2023年长方体的表面积教学教案范文(17篇)

格式:DOC 上传日期:2023-11-29 09:47:09
2023年长方体的表面积教学教案范文(17篇)
时间:2023-11-29 09:47:09     小编:紫薇儿

教案是教师教学活动设计的基本工具,对于教学的开展具有重要的指导作用。教案的评价要注重学生的参与度和实际表现。以下是小编为大家整理的一些教案范文,仅供参考。这些范文涵盖了不同学段、不同学科的教案,包括了教学目标、教学内容、教学过程、教学评价等方面的内容。希望能给大家提供一些启示和帮助,让我们一起来看看吧。

长方体的表面积教学教案篇一

3.培养学生的动手操作能力和空间观念.。

教学重点。

建立表面积概念,初步学会计算长方体和正方体的表面积.。

教学难点。

正确建立表面积的概念.。

教学步骤。

一、铺垫孕伏.。

2.标出自带长方体纸盒的长、宽、高,并说出右面、上面的长和宽是多少?面积是多少?

二、探究新知.。

1、教师提问:什么叫做面积?

(用手按前、后,上、下,左、右的顺序摸一遍)。

2、教师明确:这六个面的总面积叫做它的表面积.。

(二)长方体表面积的计算方法.【演示课件“长方体的表面积”】。

1.学生归纳:

上下两个面大小相等,它是由长方体的长和宽作为长和宽的;

前后两个面大小相等,它是由长方体的长和高作为长和宽的;

左右两个面大小相等,它是由长方体的高和宽作为长和宽的.。

2.教学例1.。

做一个长6厘米,宽5厘米,高4厘米的长方体纸盒,至少要用多少平方厘米硬纸板?

第一种解法:

长方体的表面积教学教案篇二

投影出示练习六第l题。

解答练习六第2题,步骤同第1题。

教师:在日常生活和生产中,往往不是算长方体的每一个面的面积,而是需要计算长方体的表面积。

出示例3。

学生读题,找出条件和问题。

让学生看第25页例1下面的“想”,并填好空。然后,引导学生列出算式:6×5×2+6×4×2+5×4×2+6×4。

提问:6×5×2、6×4×2、5×4×2分别求的什么?

学生回答,教师边在算式下标明上下、前后、左右,接着,让学生检查一下,有没有漏算或者重复计算的面,然后让学将计算过程和结果填在书上。

提问:这道题还可以怎么列式呢?

同桌同学讨论,解答。教师巡视。

指名汇报算式:(6×5+6×4+5×4)×2。

提问:问什么先算3个面的面积和再乘以2?

学生用以长方体教具演示帮助学生回答,然后,将黑板上的原长方体的展开图的前、下、右面裁下,与左、上、后面进行重叠,帮助学生弄清道理。

提问:这两种计算方法有什么不同?又有什么联系?(第一种方法是先分别算出上、下面的面积和,然后再加起来。第二种方法,实现算出前面、右面、下面的面积再乘以2。第二种方法是第一种方法根据乘法分配律变成的。)。

提问:哪一种方法更渐变?(第二种)。

前左下。

的宽找错了)。

接着,教师小结:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。

三、课堂练习。

做例1下面的做一做中的题目。先让学生独立做,教师巡视,对有困难的学生给予指导,然后汇报解法,并说出思考过程。

四、全课总结。

长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。

五、布置作业。

练习第3、4题。

长方体的表面积教学教案篇三

教材第33页至第34页例1,完成“做一做”和练习六第1题至第3题。

教学目标。

知识目标。

1.通过动手操作,观察长方体和正方体的展开图,理解长方体和正方体表面积的意义。

2.根据长方体展开图,能说出每个面的长、宽与长方体的长、宽、高的关系,会计算长方体的表面积。

能力目标。

1.培养学生自我探索的能力。

2.结合具体情况能灵活运用表面积的计算方法,解决生活中的实际问题。

情感目标。

培养和发展学生的空间观念。

教学重点。

掌握长方体表面积的计算方法。

教学难点。

长方体每个面的长和宽与长方体的长、宽、高的关系。

媒体准备。

课件、长方体和正方体纸盒各一个、剪刀、牙膏盒。

教学过程。

一、巩固旧知,重建表象。

师:上两节课我们学习了长方体和正方体的认识,谁来说说长方体、正方体有哪些特征?(长方体有6个面,……正方体6个面都是完全相等的正方形……)。

二、实物导入、揭示课题。

在我们的日常生活中有许多长方体、正方体纸盒(如牙膏盒、粉笔盒等),工人师傅在制作这些纸盒时至少要用多少纸板呢?这就是我们这节课要研究的主要内容。板书课题“长方体和正方体的表面积”。

提问:当你看了课题以后,你想知道什么?

