分数教案设计(优质14篇)

格式:DOC 上传日期:2023-11-29 10:23:21
分数教案设计(优质14篇)
时间:2023-11-29 10:23:21     小编:笔尘

编写教案可以帮助教师全面了解教学内容,强化教学目标,提高教学质量。为了编写一份完美的教案,教师需要对教学目标和教学内容有清晰的把握。通过学习和借鉴他人的教案,可以帮助教师提高自己的教学水平和专业素养。

分数教案设计篇一

(二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。

(三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。

教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给。

学具:每位同学准备三张相同的长方形纸片。

(一)复习准备。

1.口答:(投影片)。

根据120÷30=4,不用计算直接说出结果:

(120×3)÷(30×3)=();(120÷10)÷(30÷10)=()。

2.说一说依据什么可以不用计算直接得出商的?

3.说出商不变的性质。

教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。

(二)学习新课。

(1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“1”同样大)教师把三张纸分贴在黑板上。

教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。

教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。

学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:

教师:请比较这三个分数的大小?

你根据什么说这三个分数相等?

学生口答后老师用等号连结上面三个分数。

(3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。

学生口述分数基本性质的内容,老师把板书补充完整。

教师:想一想,如何用整数除法中商不变的性质说明分数基本性质?(举例说明)。

用学生自己的例题说明后,用投影片再说明:

2.把一个分数化成大小相等,而分子或分母是指定数的分数。

(2)口答练习:(学生口答,老师板书。)。

教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。

分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。

在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。

在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。

新课教学分为两部分。

第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。

第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。

分数教案设计篇二

下午好!(自我介绍略)我说课的内容是义务教育课程标准试验教科书北师大版八年级数学下册第三章第二节分式的乘除法。下面我将从教材、教法、学法、教学程序、板书设计等方面来进行阐述。

一、说教材:

1、教材内容:我认为可以理解为探索法则――理解法则――应用法则,进一步体现了新课标中“情境引入――数学建模――解释、拓展与应用的模式”。分式的乘除法与分数的乘除法类似,所以可通过类比,探索分式的乘除运算法则的过程,会进行简单的分式的乘除法运算,分式运算的结果要化成最简分式和整式,也就是分式的约分,要求学生能解决一些与分式有关的简单的实际问题。

2、教材地位:分式是分数的“代数化”,与分数的约分、分数的乘除法有密切的联系,也为后面学习分式的混合运算作准备,为分式方程作铺垫。

3、教学目标。

知识目标:(1)、理解分式的乘除运算法则(2)、会进行简单的分式的乘除法运算。

能力目标:(1)、类比分数的乘除运算法则,探索分式的乘除运算法则。(2)能解决一些与分式有关的简单的实际问题。

情感目标:(1)、通过师生观察、归纳、猜想、讨论、交流,培养学生合作探究的意识和能力。(2)、培养学生的创新意识和应用意识。(3)、让学生感悟数学知识来源于现实生活又为现实生活服务,激发学生学习数学的兴趣和热情。

4、教学重点:分式乘除法的法则及应用.

5、教学难点:分子、分母是多项式的分式的乘除法的运算。

二、说教法:

教学方法是我们实现教学目标的催化剂,好的教学方法常常使我们事半功倍。新课程改革中,老师应成为学生学习的引导者、合作者、促进者,积极探索新的教学方式,引导学生学习方式的转变,使学生成为学习的主人。

1、启发式教学。启发性原则是永恒的.,在教师的启发下,让学生成为课堂上行为的主体。

2、合作式教学,在师生平等的交流中评价学习。

三、说学法:

学生在小学就已经会很熟练的进行分数的乘除法运算,上一章又学习的因式分解,本章学习的分式的意义,分式的基本性质等,都为本节课的学习做好了知识上的铺垫。

1、类比学习的方法。通过与分数的乘除法运算类比。2、合作学习。

四、说教学程序。

1、类比学习,探索法则。(约3分钟)。

让学生认真思考教材上提供的4个分数的乘除法的例子(2个乘法,2个除法)。

教学效果:巩固分式乘除法法则,掌握分式乘除法混合运算的方法。提醒学生,负号要提到分式前面去。

6、课堂小结(约3分钟)先学生分组小结,在全班交流,最后老师总结。

7、作业布置,凝固新知。(约2分钟)教材77页到78页,习题3.1,1、2、4.并补充一题(分式乘除法混合运算的)。

五.说板书设计:

主板书采用纲要式,一目了然。

一、分式的基本性质1、文字叙述2、符号表述。

二、应用。

最后,谈谈我的体会。课堂上平等对话,让学生自主掌握数学,发现问题,及时改正。教学是让学生丰富认识。

分数教案设计篇三

3.培养学生分析问题和解决问题的能力.。

教学重点。

明确分数乘、除法应用题的联系和区别.。

教学难点。

明确分数乘、除法应用题的联系和区别.。

教学过程。

一、启发谈话,激发兴趣.。

在前边,我们已经学习了稍复杂的分数乘、除法应用题,这两类应用题在分析解答。

二、学习新知。

(一)出示例8的4个小题.。

1.学校有20个足球,篮球比足球多,篮球有多少个?

