新课讲授】。

教学教材第2页例1。

(1)教师板书关键数据:0℃。

(2)教师讲解0℃的意思。0℃表示淡水开始结冰的温度。比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-3℃表示零下3摄氏度,读作负三摄氏度。比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+3℃表示零上3摄氏度,读作正三摄氏度,也可以写成3℃,读作三摄氏度。

(3。

)我们来看一下课本上的图,你知道北京的气温吗?最高气。

温和最低气温都是多少呢?随机点同学回答。

(4)刚刚同学回答得很对,读法也很正确。

学生讨论合作,交流反馈。

(6)请同学们把图上其它各地的温度都写出来,并读一读。

(7)教师展示学生不同的表示方法。

(8)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。

【课堂作业】。

完成教材第4页的“做一做”第1题。

组织学生独立完成,指名回答。

答案:-18℃温度低。

【课堂小结】。

通过这节课的学习,你有什么收获?

【课后作业】。

完成练习册中本课时的练习。

第1课时负数的初步认识(1)。

0℃。

-3℃。

3℃(+3℃)。

通过温度的概念,初步学习负数,理解气温高低与温度的关系,是负数学习的第一步。

第2课时负数的初步认识(2)。

【教学内容】。

(2)(教材第3页例2)。

通过呈现存折上的明确数据,让学生体会负数在生活中的广泛应用,进一步体会负数的含义。

【重点难点】。

体会引入负数的必要性,初步理解负数的含义。

【情景导入】。

教师:上一节课我们已经一起学习了气温的表示,谁能说一说温度都是怎样读写的?

组织学生讨论回忆上一课内容。

师:很好,大家都很棒。今天我们继续学习负数知识。

引出课题并板书:负数的初步认识(2)。

六年级数学下教学设计篇十五

1、通过对立体图形的复习,进一步发展学生的空间观念,掌握各个立体图形的概念、特征。

2、通过复习使学生掌握立体图形表面积、侧面积、体积的计算公式。

3、培养学生运用所学知识解决实际问题的能力。

课件

一、复习引入

1、课件出示“点’,这是一个点。

师:将点移一移,所留下痕迹,你能想到什么?生:线、直线、射线、线段。评:好,联想对学数学很重要。继续想。

师:如果将线段往下移一移,你又能想到什么呢?生:长方形、正方形

师:刚才由点联想到线段再联想到面,继续想。

师:如果把这个面往后面移一移,你又能想到什么呢?

师:如果将这个长方体像这样切成若干份,你又能想到什么呢?

(板书:长方体、正方体)

师:按这样的思路,根据圆柱,你可以想到什么?它们之间有什么关系?

师:同学们,点线面体存在一定的联系,那我们就从点线面三个方面对4个立体图形的特征进行整理。

二、知识点归纳

(一)复习立体图形特征

1、(出示长方体、正方体)长方体、正方体它们各有什么特征?它们有什么相同点和不同点,谁能看着表格说一说。(指生上来汇报,拿着模型)

长方体与正方体有什么关系?

2、(出示圆柱和圆锥)圆柱、圆锥它们又各有什么特征?

沿高剪开,侧面展开图是一个长方形或正方形。当底面周长与高相等时展开是正方形,当底面周长与高不相等时,展开是一个长方形。

3、分类,建立知识网络.

你能给这四个立体图形分分类吗?(为什么)

交流:(1)长方体、正方体一组,(都有六个面、12条棱、方方的)圆柱圆锥一组。(底面都是圆)

4、观察物体,从不同侧面看到的图形是什么形状。

(二)复习表面积和体积

2、课前老师让同学们整理了这些立体图形的表面积和体积公式,谁原意来交流一下,我们先说表面积公式(教师板书公式)。

重点:圆柱的侧面积为什么是底面周长×高?

再交流体积公式(教师板书公式)。

3、出示。

师:怎样比较这三个立体图形的体积呢?谁能列出算式?