三、演示操作、建立概念。

1.初步认识长方体的表面积。

大家拿出长方体纸盒摸一摸,你能摸到几个面?(6个)。

师:把这个长方体的纸盒沿着棱剪开是什么形状的呢?大家想看看吗?教师示范操作。

沿着棱把长方体展开,你有什么发现?

1、原来的立体图形变成了平面图形。2、长方体的外表展开后是由6个长方形组成的。

请同学们观察一下,展开前长方体的每个面,在展开后是哪个面?分别用上、下、前、后、左、右标明。

在标的过程中你有什么发现?(前后两个面的面积相等……)。

2.初步认识正方体的表面积。

通过观察和动手操作,谁知道什么叫做长方体或正方体的表面积?

四、学习新知,探索规律。

1、明确长方体每个面的长和宽与长方体长、宽、高的关系。

问:既然长方体六个面的总面积叫做它的表面积,那么怎样计算长方体的表面积呢?

同学们观察长方体然后讨论:长方体每个面的长和宽与长方体长、宽、高有什么关系?

2、探求表面积的计算方法。

出示课件,师:做这样一个牙膏盒至少需要多少硬纸板,就是求什么呢?(求牙膏盒的表面积)。

请大家独立完成,如有困难可合作完成。

找学生把不同的方法写到黑板上,并说一说每一步求的是哪个面的面积?

比较几种方法有什么不同?他们之间有什么联系?

课件出示:长方体的表面积=长×宽×2+长×高×2+宽×高×2。

长方体的表面积=(长×宽+长×高+宽×高)×2。

小结:我们在求长方体的表面积时,一定要求6个面的面积,方法有多种,用喜欢方法做就可以了。

师:要算长方体的表面积,我们必须知道它的什么?(长、宽、高)。

五、巩固练习,拓展提升。

1、做一个微波炉的包装箱(如右图),至少要用多少平方米的硬纸板?

引导学生求微波炉包装的面积,实际上是求包装盒这个长方体的表面积。

师:大家注意到“至少”二字了吗?谁能说说为什么要加上这两个字?

(做纸板箱的时候要有粘合处,这里的“至少”指的是粘合处不算,就光算六个面的面积之和就好了。)。

六、课堂小结想象延伸。

小结:同学们,刚才我们学习了什么叫长方体和正方体的表面积,怎样计算长方体的表面积?那么在生活中,我们还要根据具体的情况来采取正确的解答问题的方法,比如说有的时候需要求6个面,有的时候只要求5个面、甚至只要求其中的4个面。

板书设计。

上、下:长×宽。

前、后:长×高。

左、右:宽×高。

长方体的表面积教学教案篇四

教学内容:。

教学目的:。

使学生理解长方体和正方体的表面积的概念,在理解概念的基础上初步学会求长方体表面积的计算方法;发展学生的空间观念,培养学生概括、推理的能力。

教具准备:。

长方体牙膏盒一个,长方体和正方体展开的教具各一个,学生准备长方体和正方体的纸盒各一个。

教学过程:。

一、复习。

1.出示长方体的牙膏盒,让学生回答出它的形状后,指出它的长、宽和高,并分别指出和长、宽、高相等的棱。

教师:这个长方体有几个面?每个面是什么形?哪些面的面积相等?

2.教师沿着棱将牙膏盒剪开,再展平,让学生看一看展开后的形状。

二、新课教学。

教师出示长方体纸盒,同时学生拿出各自的长方体纸盒,教师指导学生沿着上面与前面相交的棱、左面与上面、前面、下面相交的棱以及右面与上面、前面、下面相交的棱将纸盒剪开。

让学生看教师演示,教师将剪开的纸盒展平、合上,再展平贴在黑板上,演示时注意让学生观察原来长方体的各个面展平后各在什么位置。

让学生在黑板的展开图中分别用“上”、“下”、“前”、“后”、“左”、“右”标明6个面,教师注意订正。

学生将自己剪开的长方体纸盒展平在桌上,并标明“上”、“下”、“前”、“后”、“左”、“右”。

观察展开图,让学生回答:长方体有几个面?每个面是什么形状?哪些面的面积相等?有几组相等的面?上、下、前、后、左、右各个面的长和宽分别是原长方体的什么?(引导学生答出:上、下每个面的长和宽分别是担原长方体的长和宽,前、后每个面的长和宽分别是原长方体的长和高,左、右每个面的'长和宽分别是原长方体的宽和高。)。

学生答完后,将正方体纸盒剪开,并标明“上”、“下”、“前”、“后”、“左”、“右”。教师巡视。(可能有几种展开形状。)。

教师:长方体或者正方体6个面的总面积叫长方体或正方体的表面积。

板书概念。

学生齐读概念后,教师宣布今天主要学习内容。

长方体的表面积教学教案篇五

投影出示练习六第l题。

解答练习六第2题,步骤同第1题。

教师:在日常生活和生产中,往往不是算长方体的每一个面的面积,而是需要计算长方体的表面积。

出示例3。

学生读题,找出条件和问题。

让学生看第25页例1下面的“想”,并填好空。然后,引导学生列出算式:6×5×2+6×4×2+5×4×2+6×4。

提问:6×5×2、6×4×2、5×4×2分别求的什么?