2.学校有20个足球,足球比篮球多,篮球有多少个?

3.学校有20个足球,篮球比足球少,篮球有多少个?

4.学校有20个足球,足球比篮球少,篮球有多少个?

(二)学生试做.。

1.第一题。

解法(一)。

解法(二)。

2.第二题。

解:设篮球有个.。

解法(一)。

解法(二)。

解法(三)。

3.第三题。

解法(一)。

解法(二)。

4.第四题。

解:设篮球个.。

解法(一)。

解法(二)。

解法(三)。

(三)比较区别。

1.比较1、3题.。

教师提问:这两道题中的第二个已知条件有什么不同?解题思路有什么相同的地方?有。

什么不同的地方?

(1)观察讨论.。

(2)全班交流.。

(3)师生归纳.。

这两道题都是把足球看作单位1,单位1的量是已知的,求篮球有多少个?

2.比较2、4题。

(1)观察讨论.。

(2)全班交流.。

(3)师生归纳.。

分数教案设计篇四

在本次校举行的公开课活动中,我听了高年级刘老师的一节数学课,听过这节课后。

我认为优点体现在:

二、小组参与的力度大,充分调动了学生学习的积极性,使学生的“手、眼、口”都得到了锻炼。

不足之处是:

我认为有以下两点值得去深思:

一、有没有把课堂还给学生?

二、如何“还”?

很大一部分教师,也想把课堂还给学生,可是如何“还”?完全放手行吗?学生不是理想化的学生,因为学生之间毕竟存在着很大的差异,不要指望他们什么都会,如果“收、还”不当,还会适得其反,只有“收、还”得当,才会事半功倍。

说起容易做起难,要做到以上两点绝非易事,不仅需要提高教师自身的业务水平,更要深入地了解学生、钻研教材。

分数教案设计篇五

分数的基本性质:分数的分子和分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

概念:分数的分子和分母同时扩大或缩小相同的倍数(这儿讲的倍数除0外),分数的大小不变。

分数是指整体的一部分,或更一般地,任何数量相等的部分;是一个整数a和一个正整数b的不等于整数的'比。

约分:把一个分数的分子、分母同时除以公因数,分数的值不变。约分的依据:分数的基本性质。

利用约分可以化简分数,当直接约分有困难时,可以将分子分母分解质因数后约分。

通分:根据分数的基本性质,把几个异分母分数化成与原来分数相等的同分母的分数的过程。

分数教案设计篇六

1.认识单位“1”,理解分数的意义及分母、分子的含义。

2.培养学生的观察、分析、抽象、概括等思维能力。

3.通过层层设疑,不断强化学生的质疑意识,提高学生的质疑能力。

教学重点:建立单位“1”的概念。

课前准备:通过各种途径去查找、了解分数是怎样产生的。

教学过程。

一.创设情景。

再请同学们看两个例子。

1、出示2个实例(课件)。

(2)用米尺来测量木板的长度,能用整米数来表示吗?

许多例子都可以告诉我们,在生产和生活中,有时我们通过计算或是测量都是不能得到整数结果的,为了适应客观实际的需要,而产生了新的数——也就是分数(出示)。开始,人们只认识一些简单的分数,如二分之一、三分之一等。经过很长时间后,才产生像现在这样完善的分数的知识。同学们知道吗?我国还是世界上发明和使用分数比较早的国家之一。

其实分数对于同学们来说不会太陌生,我们已经对分数有了初步的认识。

2、揭示课题:今天这节课我们在分数初步认识的基础上探究分数的意义。

二、互动探究。

(一)复习把一个物体或一个计量单位平均分。

首先让我们一起来回忆一下:

1.用课件展示。(3个例子)。

(1)把一块饼平均分成2份,每份是它的二分之一。

(2)把一张正方形的纸平均4份。

(3)把一条线段平均分成5份,

2.小结:以前我们学习了把一个物体或一个计量单位平均分成若干份,表示这样的一份或几份,都可以用分数表示。

(二)学习把一个整体平均分。

1.想一想:

在现实生活中是不是只能把一个物体进行平均分?请举例。

师小结:在现实生活中不仅能把一个物体进行平均分,还可以把许多物体看作一个整体来平均分。

2.思考:

这里有一堆苹果,你能拿出它的1/4吗?你是怎样想的?

把什么看作一个整体?怎么分的?能完整的叙述一下吗?

把这些苹果看作一个整体,平均分成4份,每份的一个苹果就是这些苹果的1/4。

3.讨论:

把6只熊猫平均分,有几种分法?每份用什么分数表示?

(1)汇报分的情况。

(2)说说你们是怎样想的?注意叙述完整。

把什么看作一个整体?怎么分的?