追问:如果不计算体积结果能比较三个立体图形的体积大小吗?

(观察三个图形,有什么特点?高相等,只要看什么就可能比较体积大小了?)

操作结合板书。

你能找到计算这3种立体图形体积的统一公式吗?

小结:这三个立体图形都是柱体,像这样的三棱柱、六棱柱也都是柱体,其实所有的柱体都可以用底面积乘高来计算体积。

三、巩固练习

1、测测你的判断力

(1)体积单位比面积单位大。()

(2)把一个圆柱削成一个最大的圆锥体削去部分的体积与圆锥的体积的比是2:1。()

(3)把一个长方体铁块熔铸成一个圆柱体,形状虽然变了,但它们所占空间的大小没有变。()

(4)一个圆柱的底面直径是4厘米,高是4厘米,将这个圆柱的侧面展开后一定是一个正方形()

2、填空。

(1)一个长方体的棱长总和是40厘米,其中长5厘米,宽3厘米,高是()厘米。

(2)把四个棱长是3厘米的正方体木块拼成一个长方体,拼成的这个长方体的表面积是(),体积是()。

(3)等底等高的圆柱的底面积是1.5平方分米,那么与它体积和高都相等的圆锥的底面积应是()平方分米。

(4)等底等高的圆柱和圆锥体积之和是36立方厘米,那么圆柱的体积是()立方厘米,圆锥的体积是()立方厘米。

3、只列出综合算式,不解答

(1)一个长方体水槽,底面积是35平方分米,水深6分米,把一个不规则的石块扔进去后,水面上升了2分米,求石块的体积。

4、提高练习

五、小结

出示三个立体图形,介绍底面和侧面,你能找到求这三个图形侧面积的统一公式吗?(板书表面积、问号)

六年级数学下教学设计篇十六

教学目标:

1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。

2、发展学生思维,侧重培养学生分析问题的能力。

教学重点:

理解数量关系。

教学难点:

根据多几分之几或少几分之几找出所求量是多少。

教具准备:

多媒体课件。

教学过程:

一、旧知铺垫(课件出示)。

1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?

(1)一块布做衣服用去。

(2)用去一部分钱后,还剩下。

(3)一条路,已修了。

(4)水结成冰,体积膨胀。

(5)甲数比乙数少。

2、口头列式:

(1)32的是多少?

(2)120页的是多少?

3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?

4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。

六年级数学下教学设计篇十七

“变化的量”是学习正比例与反比例的起始课。教材通过系列情境,结合日常生活中的问题,让学生体会变量和变量之间相互依存的关系,并尝试对这些关系进行大致的描述,从而拓宽学生理解正比例、反比例的背景。

知识技能:结合具体的数学情境认识“变化的量”,并通过描述活动,了解其中一个变量是怎样随着另一个变量而变化的。

数学思考:通过举例与交流活动,找到生活中互相依存的变量,描述日常生活中一个变量是怎样随着另一个变量的变化而变化的。

问题解决:能从图表中获取信息,正确表述量的变化关系;或用数学关系式表示两个变量之间的关系。

情感态度:知道列表与画图都是表示变量关系的常用的方法,积累表征变量的数学活动经验;从大量生活情境中获取数学学习的兴趣和动力。

一、情境引入。

1、出示一则新闻信息:xxxx年11月14日零时,国家发改委发布了最新的国内成品油最高零售限价,受国际油价持续大跌的影响,国内也出现了罕见的油价“八连跌”现象。

2、交流:你知道油价持续下跌会产生怎样的影响吗?

3、思考:从这些影响中你发现了什么?(生活中存在着大量相互依存的变量)。

4、揭示课题:今天我们就来研究像这样相互依存的变化的量。(板书课题)。

二、探究新知。

1、发现生活中特定时期相互依存的变化的量。

出示妙想6岁前的体重变化的文字信息。

(1)提问:你有什么方式能将这些信息更加简洁明了的表示出来吗?