学生回答,教师边在算式下标明上下、前后、左右,接着,让学生检查一下,有没有漏算或者重复计算的面,然后让学将计算过程和结果填在书上。

提问:这道题还可以怎么列式呢?

同桌同学讨论,解答。教师巡视。

指名汇报算式:(6×5+6×4+5×4)×2。

提问:问什么先算3个面的面积和再乘以2?

学生用以长方体教具演示帮助学生回答,然后,将黑板上的原长方体的展开图的前、下、右面裁下,与左、上、后面进行重叠,帮助学生弄清道理。

提问:这两种计算方法有什么不同?又有什么联系?(第一种方法是先分别算出上、下面的面积和,然后再加起来。第二种方法,实现算出前面、右面、下面的面积再乘以2。第二种方法是第一种方法根据乘法分配律变成的。)。

提问:哪一种方法更渐变?(第二种)。

前左下。

的宽找错了)。

接着,教师小结:计算长方体的表面积,最关键的事要正确找出3组面中每个面的长和宽。

三、课堂练习。

做例1下面的做一做中的题目。先让学生独立做,教师巡视,对有困难的学生给予指导,然后汇报解法,并说出思考过程。

四、全课总结。

长方体或者正方体的6个面的总面积,叫做它的表面积。要计算长方体的表面积,关键是要准确找到每个面的长和宽。

五、布置作业。

练习第3、4题。

将本文的word文档下载到电脑,方便收藏和打印。

长方体的表面积教学教案篇六

周次3课次(本周第几课时)1。

教学基本。

内容六年级数学(上册)第二单元教学第16页的例5,完成相应的“练一练”和练习四第6~10题。。

教学。

目的。

和要。

求1、进一步巩固长方体和正方体的表面积的含义和计算方法,能根据所求问题的具体特点选择计算方法解决一些简单的实际问题。

2、进一步发展空间观念和数学思考。

3、密切数学与生活的联系,提高学生的学习兴趣。

教学重点。

及难点能根据所求问题的具体特点选择计算方法解决一些简单的实际问题。

教学方法。

及手段通过教学使学生经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。

学法指导。

集体备课个性化修改。

教学。

环节。

设计。

一、复习旧知、导入新课。

二、探究新知。

1、课件出示例5:

启发思考:要求制作这个鱼缸至少需要多少平方分米玻璃,实际上就是求什么?

可以怎样计算呢?

2、出示练一练第1题。

思考:

这张的商标纸的面积就是那几个面积的面积之和?明确就是求侧面积。

业1、练一练第1题。

2、完成练习四第6题。

启发思考:解答这个问题是求那几个面的面积之和?

根据给出的条件,这几个面的长和宽分别是多少?

3、完成练习四第7题。

4、完成练习四第8题。

5、完成练习四第9题。

思考:

求五级台阶占地多少平方米实际上就是求什么?

求铺瓷砖的面积实际上就是求什么?

板书设。

执行。

情况。

与课。

后小。

长方体的表面积教学教案篇七

教学难点:

如何利用所学知识解决生活实际问题。

教学准备:

长方体,正方体,多媒体。

教学过程:

一、联系实际,揭示课题。

同学们,学校利用这个假期同学们休息的时间,要对我们的教室进行从新粉刷。

在粉刷之前,校方提前进行了资料收集,收集的资料如下:

1.每个教室的长8米,宽5米,高3米;

2.每个教室要对四壁和屋顶进行粉刷;

3.每个教室门窗的面积共20平方米;

4.每个教室要粉刷三次;

5.第一次粉刷每平米用涂料0.5千克;第二次和第三次粉刷每平米只用去涂料0.2千克。

6.我校共有个教室需要粉刷。你能根据校方收集的上述信息帮助校方计算出应该买多少涂料吗?(揭示课题)。

二、师生交流,提出问题。

师:同学们,看到这个课题,你想知道什么?

生1:什么叫表面积?

生2:长方体与正方体的表面积怎么求?它们的表面积之间有什么关系?

生3:学了这些知识有什么用处?

三、师生互动,探究问题。

1.学生操作,解决问题;

(1)请同学们拿出准备好的正方体纸盒,请将这个正方体纸盒沿着棱剪开。(学生操作)我们将正方体沿着棱剪开,就得到了一个正方体表面的展开图。

(出示学生得到的正方体表面的展开图。)。

(2)引导学生观察得到的正方体的展开图,思考:正方体表面的展开图有什么特征?