还可以怎样分呢?

1.观察:刚才用来平均分的物体与以前的有什么不同呢?

以前是把一个物体平均分,刚才是把许多物体看作一个整体来平均分。

2.启发:

像这样平均分的一个物体、一个计量单位或一个整体我们都可以用自然数1来表示,通常把它叫做单位“1”。我们所看到的1个饼、1张纸、4个苹果、6只熊猫都可以看作单位“1”。

那么在生活中,我们还可以把哪些看作单位“1”呢?

3.我们已经了解了什么是单位“1”,下面请同学们讨论一下:什么叫做分数?

(1)汇报。

(2)出示分数的意义,看有没有不明白的地方。

出示:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

师:单位“1”为什么要用引号?

“1”不仅表示一个物体,一个图形,一个计量单位,也可以表示由许多物体组成的`一个整体。这个“1”很特殊,所以我们给它加上引号,把它称为单位“1”。

你认为在这句话中,还有哪些字或词比较重要?

(四)分数各部份的名称及意义。

我们知道了分数的意义,下面来看看分数的组成。

出示:小红旗。

指名回答用什么分数来表示?说说想法。

4/9这个分数,指名说出分数各部份的名称。

结合图上的例子,说说各部份所表示的意义。

课件展示。

三、巩固发展。

1、看图:

(1)(做一做)谁能说说3/5的意义?这里的单位“1”指的是什么?

(2)分母3分别表示什么?分子2分别表示什么?

2、练习:

(1)练习十八1、2、题(课件出示)。

(2)判断:

(1)4/7是把单位“1”分成7份,表示这样4份的数。

(2)男生人数占全班人数的,是把全班人数看作单位“1”。

(3)把一堆苹果平均分成6份,表示这样5份的数是6/5。

(3)把全班48个同学平均分成6组,每组8个同学。

3个同学是这个小组人数的几分之几?

3个同学是全班人数的几分之几?

讨论:同样是3个同学,为什么分别用3/8和3/48来表示。

四、总结。

这节课我们学习了什么?它的内容是什么?我们在用分数的时候需要注意些什么呢?

分数教案设计篇七

教学内容:本课时的教学内容是百分数及百分数的应用。

教学目标:

知识与技能。

进一步理解百分数的意义,巩固求百分率的方法,掌握百分数与分数、小数的互化方法。

能应用百分数的相关知识,解决简单的实际问题。

过程与方法。

通过小组合作学习,交流探究等活动,增强合作学习的意识。

经历回顾、梳理、反思所学知识的过程,加深对复习内容的理解。

情感、态度与价值观。

在学习活动中,激发探究欲望,养成善于回顾和反思的学习习惯。

体验数学与生活的密切联系,增强应用数学知识解决实际问题的意识。

难点:掌握关于“增加百分之几”和“减少百分之几“的实际问题的解题方法。

教学设计:通过复习,系统、全面的整理了本学期所学的百分数知识,帮助学生构建合理的知识体系,使学生更好地理解和掌握所学概念、意义和解题方法,进一步培养学生的数感,提高学生的解题能力。本节课对百分数及百分数的应用的相关知识做了系统的复习,只要体现在以下两点:

1、突出核心知识,围绕重点展开复习和训练。

本课时的复习紧紧围绕百分数的认识及应用百分数解决实际问题这两方面内容,引导学生通过回顾、交流,进一步巩固对百分数的认识和运用百分数解决实际问题的方法,以“抓重点,带相关”的复习方式展开训练,提高学生的解题能力。

2、注重知识间的内在联系。

加强知识间的内在联系,帮助学生构建合理的知识体系,本节课通过对比血虚,进一步明确了百分数的意义和百分数应用题的解题思路,提高了学生的审题能力,使学生能够根据不同的要求,灵活选择不同的解题方法。

3、数形结合,为以后的学习打下基础。

分数教案设计篇八

2.培养学生观察、分析、思考和抽象、概括的能力.。

3.渗透“形式与实质”的辩证唯物主义观点,使学生受到思想教育.。

教学过程。

一、谈话.。

我们已经学习了分数的意义,认识了真分数、假分数和带分数,掌握了假分数与带分数、

整数的互化方法.今天我们继续学习分数的有关知识.。

二、导入新课.。

(一)教学例1.。

出示例1:用分数表示下面各图中的阴影部分,并比较它们的大小.。

1.分别出示每一个圆,让学生说出表示阴影部分的分数.。

(1)把这个圆看做单位1,阴影部分占圆的几分之几?

(2)同样大的圆,阴影部分占圆的几分之几?

(3)同样大的圆,阴影部分用分数表示是多少?

2.观察比较阴影部分的大小:

(1)从4幅图上看,阴影部分的大小怎么样?(阴影部分的大小相等.)。

(2)阴影部分的大小相等,可以用等号连接起来.(把图上阴影部分画上等号)。

3.分析、推导出表示阴影部分的分数的大小也相等:

(1)4幅图中阴影部分的大小相等.那么,表示这4幅图的4个分数的大小怎么样呢?