(2)观察:出示淘气和笑笑呈现信息的.表格和图,口答哪些量在发生变化?再说说用表格和图呈现两个变量分别有什么优点。

(3)交流:妙想6岁前的体重是如何随年龄增长而变化的?

(5)反馈:练一练第1题,说说圆柱的体积和高之间的变化关系。

2、了解生活中“周期性”重复出现的相互依存的变化的量。

(1)提问:出示情境图2,说一说,图中有哪两个变量?这两个量是怎样变化的?

(2)交流:学生独立看图,并口答教材中的三个问题。

(3)反馈:完成练一练第2题。

(4)讨论:与上一题比较,这里相互依存的变化量变化规律有什么异同点?

3、感知生活中用数学关系式表示的相互依存的变化的量。

出示练一练第3题:蟋蟀叫的次数与气温之间的关系。

(2)引导比较:这里两个量之间的关系与前面的又有什么不同呢?

(3)反馈练习:将练一练第1题体积与高之间的关系用数量关系式表示出来。

三、综合应用。

2、你还能找出生活中一个量随着另一个量的变化而变化的例子吗?

四、全课小结。

小结本节课所学知识,铺垫下一课时。

板书设计:

变化的量变化形式。

年龄体重特定区域。

时间体温周期性。

nt数量关系。

六年级数学下教学设计篇十八

1、了解储蓄的有关知识,能综合应用相关知识合理存款。

2、经历调查、解决问题的过程,体验合作探究的学习方法。

3、体会数学知识在日常生活中的广泛应用,培养学生的理财意识。

了解各种存款方式的利率和相关规定,设计合理的存款方案。

能综合应用条件灵活解决问题。

综合实践《合理存款》

问题分析:根据自学导案,归纳要解决的问题:怎样存款收益最大。明确本活动中存款的本金、可存期限以及这笔存款的用途。明确需要收集与该问题相关的信息。(通过对问题的简单分析让学生初步了解存款的三种方式,为下一步学生收集信息做基础)

课外调查:学生以小组合作学习的方式去银行调查不同的存款方式的利率等信息,学生可以利用网络,或者直接到银行到银行调查存款的方式和相关信息,并做好记录。

设计意图:这节课中教材主题图中所提供的存款利率是以前的利率,和现在的利率是不同的;国债利率也未明确给出。因此,通过课外调查让学生明确当前的存款利率等信息,并且,学生到银行调查是一次有价值的实践活动,是一个学习、体验的过程,可以有意识地体会数学与生活经验、社会现实和其他学科知识的联系。有了这样一个过程使这一实践活动更具有现实意义和实效性。

根据学生调查的信息设计存款方案。

学生以小组合作学习的方式共同设计方案,填写下表。

定期储蓄存款的方案可填在第第一张表格中。其他存款方案,如教育储蓄存款方案以及买国债的方案可填在第二张表格中。每一个具体方案都要求明确填出存期、到期利息、利息税以及到期收入等信息。

六年级数学下教学设计篇十九

教学目标:。

1、通过动手操作实验,推导出圆锥体体积的计算公式。

2、理解并掌握体积公式,能运用公式求圆锥的体积,并会解决简单的实际问题。

3、通过学生动脑、动手,培养学生的观察、分析的综合能力。

教具准备:等底等高的圆柱体和圆锥体5套,大小不同的圆柱体和圆锥体5套、水槽5个,以及多媒体辅助教学课件。

一、复习旧知,做好铺垫。

1、认识圆柱(课件演示),并说出怎样计算圆柱的体积?(屏幕出示:圆柱体的体积=底面积×高)。

2、口算下列圆柱的体积。

(1)底面积是5平方厘米,高6厘米,体积=?

(2)底面半径是2分米,高10分米,体积=?

(3)底面直径是6分米,高10分米,体积=?

3、认识圆锥(课件演示),并说出有什么特征?