2.组内交流,发表见解;

(1)正方体表面的展开图有6个正方形的面组成。(2)它们的形状都相同。

(3)它们的面积都相等。

3.教师引导,深入探究;

(1)想一想可以怎么求这6个面的面积总和。先求出1个面的面积,再乘以6,就是这6个面的面积总和。

(2)请你试着求一求你手中的正方体6个面的面积总和。

注意:先测量棱长的尺寸,再计算,取整厘米数。(学生计算)看书巩固,掌握方法;刚才我们计算的就是正方体的表面积,那什么是正方体的表面积?正方体的表面积可以怎么求呢?书上有具体的.介绍,请打开书,翻到p39,看书回答:

四、巧加点拨,学而致用。

1.追随上知,质问质疑。

2.迁移知识,灵活运用。

3.组际交流,发表见解。

4.看书小结,掌握方法。

请打开书,翻到p40,看书回答:

5.引用方法,灵活解答。

长方体的表面积教学教案篇八

教学内容:

苏教版义务教育教科书第6页例4、“试一试”和“练一练”,第8页练习二第1~4题。

教学目标:

1、使学生理解并掌握长方体和正方体的表面积的含义和计算方法,能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。

2、使学生在活动中进一步积累空间与图形的学习经验,发展空间观念和数学思考。

3、使学生进一步感受立体图形的学习价值,增强学习数学的兴趣。

教学重点和难点:

理解并掌握长方体和正方体的表面积的计算方法。能运用长方体和正方体的表面积的计算方法解决一些简单的实际问题。

教学准备:

长方体模型、框架,课件、长方体形状的纸盒等。

教学过程:

一、复习准备。

谈话:前两节课我们探索了长方体和正方体的基本特征,这节课我们继续学习有关长方体和正方体的知识。

提问:长方体有几个面?这几个面之际有什么关系?他们可以分为几组?正方体呢?

二、探究新知。

1、探究长方体表面积的计算方法。

在交流中明确:只要算出这个长方体六个面的面积之和就可以了。

(3)学生独立列式,指名汇报,是根据学生回答进行板书。

(4)比较小结:这两种方法都反映了长方体的什么特征?你认为计算长方体6个面的面积之和时,最关键的环节是什么?(要根据长宽高正确找出3组面中相关的长和宽)。

(5)提出要求:用这两种方法计算长方体6个面的面积之和,都是可以的,请用自己喜欢的方法算出结果。

2、探究正方体表面积的计算方法。

(2)学生独立尝试解答。

(3)组织交流反馈,提醒学生根据正方体的特征进行思考。

3、揭示表面积的含义。

谈话才我们刚才我们在求长方体或正方体纸盒致少各要用多少硬纸板的问题时,都算出了它们6个面的面积之和,长方体或正方体6个面的总面积,叫做它的表面积。

三、应用拓展。

1、做“练一练”

先让学生独立计算,再要求学生结合自己的列式和题中的直观图具体说明思考的过程。

2、做练习二第1题。

让学生看图填空,再要求同桌互相说说每个面的长和宽,并核对相应的面积计算是否正确。

3、做练习二第2题。

让学生独立依次完成体重的两个问题,再交流结果。

4、做练习二第3、4题。

指名读题后学生独立解答。

四、全课小结。

板书设计:

长方体的表面积教学教案篇九

教学内容:义务教育教科书人教版教材五年级下册第三单元第三课时。

教学目标:

1.认识长方体和正方体的展开图,理解长方体和正方体的表面积的概念,会计算长方体和正方体的表面积。

2.经历观察、操作、想象、探索等数学活动过程,理解长方体展开图中每个面与长方体长、宽、高之间的关系,探索长方体和正方体的表面积的计算方法,能解决有关表面积计算的实际问题。

3.体验数学与生活的联系,培养学生的空间观念,培养学生比较、观察、推理的能力。

教学重点:

认识长方休和正方体表面积的展开图,掌握长方体和正方体表面积的计算方法。

教学难点:

应用表面积的计算方法解决有关实际问题,培养学生的空间想象能力。

教学资源:

长方体、正方体的纸盒,长方体和正方体的展开图。

教学过程:

一、创设情境,导入新课。

1.课件出示长方体和正方体。这是我们以前学过和长方体和正方体,老师想用彩纸把这两个立体图形包装起来,但是不知道至少要用多大的彩纸,你能帮我想想办法吗?(把这长方体和正方体的6个面的面积和算出来,就是至少要用的彩纸)。

2.长方体或正方体6个面的总面积,叫做它们的表面积。这节课我们就来研究长方体和正方体的表面积。板书课题:长方体和正方体的表面积。

二、自主探索,合作交流。

(1)如果我们把长方体和正方体的纸盒展开,会是什么形状呢?请你闭上眼睛想象。

(3)请同学们用上、下、左、右、前、后,分别标出6个面。一个同学上黑板上标注。

2.教学长方体表面积的计算方法。

(1)现在你会算包装这个长方体至少要用多少平方米的彩纸了吗?