(这4个分数的大小也相等)。

(2)它们的大小相等,也可以用等号连接起来(把4个分数用等号连起来).。

4.观察、分析相等的分数之间有什么关系?

(1)观察转化成,的分子、分母发生了什么变化?

(的分子、分母都乘上了2或的分子、分母都扩大了2倍.)。

(2)观察。

(二)教学例2.。

出示例2:比较的大小.。

1.出示图:我们在三条同样的数轴上分别表示这三个分数.。

2.观察数轴上三个点的位置,比较三个分数的大小:

从数轴上可以看出:

3.观察、分析形式不同而大小相等的三个分数之间有什么联系和变化规律.。

(1)这三个分数从形式上看不同,但是它们实质上又都相等.。

(教师板书:)。

(2)你们分析一下,、各用什么样的方法就都可以转化成了呢?

1.观察前面两道例题,你们从中发现了什么变化规律?

“分数的分子分母都乘上或都除以相同的数(零除外),分数的大小不变.”(板书)。

2.为什么要“零除外”?

3.教师小结:这就是今天这节课我们学习的内容:“分数的基本性质”

教师板书字母公式:

1.请同学们回忆,分数的基本性质和我们以前学过的哪一个知识相类似?

(和除法中商不变的性质相类似.)。

(1)商不变的性质是什么?

(除法中,被除数和除数都乘上或都除以相同的数(零除外),商的大小不变.)。

(2)应用商不变的性质可以进行除法简便运算,可以解决小数除法的运算.。

我们学习分数的基本性质目的是加深对分数的认识,更主要的是应用这一知识去解。

决一些有关分数的问题.。

3.教学例3.。

例3把和化成分母是12而大小不变的分数.。

板书:

教师提问:

(1)?为什么?依据什么道理?

(,因为分母2乘上6等于12,要使分数的大小不变,分子1也要乘上6.所以,)。

(2)这个“6”是怎么想出来的?

(这样想:2×?=12,2ד6”=12,也可以看12是2的几倍:12÷2=6,那么分子1也扩大6倍)。

(3)?为什么?依据的什么道理?

(,因为分母24除以2等于12,要使分数的大小不变,分子10也得除以2,所以,

分数教案设计篇九

一、导入。

教师提问:

“如果你家中有一些暂时不用的钱,将怎么办?”让几个学生说一说,当有学生说要把暂时不用的钱存入银行时,接着提问:

“为什么要把钱存入银行呢?”多让几个学生发表意见。

教师肯定学生的回答,再指出:把暂时不用的钱存入银行有两个好处:一是国家可以把这些钱集中起来,用在建设上,所以说储蓄可以支援国家建设;二是参加储蓄的人用钱更加安全和有计划,还可以得到利息,所以说储蓄对个人也有好处。

“你们知道利息是怎样计算的吗?”

教师:今天我们就来学习一些有关利息的知识。

板书课题:“利息”

二、新课。

出示例题:小丽1月1日把100元钱存入银行,存定期一年。到1月1日,小丽不仅可以取回存入的100元,还可以得到银行多付给的5.67元,共105.67元。

先请学生读题,然后教师再说明:题目中有“存定期一年”表示什么呢?一般来讲。储蓄主要分定期存款、活期存款、大额存款等方式。所谓活期存款是指储户可以随时提取的一种储蓄方式,定期存款是有一定期限的一种存款方式。现在银行的定期存款有三个月、六个月、一年、二年、三年、五年、八年的等等。小丽存的是“定期―年”,即小丽在银行存的100元在一般情况下要在银行存一年;如果有特殊情况也可以提前提取。

教师:在银行储蓄要弄清三个概念:本金、利息和利率。小丽在银行存入100元,也就是说她的本金是100元。板书:“存入银行的钱叫做本金”

存款到期时,小丽到银行取回105.67元,银行多付给小丽5.67元,这是100元定期一年的存款所得到的利息。板书:“取款时银行多付的钱叫做利息”

这5.67元的'利息是根据什么给小丽的呢?是银行的工作人员根据利率计算出来的。板书:“利率就是利息与本金的比值”这是由银行规定的。利率有按年计算的,也有按月计算的。小丽存的是定期一年的存款,年利率是5.67%,也就是说如果存100元,在银行存一年可得100元的5.67%的利息,即5.67元的利息,再加上本金100元共105.67元。

根据国家经济的发展变化,银行存款的利率有时会有所调整。10月中国工商银行公布的定期整存整取一年期的年利率是5.67%,二年期的年利率是5.94%.三年期的年利率是6.21%。五年期的年利率是6.66%。

按照上面的利率,如果小丽存300元钱定期存款二年,到期时她应得利息多少。

元?提问:

“二年期的定期整存整取的年利率是5.94%是什么意思?”(到期取款时每100元可得5.94元的利息。)“小丽的本金是300元,到期时她每一年应得利息多少元?”(300元的5.94%。)学生口述,教师板书:300×5.94%。

“二年应得利息多少元?”学生口述,教师接着板书:×2。

小丽的存款到期时可以得到的利息是35.64元。

“小丽的存款到期时,她可以取出本金和利息一共多少元?”(335.64元。)如果有条件可以让学生看一看活期储蓄、定期储蓄的存款和取款的凭条。

三、巩固练习。

做第2页“做一做”中的题目和练习一的第2题。先让学生独立做,然后再共同订正。

四、作业。

练习一的第1题。

分数教案设计篇十

教学目标:

1、在操作、探究活动中,逐步理解一个整体,建立单位“1”的概念,理解分数的意义。

2、在学习过程中,培养学生的思维能力和应用意识。

3、体会数学与生活的密切联系,进一步增强学好数学的信心。

l教学重点:

理解单位“1”和分数的意义。

l教学难点:

理解单位“1”和分数的意义。

l教学准备:

教具准备:自制教学课件。

学具准备:小棒、练习纸。

l设计意图:

《小学数学新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在课前通过与学生的谈话引出分数后,短短的一句“关于分数,你已经知道了什么”唤起学生已有的知识经验,找到了新知与旧知的链接点,接着又借助媒体教学手段向学生介绍分数的由来,适时渗透了数学文化思想。使学生的思维开始了“起跑”。

作为学生学习的组织者、引导者与合作者,我力求引在核心处,拨在关键处,让学生自主探究、补充概括,借助于课堂这个思维“运动场”,不着痕迹地引导学生理解分数的真正含义。从引导学生“起跑”到“加速”,最后“冲刺”,水道渠成,促使每个学生获得成功的体验。

l教学过程:

一、谈话导入。

1、通过师生之间的谈话引出分数。

2、关于分数,你已经知道了什么?

3、提出要求:

二、分数的产生。

1、板书课题。

师:课前我们一起聊到了分数,今天这节课我们继续来认识分数。

师:你知道古人是怎样表示分数的吗?让我们一起来看一看。

三、理解分数的意义。

1.理解一个整体。

(1)、找出各种材料的1/4。

师:今天老师带来了一些材料,你能分别找到它们的四分之一吗?

师:那就请同学们开动脑筋,分一分、涂一涂,找出它们的1/4。

然后同桌之间说一说,你是如何找到它们的1/4的。听明白了吗?

(2)、汇报交流。

教师进行规范:

生:我把正方形平均分成4份,这样的一份就是这个正方形的1/4。

生:我是把这条线段平均分成4份,这样的一份就是这条线段的1/4。

突出整体:

师:这里的1/4是如何得到的呢?

生:我把4个苹果平均分成4份,这样的一份就是这个整体的1/4。

师:这是他的想法,还有不同想法吗?

生:把4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

师:说得不错。只要把这4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

进行知识迁移:

生:我是把8个三角形看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

(3)小结:

提问:刚才我们在不同的材料里找到了四分之一,找的过程中有什么相同的或不同的地方。

不同点:材料不同。

跟进:但我们都把这些材料看成了一个整体,这个整体可以是一个物体也可以是多个物体。

相同点:都是把这个整体平均分成4份,表示了这样的一份,得到了这个整体的四分之一。

2、理解单位“1”。

(1)深化理解一个整体。

学生自主创作:

师:现在,老师为同学们准备了一些小棒。同桌合作,任选一些小棒,分一分、找一找他们的1/4。开始吧。

交流汇报:

师:你用几根小棒表示1/4?你把几根小棒看作一个整体?你能说说这个1/4的含义吗?(多说几个)。

学生说4根小棒、8根小棒,师:4根小棒、8根小棒都可以看作一个整体。

(2)揭示单位“1”。

师:说的真好。在数学中,通常把一个整体叫做单位“1”。把单位“1”平均分成4份,这样的一份可以用1/4来表示。(板书单位1)。

师:如果一个菠萝用三分之一表示,他是把什么看作单位1呢?——果然如此。

师:如果2个橘子用五分之一来表示,她的单位1,又是多少呢?你是怎样想的?

师:同学们真是了不起!已经能很快地找到单位1了。

3.理解分子、分母的含义。

(1)、找其他分数。

那就请同学们动手涂一涂,用阴影表示出这个分数,并把这个分数写在下方,再和你的同桌说一说这个分数的含义。

(2)、汇报交流。

师:谁愿意和大家交流一下你所找到的分数?

生:把4个苹果看作单位1,平均分成4份,这样的2份就是2/4。

(3)比较:

师:在刚才同学们动手涂一涂,写一写的时候,老师发现,有些同学找到了,这几个分数。(课件使用说明:点击课件出现:

师:观察这些分数,你发现了什么?

生:分母都是4。

师:为什么分母都是4呢?