二、沟通知识、探索新知。

教师导入:同学们,我们已经认识了圆锥,掌握了它的特征,但是,对于圆锥的学习我们不能只停留在认识上,有关圆锥的知识还有很多有待于我们去学习、去探究。这节课我们就来研究“圆锥的体积”。(板书课题)。

1、探讨圆锥的体积计算公式。

学生回答,教师板书:

圆柱------(转化)------长方体。

圆柱体积计算公式--------(推导)长方体体积计算公式。

教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较后,再用课件演示。

(1)提问学生:你发现到什么?(圆柱和圆锥的底和高有什么关系?)。

(学生得出:底面积相等,高也相等。)。

教师:底面积相等,高也相等,用数学语言说就叫“等底等高”。

(板书:等底等高)。

(不行,因为圆锥体的体积小)。

教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)。

用水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

(3)学生分组做实验,并借助课件演示。

(教师深入小组中了解活动情况,对个别小组予以适当的帮助。)。

a、谁来汇报一下,你们组是怎样做实验的?

b、你们做实验的圆柱体和圆锥体在体积大小上发现有什么倍数关系?

(学生发言:圆柱体的体积是圆锥体体积的3倍)。

教师:同学们得出这个结论非常重要,其他组也是这样的吗?

学生回答后,教师用教学课件演示实验的全过程,并启发学生在小组内有条理地表述圆锥体体积计算公式的推导过程。

(板书圆锥体体积计算公式)。

教师:我们学过用字母表示数,谁来把这个公式用字母表示一下?(指名发言,板书)。

学生回答后,教师整理归纳:不是任何一个圆锥体的体积都是任何一个圆柱体体积的。(教师拿起一个小圆锥、一个大圆柱)如果老师在这个大圆锥体里装满了水,往这个小圆柱体里倒,需要倒三次才能倒满吗?(不需要)。

为什么你们做实验的圆锥体里装满了水往圆柱体里倒,要倒三次才能倒满呢?(因为是等底等高的圆柱体和圆锥体。)。

(教师给体积公式与“等底等高”四个字上连线。)。

进一步完善体积计算公式:

圆锥的体积=等底等高的圆柱体体积×1/3。

=底面积×高×1/3。

v=1/3sh。

教师:现在我们得到的这个结论就更完整了。(指名反复叙述公式。)。

课件出示:

想一想,讨论一下:?

(1)通过刚才的实验,你发现了什么?

(2)要求圆锥的体积必须知道什么?

学生后讨论回答。

三、应用求体积、解决问题。

1、口答。

(1)有一个圆柱的体积是27立方分米,与它等底等高的圆锥体积是多少?

(2)有一个圆锥的体积是9立方分米,与它等底等高的圆柱体积是多少?

2、出示例题,学生读题,理解题意,自己解决问题。

a、学生完成后,进行小组交流。

b、你是怎样想的和怎样解决问题的。(提问学生多人)。

c、教师板书:。

1/3×19×12=76(立方厘米)。

答:它的体积是76立方厘米。

3、练习题。

一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)。

我们已经学会了求圆锥体的体积,现在我们来解决有关圆锥体体积的问题。

4、出示例2:要求学生自己读题,理解题意。

在打谷场上,有一个近似于圆锥形的小麦堆,测得底面直径是4米,高是1.2米,每立方米小麦约重735千克,这堆小麦约有多少千克?(得数保留整千克)。

(1)提问:从题目中你知道了什么?

(2)学生独立完成后教师提问,并回答学生的质疑:

3.14×(4÷2)2×1.2×1/3表示什么?为什么要先求圆锥的体积?得数保留整千克数是什么意思?….

5、比较:例1和例2有什么不同的地方?

(1)例1直接告诉了我们底面积,而例2没有直接告诉,要求我们先求出底面积,再求出圆锥体积;(2)例1是直接求体积,例2是求出体积后再求重量。

【本文地址:http://www.xuefen.com.cn/zuowen/16408827.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档