(2)汇报:

六个面加起来;

相对的面只算一个再乘2;

(长×宽+长×高+宽×高)×2;

通过研究我们发发现长方体的表面积和它的面有关,其实就是和它的长、宽、高关,我们要找准每个面的长和宽,才不会出错。

其实我觉得第一种方法是最基本的方法,也很重要,你知道为什么吗?(不规则的物体)。

3.教学正方体的表面积计算方法。会求正方体的表面积吗?怎么求?

三、巩固练习,应用拓展。

1.按要求计算各长方体各个面的面积和表面积。

(1)全图。

(2)半图。

3.p26第13题。把一个长方体截成两个立体图形,两个立体图形的面总面积比原来的长方体增加了两个截面。

四、反思总结,自我建构。

这节课我们研究了什么?你有什么收获?你有什么问题?有兴趣的同学课后可以研究一下。

长方体的表面积教学教案篇十

学生在高年级学习了“长方体表面积的计算”以后,对标准长方体的表面积计算问题都能够熟练掌握,但是对现实生活中触及计算长方体表面积的问题就不能正确进行计算,比如以下几道题:。

这几道要正确计算不但要掌握长方体表面的计算方法,而且要求学生计算时要能够正确判断计算的是哪几个面的面积之和。刚开端教学时学生呈现了错误就给学生阐发、改正,但是效果并不明显,学生遇到这些问题时又发生了错误。后来经过认真阐发、寻找缘故原由,发现学生不能够正确进行表面积的计算是对长方体的认识掌握不扎实,没有树立正确的空间观念,缺乏对物体的空间想象力。

随着新课程的学习,在进行长方体表面积计算的教学中重视了学生空间想象力的训练,学生在学习完好长方体表面积之后办理了这一类问题错误明显减少了。

(一)让学生拿出自已做的长方体模型,指出长方体的长宽高,说出如何计算上下、前后、左右每个面的面积,随后变换长方体模型放置方向进行练习。

(二)脱离长方体模型,一名同学口述长方体放置方法,其它学生想象判断上下、前后、左右每个面如何计算。

(三)针对长方体实例或者详细放置好的长方体模型,比如长八厘米、宽六厘米、高五厘米的长方体,八×六求的哪一个面的面积?……通过这样练习,学生在头脑中正确的把长方体图形和详细实物能够联系起来,能够凭据实物想象出基本图形,而且能够凭据想象把立体图形剖析成简单的平面图形,这现实上就是我们所说的空间观念的培养。学生办理上面三道现实问题,就是对学生空间观念的评测。学生空间观念是否正确,通过在现实操作、在办理现实问题中进行检验,随时发现问题、改正毛病,逐步形成正确的空间观念。

当我把问题:“用八个一立方厘米的小正方体凭借想象表现出一个表面积最大的长方体、一个表面积最小的长方体”展现在学生面前时,发现并不如我所预料的学生无法办理。有的学生说出了:长八厘米、宽一厘米、高一厘米,长四厘米、宽二厘米、高一厘米,长二厘米、宽二厘米、高二厘米,另有的`学生画出草图。让我深深体会到学生的确拥有不可估量的潜力。只要我们为学生创设出一个能展现他们才气的时间和空间,隐藏在学生头脑中的潜力就会如埋藏在地下的能量喷涌而出。

长方体的表面积教学教案篇十一

我们都知道刚学长方体和正方体的时候,学生最容易把表面积的计算和体积搞混。为了帮助学生理解概念,便于今后能清晰辨析解题,我在教学《长方体与正方体表面积的计算》这一课时,采取了“提纲挈领,层层深入”的方法来教学,自我感觉效果还不错。

所谓“提纲挈领,层层深入”就是精讲精炼,由表及里,从直观到抽象,从理解到运用,逐步掌握并形成技能的过程。

学生之所以在今后解决问题或运算过程中会让表面积和体积“打架”,其中最主要的原因还是对概念的不理解,因此理解概念是计算之源。

1、初步感知概念。

提问:“看到表面积一词,同学们就字面意思,说说你对表面积是怎样理解的呢?”让学生讨论自己想法,理解表面积它首先是个面积;其次它是物体表面的面积;就长方体和正方体来说它就是6个面面积之和。

2、具体理解概念。

想:你能举一个这样的例子么?