生:因为都是平均分成了4份。

师:把什么平均分成4份?——单位“1”。

师:要是单位“1”平均分成5份,分母是几呢?——5。平均分成6份——分母就是——6。

师:分母其实就是表示——平均分的份数。

师:同学们的观察力可不一般呐。还有什么发现吗?

生:分子各不相同,都差1。

师:分母为什么会不一样呢?

生:取的份数不同。

师:平均分成4份,取这样的一份就是1,两份就是——2,三份就是——3。

师:分子其实就是表示——取的份数。

师:同学们不仅观察能力强,分析、概括能力也很出色。

4.揭示分数的意义。

(1)逐步理解分数的意义。

师:我们通过动手分一分,涂一涂等方法已经认识了很多的分数。

现在老师再写一个分数5/9,你能说说它的含义吗?

生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

师:已经会用单位1来说了,真好。谁也愿意来试一试呢?

生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

师:说的真好。如果不是平均分成9份,板书5/,那么它的含义是什么呢?

生:把单位“1”平均分成很多份,取这样的5份,就是5/()。

师:很多份可以是几份?——2份,3份……。

师:我们可以用一个词来表示(板书:若干份)。

师:如果取的份数也不是5份了,板书()/(),那么这个分数的含义是什么呢??

生:把单位“1”平均分成若干份,取这样的若干份,就是()/()。

师:可以取这样的一份,也可以取这样的……几份。

小结:像同学们所理解的,把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。(板书)这就是我们今天所学的分数的意义。我们一起来读一读。

(2)理解分数单位。

师:分数和整数一样,也有计数单位。像这样表示其中一份的数我们叫做分数单位。

1/4,2/4,3/4,4/4的分数单位就是——1/4。

师:5/9的分数单位?

生:1/9。

师:5/99。

生:1/99。

师:()/1000。

生:1/1000。

师:老师都还没说分子呢,你怎么就知道分数单位了?

生:分数单位就是表示一份的数。

师:也就是说一个分数的分母是几,这个分数的分数单位就是——几分之一。

师:那3/4里有几个这样的分数单位呢?5/9里有几个这样的分数单位呢?

5.总结:今天这节课,我们一起合作学习了什么?你有什么收获?

四、练习巩固。

师:看来同学们的收获还真不少。请同学们在括号里填上适当的分数。

1.填一填。

(1)说说3/5的意义。

(2)同意吗?

(3)3/8的分数单位是多少?有几个这样的分数单位。

2、点击生活。

哪位同学愿意来读一读,并说说其中分数的意义。

(1)、我校五年级学生约占全校学生的1/6。

(2)、长江约3/5的水体受到不同程度的污染。

师:还有几分之几的水体没受污染呢?

师:受污染水体多还是没受污染的水体多?——怎么想的?

师:有什么想说的?——要保护环境。

师:看来同学们很有环保意识。那你希望,长江受污染的水体占长江水体的几分之几呢?

师:大家都有美好的希望,那就让我们拿出实际行动,共同来保护环境。

(3)、姚明的头部高度约占他身高的1/8。

师:我们的身体中还蕴藏着很多分数,有兴趣的同学课后可以去查一查资料。

五、总结全课、质疑问难。

师:这节课我们学习了什么?你有什么收获?还有什么问题?

分数教案设计篇十一

教学内容:

人教版小学五年级下册数学49—50页内容。教学目标:

1、让学生理解分数与除法的关系;

2、通过学习,学生会用分数表示两个数相除的商;

3、让学生经历分数与除法关系的过程,进一步培养学生观察、比较、分析、推理的能力;

4、创设探究活动情境,促进学生在自主探究、合作交流的学习过程中,获得研究性学习的经验和成功的体验。教学过程:

一、复习旧知识,启动研究问题(课件出示题)。

1、把8块饼干平均分给4个小朋友,每个小朋友分得几块饼干?如何列算式解答(生答略)。

2、现在老师只有1块饼干,把它平均分给4个小朋友,每个小朋友分得几块饼干?

(1)如何列算式解答?

生答,老师板书在黑板上?

1÷4=(生可能会回答)。

(2)请同桌的同学们用一张纸片表示饼干,把平均分饼干的过程表现出来(学生动手操作,老师巡视)(3)让学生代表说一说,并把过程演示出来。

3、老师:那么会不会任意两个整数相除,都可以用分数表示结果呢,这节课我们就来研究这个问题。(板书课题:分数与除法的关系)。

二、讲授新课。

老师:孩子们过生日都要吃什么啊?(生:蛋糕)老师:今天啊,正好是小红的生日,我们一起看看,小红是怎么过生日的,好吗?(课件出示例题)。

1、课件出示例题:今天是小红的生日,爸爸妈妈和弟弟为她准备了一块精美的蛋糕,同时在外地的舅舅和外婆分别给小红邮寄了一块蛋糕,现在平均每人分得几块蛋糕?(1)、如何列算式:

生答:老师板书3÷4=(2)老师:每个小组有3张纸片表示3个蛋糕,亲自分一分,看看结果是多少。(同桌合作,老师巡视)(3)学生交流汇报:

a、把每块蛋糕平均分成4份,一共12份,每人吃了3份,就是(把3份拼在一起,其实就是一块蛋糕的)。

b、把3个蛋糕叠在一起,平均分成4份,取其中的一份,就是3份,再拼在一起,也是。

个蛋糕。

2、老师:大家一起观察算式。

1÷4=。

3÷4=同桌一起研讨下:这两个除法算式,等号的左边是除法,等号的右边是分数,那么除法和分数之间有什么联系?又有什么区别呢?(学生讨论)。

(1)、学生交流汇报:除法算式中的被除数相当于分数的分子,除法算式的除数相当于分数的分母,除号相当于分数线。

(2)区别:除法是一种运算,分数是一个数。(3)教师小结(利用课件表格总结)。

3、刚才大家借用学具研究了3÷4=?的问题,如果不借助学具,你能说出7÷8的结果吗?为什么?(生答,因为被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数线)。

三、巩固练习。

1、课件出示练习题。

(引导学生口答,说原因,师小结)。

2、布置课堂作业:教材51页2、3、4题。

四、课堂小结:(利用课件演示小结)。

分数教案设计篇十二

2、能运用分数基本性质,把一个数化成指定分母(或分子)大小不变的分数。

3、经历观察、操作和讨论等数学活动,体验数学学习的乐趣及数学与日常生活密切联系。

联系分数与除法的关系,理解分数的基本性质,沟通知识间的联系。

多媒体课件长方形白纸、圆片,彩色笔等。

一、创设情境,激趣导入。

生1:四、五、六年级分的地一样多。

生2:……。

师:到底校长分的公平不公平,我们来做个实验吧?

二、动手操作,探究新知。

1、小组合作,实验探究。

师:请同学们拿出你们准备好的学具,按平时的分组习惯四人一组,用你们的学具来代替这块地,像校长一样来分地吧。

2、汇报结果。

师生交流:你们是怎样做的?谁能说一说,请几个同学上台演示并口述演示过程。

生1:用三张同样的长方形的纸来代替这块地,分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生2:用三个同样的圆片分别涂出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生3:用三条线段分别画出其中的三分之一,六分之二,九分之三。经过对比发现三块地一样多。

生4:把分数化成小数,他们的商也一样,所以三块地的面积一样大。

生5:……。

3、课件展示,得出结论。师:校长分的和你们一样吗?我们再来看看小电脑是如何拼的,(利用优质资源课件演示分地的过程,师生共同观察总结得到校长分的地一样多。)。

(设计意图:这样设计的目的是为了更有利于学生主体个性的发挥,在探究活动中充分发挥学生的个体的潜能,给学生足够的时间和想象的空间,进行小组合作式的探究活动,让学生自由的猜想,使实验成为自己的需要,同时让学生思考用什么方法验证,使学生带着浓浓的兴趣进入探究新的学习活动之中。)。

师:三个年级分的地一样多,那么你们觉得、这三个分数的大小怎么样?

生:相等。

师:同学们请看这组分数有什么特点?(板书=)。

生:分数的分子分母发生了变化分数的大小不变。

生:分子分母同时乘2,……。

师:谁能用一句换来描述一下这个规律?

生:给分数的分子分母同时乘相同的数。(师随着板书)。

师:同学们在反过来从右往左观察,分数的分子、分母有什么变化规律?

生:分数的分子分母同时除以相同的数。

师:像这样给分数的分子分母同时乘或(除以)相同的数,分数的大小不变。就是我们这节课学习的新知识。(板书分数的基本性质)。

师:结合我们的预习,对于分数的基本性质同学们还有什么不同的意见?

生:0除外。

师:为什么0要除外?

生:因为分数的分母不能为0.

师:(补充板书0除外)在分数的基本性质中,那几个词比较重要?

生:同时相同0除外。

师:(把这三个词用红笔加重)同学们有没有发现分数的基本性质和谁比较相似?

生:商不变的性质。

师:为什么?

生:我们学过分数与除法的关系,被除数相当于分子,除数相当于分母,所以他们是相通的。

师:数学知识中有许多知识如像商不变性质与分数的基本性质是一致的。因此平时学习中我们要触类旁通,灵活运用,才会举一反三。

三、应用新知,练习巩固。

(一)练一练。

(二)摸球游戏。老师手中有一个箱子,里面装有许多水果,水果上面写着不同的分数,如果你摸到一个水果,说出一个与它大小相等,而分子分母不同的新分数,这个水果就奖励给你。

(二)判断(抢答)。

1、分数的分子、分母都乘过或除以相同的数分数的大小不变。()。

2、把的分子缩小5倍,分母也缩小5倍分数的大小不变。()。

3、给分数的分子加上4,要是分数的大小,分母也要加上4。()。

(四)测一测。

1、把和都化成分母是10而大小不变的分数。

2、把和都化成分子是4而大小不变的分数。

3、的分子增加2,要是分数大小不变,分母应增加几?