3、深刻明确概念。

长方体和正方体表面的面积就是长方体和正方体6个面面积之和。

1、了解长方体和正方体的特征是掌握表面积计算的基础。长方体有3组对面相等,正方体6个面全相等,在学生认知的基础上归纳出长方体与正方体表面积的计算公式,学生自然记忆深刻。

2、理解表面积的概念是掌握表面积计算的精髓。前面我们为什么要花很久去理解概念?俗话说:磨刀不误砍柴工。学生理解的表面积的内涵,除了常规长方体和正方体表面积的计算,即便以后遇上各种“变式”的(无盖的,少2个面的等情况)就没有什么难以理解的了。

3、积累生活经验是掌握表面积计算的重要途径。

小学生的空间观念还不健全,很多习题还依赖直观物体或模型来构建表像。因此老师要设计各种典型的习题让学生去看实物、做模型、画草图,学生感知的经验丰富了,题意理解了,今后解决问题还能有什么困难呢。

长方体的表面积教学教案篇十二

《长方体和正方体的表面积》这部分内容,是人教版五年级数学下册第3单元《长方体和正方体》的一个重点,也是难点。它是在学生认识掌握了长方体和正方体特征的基础上教学的。学习的难点在于,学生刚接触立体图形,空间观念不强,往往因不能根据给出的长方体的`长、宽、高,想象出每个面的长和宽各是多少,以至在计算中出现错误。针对这一点,我在教学中给学生更多的动手操作实验与实践的空间,让学生通过剪一剪、看一看、比一比,自主探究等方式来认识概念,理解概念。

我在设计《长方体和正方体的表面积》这节课时,考虑到班级学生较多,所以活动主要以小组进行。思路主要是沿着什么是长方体的表面积——怎样求长方体的表面积——长方体的表面积在生活中的应用这样一条线来让学生自主探究的。在小组交流的过程中,我发现对教材的深度钻研和对学生的预设显得尤为重要。如课前在预设学生求长方体的表面积时,我只考虑到学生可能会出现三种情况:一个面一个面的面积依次相加;二个面二个面的一对对相加;先求出三个面的面积和再乘2,但是有的学生只说出了其中的一种简便情况。如果我在课前有更深入的研究,还可拓展学生思维,引导学生找出另外的方法。对于长方体、正方体表面积公式的归纳,学生和我也只总结出了文字公式,还应简化成字母公式,便于记忆和书写。另外在让学生做当堂检测第三关时,我发现有学生做错了,只是把错题通过投影仪呈现了出来,由于受条件限制,未能结合原题给学生好好评讲,这一点比较遗憾。

实践表明,只有深入研究、充分预设的课堂教学才能使不同学生得到不同的发展,才可能出现意外的惊喜和美丽的风景。以后教学中我将在课前加大研讨、分析力度,提高课堂教学实效性。

长方体的表面积教学教案篇十三

1、使学生理解长方体表面积的意义,掌握长方体表面积的计算方法,能够正确地进行计算,并能运用所学知识解决一些实际问题。

2.在探索学习中建立初步的空间观念,发展初步合情推理能力量。

3.培养学生的动手操作能力和共同研究问题的习惯。

4.通过亲身参与探索实践活动,去获得积极的成功的情感体验。

5.体验数学问题的探索性、感受数学思考过程的合理性,并从中体验数学活动充满着探索与创造。

根据长方体的长、宽、高,确定每个面的长、宽是多少。

1、使学生理解长方体表面积的意义,掌握长方体表面积的计算方法,能够正确地进行计算,并能运用所学知识解决一些实际问题。

请在展开图中,分别用上下前后左右标明6个面。

学生分小组合作操作。

板书:(长×宽+长×高+宽×高)×2。

板书:(长×2+宽×2)底面周长×高+长×宽×2。

长方体或正方体6个面的总面积,叫做它的表面积。在日常生活和生产中,经常需要计算一些长方体或正方体的表面积。

1、做一个微波炉的包装箱,至少要用多少平方米的硬纸板?

说明“至少”的意思。

独立计算,说说你是怎么计算的?

2、给出课前长方体纸盒的长、宽、高的数据,让学生计算包装这个盒子至少用多少平方分米的包装纸。

3、一个正方体礼品盒,棱长1.2分米,包装这个礼品盒至少用多少平方分米的包装纸?

体验今天你运用了什么学习方法?学习上有什么收获?你感受最深是什么?学生之间互相评价。

1、看书。

2、实际测量。

长方体是一种很常见的物体,在我们的周围随时都可以看到长方体,同学们在教室内找一个长方体并求出它的表面积。学生交流测量和计算的情况。

板书设计:

长方体的表面积教学教案篇十四

教科书第16页例5及相应的“试一试”“练一练”,练习四第6~10题及思考题。

1、让学生通过探索,理解并掌握长方体、正方体表面积的计算。

2、让学生掌握并会运用所学知识解决实际问题。

3、让学生在观察、分析、抽象、概括和交流的过程中,感受长方体和正方体的表面积,发展初步的抽象能力;在学习和探索的过程中,培养独立思考和与人合作的能力。

根据实际情况判断出应该求出长方体或正方体的哪几个面之和。

一、复习铺垫,导入新课:

1、谈话:上节课我们学习了表面积,谁还记得?

2、计算下面物体的表面积。

(1)一个长方体长5厘米、宽6厘米、高12厘米。

(2)一个正方体的棱长5分米。

指名板演,集体订正。

二、探索领悟,总结方法:

谈话:在实际生产中,有时还要根据实际需要计算长方体或正方体中某几个面的面积和。

1、 谈话:请同学们说一说鱼缸的样子。

提问:求需要多少玻璃,就是求什么?

使学生明确,求需要多少玻璃,就是求这个鱼缸的表面积。

启发学生思考:

根据实际情况,需要计算几个面的面积的和?其中哪两个面的面积是相同的?

学生交流,指名口答。

明确:分别求出前、后、左、右和下面的面积,再相加。也可以先求出6个面的总面积,再减去上面的面积。

2、列式解答:

请学生独立完成。

谈话:你能说说你列式的根据吗?让学生明确算式的含义。

相机出示:

5×3.5+5×3+3×3.5+3×3.5+5×3

(5×3+5×3.5+3×3.5)×2-5×3

3、谈话:还有其他的方法吗?选择一种方法算出结果,再互相交流。

4、练一练:

第1题,让学生明确这张商标纸的面积就是这个长方体前、后、左、右四个面的面积和,也就是长方体的侧面积。

第2题,做让学生先弄清楚需要计算几个面的面积的和,然后独立完成,指名板演。

完成后,集体订正,指名说出列式根据。

三、巩固练习:

练习四第6 题,思考问题是要计算哪几个面的面积之和?根据给出的条件,这几个面的长和宽分别是多少?然后让学生独立解答。

四、课堂作业:

1. 练习四第7题 要学明确木板是上、下、左、右四个面,沙网是前后两个面。

2. 练习四第8题 明确教室的地面(也就是相应长方体的下面),不需要粉刷;算出顶面和四面墙壁的总面积后,还应该扣除门窗及黑板的面积。

3. 练习四第9题 帮助学生理解台阶占地面积应为各级台阶的上面的面积之和,即0.3×6×5=9(平方米)。铺地砖的面积则是各级台阶的上面和前面的面积总和,即9+0.2×6×5=15(平方米)。

4. 练习四第10题 要提醒学生以厘米作单位测量有关数据。测量结果可保留一位小数。

五、思考题:

提示学生:这个物体中的每一组相对的面的面积都相等。由此,表面积的计算方法是:(7+7+6)×2=40(平方厘米)。按要求补成的最小正方体棱长是3厘米。

长方体的表面积教学教案篇十五

长方体表面积的计算一课是在学生已经认识了长方体的特征的基础上学习的,这部分内容对于学生来说并不困难,只要把六个面的面积相加就行。然而在实际应用中,特别是遇到特殊情况,比如鱼缸、粉刷教室用材、通风管道等,有很多学生往往不能分清哪些面不需要计算,或是应该怎样计算?教材中计算表面积时是让学生先想象出展开图,再根据展开图各个图形的面积来选择计算出所求面积。

面对以往学生在学习时出现的较高的错误率,我在教学时便采用了让学生“钻”进长方体里求表面积的方法。

我首先让学生环顾四周,把我们的教室看做一个长方体,而我们就生活在这个长方体的世界里,而后我让学生分别指出这个长方体――教室的的顶点、相交于同一顶点的三条棱各叫什么?屋顶的面怎么求?前后的面怎么求?在竞赛的氛围中同学们都能很快地说出每个面的面积的求法。接着我要求学生换方向,与原来方向成90度,接着提问:“现在前面的面积怎么求?左面呢?上面呢?”从而使学生明白,长方体摆放的位置不同,求每个面的面积所用的条件也有所不同,要根据具体的长方体摆放的位置,来决定求每个面的面积应该用哪些条件。经过这样训练,学生不但能理解每个面的长与宽和原来长方体的长、宽、高的关系,而且还能根据我所给出的数据说出每个面的面积,再算出长方体的表面积。在遇到计算特殊物体的表面积,如鱼缸、通风管、游泳池等,我启发学生先钻进“盒子”里,再想象应该计算哪些面的面积,哪些面的面积不用算,这大大地提高了解答的正确率。

一般的教学是让学生想象展开图再进行计算,由于这个图是虚拟的,对学生的空间观念要求比较高。而“钻”进长方体,长方体的各个面就围绕在学生的四周,使学生感觉实在,从而利用直观的看就知道了哪个面不求,还可以用手比划一下,想清楚这个面的长与宽各是多少,再求出面积。这样的做法,对于空间观念比较弱的学困生来说,多了一根思维的“拐棍”。因此,在解决长方体的表面积实际问题时,我经常可以看到有些同学不时的抬起头或转过头看墙壁,有的还用手指偷偷比划着。我知道,他们此时,正“钻”进长方体里。