四、总结。

1、这节课大家表现的都很棒,谁能说说你这节课你都知道哪些知识?

2、把板书最后补充成一条鱼,希望大家拥有一双明亮的眼睛,肚子里装满知识,在知识的海洋里遨游。(完成板书)。

五、作业。

练习册2、4题。

分数教案设计篇十三

前一段时间,我们已经学习了分数乘法,那么,谁能告诉老师分数乘法怎样计算的?说得真好。下面,我们就一起来口算几道题:

(出示)4/71/3203/43/8162/33/2。

2、(复习倒数)其中当计算完2/33/2时提问:

看到这个答案,你想说什么?(乘积是1的两个数互为什么数(互为倒数))。

说得不错,下面就请同学们说说下面各数的倒数分别是什么?

(出示)3/8412/9。

3、把100千克的一桶油平均分成2分,每份是100千克的()/(),求100千克的1/2,列式为___。

把24千克的一袋面粉平均分成3份,每份是24千克的()/(),求24千克的1/3,列式为:_____。

同学们学得真不错,今天,潘老师就要带着大家用这些我们已经掌握的知识去学习新知识,解决新问题。

(一)教学例1。

1、教学第一种算法。

例1:量杯里有4/5升果汁,平均分给2个小朋友喝,每人可以喝多少升?

读题。

提问:怎样列式?(4/52)。

怎样计算呢?

(1)4/5表示什么意思?(是把1升平均分成5份,取其中的4份),(边说边出示图)。

从图中你能看出每份是多少米?(板书:2/5升)。

那么2/5升是怎样算出的呢?

4个1/5平均分成2份,可以用4/5的分子除以2,而分母不变,就得到结果是2/5。(板书算式)。

(2)补充例证。

如果现在把4/5升果汁,平均分给4个小朋友喝,每人可以喝多少升?

(3)观察比较。

提问:(1)这两道除法算式都是什么数除以什么数?(分数除以整数板书课题)。

(4)通过刚才这两道题的计算,你们有没有发现,分数除以整数可以怎样计算?(边说边指示)。

2、教学第二种算法。

(1)还有别的计算方法吗?(把4/5平均分成2份,求每份是多少?也就是求4/5的1/2是多少?可以用乘法来计算。)(板书)。

(2)问:从这个算式可以看出,一个分数除以整数还可以怎样计算。

通过这两种交流,使学生知道分数除以整数的方法是多样的,又能初步理解分数除以整数可以转化为分数乘以这个整数的`倒数的思路。

(3)让学生做试一试的题(自主选择计算方法)。

计算好了以后,再请学生说说你的思路是怎么样的。

使学生进一步明确,分数除以整数,可以转化为分数乘这个数的倒数。

(4)你能用简炼的语言概括一下这种方法吗?

教师板书:分数除以整数,等于分数除以整数的倒数。

(5)你认为这个计算方法有什么重要的地方需要提醒大家。

教师用红笔标注。

老师也为同学们准备了一套星级赛题,你们有信心挑战吗?

一星题:

1、课本56页的练一练第1题。

做此题的目的使学生明确当遇到分子能整除时比较简便。

可以选用这样的方法。

二星题:

2、这里还有6道题,哪些同学愿意到前面来解答的?

练一练第2、3题。

让学生能根据题目灵活选择计算方法。

做好以后进行集体讲解和订正。

三星题:

8/94=8/91/4=2/92/73=2/73=6/7。

8/94=8/91/4=2/93/73=3/71/3=1/7。

师:因此,我们同学在计算时,首先要看清题目,选择正确的计算方法,计算要细心。

四星题:

4、练习十一第2题。

本题的题目关键要让学生进行比较,分数乘法和除法的区别。

五星题:

1、如果a是一个不等于0的自然数,13a等于多少。

问:你能用具体的数来检验这个结果吗?

2、()/()3=5/187/()=()/24。

本课我们学习了什么内容?

分数教案设计篇十四

学习内容:

教材第70、71页例3、例4,及“做一做”。

学习目标:

1.我能认识带分数,知道带分数是一部分假分数的另一种书写形式。

2.我能掌握把假分数化成整数或带分数的方法。

学习重难点:

认识带分数,能把假分数化成整数或带分数。

学习过程:

一、导入新课。

二、合作探究、检查独学。

1.小组内检查独学部分的题目完成情况,质疑探讨。

2.根据独学部分的题目自学例3、例4。小组内讨论交流。

(1)什么样的假分数能化成整数?化成整数的依据是什么?

(2)比较把假分数化成整数和化成带分数的方法有什么共同点和不同点?

3.小组代表展示、汇报。

4.总结升华。

5.我能行:完成71页“做一做”。

【本文地址:http://www.xuefen.com.cn/zuowen/16340741.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档