当然教学中仍存在着一些不足,如没有强调计算必须在单位统一的前提下才可以进行,造成一道练习题的错误率很高。这也是从一个侧面教育学生要养成良好的。

将本文的word文档下载到电脑,方便收藏和打印。

长方体的表面积教学教案篇十六

1、使学生理解长方体表面积的意义,掌握长方体表面积的计算方法,能够正确地进行计算,并能运用所学知识解决一些实际问题。

2.在探索学习中建立初步的空间观念,发展初步合情推理能力量。

3.培养学生的动手操作能力和共同研究问题的习惯。

4.通过亲身参与探索实践活动,去获得积极的成功的情感体验。

5.体验数学问题的探索性、感受数学思考过程的合理性,并从中体验数学活动充满着探索与创造。

长方体表面积计算的基本思路和方法。

根据长方体的长、宽、高,确定每个面的长、宽是多少。

1、使学生理解长方体表面积的意义,掌握长方体表面积的计算方法,能够正确地进行计算,并能运用所学知识解决一些实际问题。

分组操作,探索长方体的表面积的含义、并建立它们的联系。

请在展开图中,分别用上下前后左右标明6个面。

学生分小组合作操作。

板书:(长×宽+长×高+宽×高) × 2 。

板书:(长×2+宽×2)底面周长×高+长×宽×2

长方体或正方体6个面的总面积,叫做它的表面积。在日常生活和生产中,经常需要计算一些长方体或正方体的表面积。

1、做一个微波炉的包装箱,至少要用多少平方米的硬纸板?

说明"至少"的意思。

独立计算,说说你是怎么计算的?

2、给出课前长方体纸盒的长、宽、高的数据,让学生计算包装这个盒子至少用多少平方分米的包装纸。

3、一个正方体礼品盒,棱长1.2分米,包装这个礼品盒至少用多少平方分米的包装纸?

想一想怎样计算正方体的表面积呢?

体验今天你运用了什么学习方法?学习上有什么收获?你感受最深是什么?学生之间互相评价。

1、看书

2、实际测量

长方体是一种很常见的物体,在我们的周围随时都可以看到长方体,同学们在教室内找一个长方体并求出它的表面积。学生交流测量和计算的情况。

板书设计:

长方体的表面积

长方体或正方体6个面的总面积,叫做它的表面积。

长方体的表面积= (长×宽+长×高+宽×高) × 2

长方体的表面积教学教案篇十七

学习内容:

求一些不是完整六个面的长方体、正方体的表面积,(教材25页第5题、教材第26页第9、10题)。

学习目标:

1、利用长方体和正方体的表面积计算方法,结合实际生活,求一些不是完整六个面的长方体、正方体的表面积。

2、通过练习、操作发展空间想象能力。培养学生对数学的兴趣与求知欲。

教学重点:

能根据生活实际,对不是完整六个面的长方体、正方体的表面积进行正确的判断。

教学难点:

教具运用:

课件。

教学过程:

一、复习导入。

师:上节课我们认识了长方体和正方体的表面积,并且学习了表面积的计算方法,请大家试着解决下面的两个问题。(出示课件)。

1、做一个长8厘米,宽6厘米,高5厘米的纸盒,至少需要多少纸板?

2、一个棱长和为180的正方体,它的表面积是多少?学生独立计算,教师巡视指导,集体订正。师:通过前两节课的学习,我们学会了长方体、正方体表面积的计算方法,就是计算出它们6个面的面积之和,但在实际生活中,有时只需要计算其中一部分面的面积之和,这就要根据实际情况来思考了。

二、新课讲授。

1、教材25页第5题。

(2)学生读题,看图,理解题意。

(3)上下面不贴说明什么?(说明只需要计算4个面的.面积,上下两个面不计算)。

(4)学生尝试独立解答。

(5)集体交流反馈。

方法一:10122+6122=240+144=384(cm2)。

方法二:(1012+612)2=(120+72)2=384(cm2)。

答:这张商标纸的面积至少需要384平方厘米。

2、教材26页第8题。

(1)课件出示教材26页第8题图片及文字:一个玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?(鱼缸的上面没有盖)。

(2)学生读题,看图,理解题意。

(3)提问鱼缸的上面没有盖说明什么?(说明只需计算正方体5个面的面积之和)。

(4)请学生独立列式计算,教师巡视,了解学生是否真正掌握。

335=95=45(dm2)。

答:制作这个鱼缸时至少需要玻璃45平方分米。

三、课堂作业。

完成教材第26页练习六第9、10题。

四、课堂小结。

五、课后作业。

完成练习册中本课时练习。

板书设计:

方法一:10122+6122。

=240+144。

=384(cm2)。

方法二:(1012+612)2。

=(120+72)2。

=384(cm2)答:这张商标纸的面积至少需要384平方厘米。

一个玻璃鱼缸的形状是正方体,棱长3dm,制作这个鱼缸时至少需要玻璃多少平方分米?

335。

=95。

=45(dm2)答:制作这个鱼缸时至少需要玻璃45平方分米。

【本文地址:http://www.xuefen.com.cn/zuowen/16332716.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档