八年级数学教案设计全文(精选20篇)

格式:DOC 上传日期:2023-11-28 17:15:08
八年级数学教案设计全文(精选20篇)
时间:2023-11-28 17:15:08     小编:笔舞

教案应当有明确的评价标准和反馈机制,为学生提供有效的学习反馈。在编写教案时,我们首先需要确定教学目标,明确教学内容和教学重点,设计合理的教学过程和教学方法,科学地安排学习活动和评价方式。同时,还需要充分考虑学生的学习特点和实际需求,灵活运用教学资源,创设良好的教学环境,激发学生的学习兴趣,提高他们的学习参与度和自主学习能力。通过研究这些教案,我们可以发现一些优秀的教学策略和方法。

八年级数学教案设计全文篇一

学生准备:复习,平行四边形性质;学具:课本“探究”内容.。

1.认知题后:学习了三角形全等、平行四边形定义、性质以后学习本节课内容.。

2.知识线索:

3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.。

一、回顾交流,逆向思索。

教师提问:

1.平行四边形定义是什么?如何表示?

2.平行四边形性质是什么?如何概括?

学生活动:思考后举手回答:

回答:1.两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)。

(1)对边平行,

(2)对边相等,

教师归纳:(投影显示)。

学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:

(3)将两条等长的木条平行放置,另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。

八年级数学教案设计全文篇二

数学活动经验的积累是提高学生数学素养的重要标志。数学活动经验需要在“做”的过程和“思考”的过程中积淀,是在数学学习活动过程中逐步积累的。为此本节课的设计思路主要体现了如下特点:

一、动手操作,让学生自主建构知识。

动手实践、自主探索与合作交流是学习数学的重要方式。因此在教学中我努力创造条件让学生在动手操作活动中“做”数学,使学习数学的过程成为学生运用所学知识再创造的过程,让学生成为探索者、发现者。本节课通过由“长方形到平行四边形”转化,培养学生观察能力和推理能力,并通过剪一剪、画一画、改一改等数学活动让学生自主建构知识,学生只有在这样的操作活动中才能真正经历观察、猜测、想象、分析和推理等过程,学生的空间观念才能得到发展。

二、解决问题,让学生成为思考者。

让学生运用平行四边形对边相等的特征进行解决问题,让学生充分体验解决问题策略的多样化。在“改一改”这个环节我放手让学生独立思考,亲身经历图形的修改过程,并展示学生多种修改方案,把学生的多种思维过程充分暴露出来,让学生感受解题策略、方法的多样化。

八年级数学教案设计全文篇三

1.通过生活情景与实践操作,直观认识平行四边形。

2.在观察与比较中,使学生在头脑里建成长方形与四边形间的区别与联系。

3.体会平行四边形与生活的密切联系。

教学重难点。

通过生活情景与实践操作,直观认识平行四边形。

教学准备。

教具:活动长方形框架点子图。

学具:七巧板。课时。

安排1。

教学过程。

一、利用学具逐步探究。

1.拉一拉。

发给每位学生一个长方形的学具。轻轻地动手拉一拉,看看它发生了什么变化?

生动手操作,交流自己的发现。学生会发现长方形向一边倾斜了,角的大小发生了变化等等。程度较好的学生会说出长方形变成了平行四边形。

教师将拉成的平行四边形贴在黑板上。引出课题并板书:平形四边形。

长方形和平行四边形哪些地方相同,哪些地方不同呢?利用你们的学具,在四人小组里讨论。

(1)小组观察、讨论。教师到各个小组中指导,引导他们从边和角两个方面探究。

(2)分组汇报,小组之间互相补充。得出:平行四边形和长方形一样,都有四条边,四个角,对边相等。不同的是,长方形四个角都是直角,而平行四边形一组对角是钝角,一组对角是锐角。

(设计意图:让学生亲自动手操作,经历将长方形拉成平行四边形的过程。在学生初步感知平行四边的基础上,探索平行四边形与长方形的联系和区别,帮助学生建立平行四边形的模型。)。

让学生安安静静的思考后,交流看法。平行四边形有四条边,所以三角形和五边形不能拉成。普通四边形的对边不相等,也不能拉成。正方形能拉成特殊的平行四边形:菱形。长方形可以拉成平行四边形。

请在导入时得到学具奖励的学生上台利用学具拉一拉,验证大家的'猜测)。

3.认一认:

让学生判断大屏幕上的图形是平形四边形吗?[课件出示]。

学生逐一回答。教师随即追问为什么第三、第五个图形不是平形四边形?)。

4.找一找:

课件出示画面:在小花园里,有菱形的瓷砖、伸缩们、回廊……图中蕴含着各种各样的平行四边形。学生汇报后,让他们数一数中有几个平行四边形。

师:除此之外,你还能从生活中找到它吗?

二、动手操作拓展延伸:

1.画一画:

(1)生利用尺子、铅笔在点子图上画平形四边形。画好后,在小组里互相交流。

(2)利用展台展示学生作品。如果出现错误,让学生当“小老师”互相纠正。

2.拼一拼:

用七巧板拼成一个平行四边形,同桌两人一组,比一比,哪个组拼的方法最巧妙。

(1)请三组同桌在黑板上拼,其余学生分组在下面拼。教师巡视,发现巧妙的拼法,让其展示在黑板上。

(2)选择一个你最喜欢的平行四边形,说一说它是用什么形状的七巧板拼成的。

三、课堂小结。

1.这节课你有什么收获?

2.师小结:只要注意积累,你们的知识会越来越多!

八年级数学教案设计全文篇四

知识技能:了解勾股定理的文化背景,体验勾股定理的探索过程.

数学思考:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.解决问题:1.通过拼图活动,体验数学思维的严谨性,发展形象思维.

2.在探究活动中,学会与人合作并能与他人交流思维的过程和探究结果.

情感态度:1.通过对勾股定理历史的了解,感受数学文化,激发学习热情.

2.在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识和探索精神.

八年级数学教案设计全文篇五

教师展示图片并介绍第二情景。

毕达哥拉斯是古希腊著名的数学家.相传在25以前,他在朋友家做客时,发现朋友家用地砖铺成的地面反映了直角三角形的某种特性.

(1)现在请你也观察一下,你能有什么发现吗?

(2)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有这样的特点呢?

(3)你有新的结论吗?

[活动2]教师引导学生总结:

等腰直角三角形的两条直角边平方的和等于斜边的平方.在独立探究的基础上,学生分组交流.教师参与小组活动,指导、倾听学生交流.针对不同认识水平的学生,引导其用不同的方法得出大正方形的面积.

学生活动:每组派代表分别自己总结的观点,在教师的引导下,慢慢发现能否将三个正方形面积的关系转化为直角三角形三条边之间的关系,并用自己的语言叙述出来;用弯曲的手臂形象地表示勾、股、弦的概念,板书勾股定理,进而给出字母表达式.

[活动3]教师多媒体展示。

在北京召开了第24届国际数学家大会,它是最高水平的全球性数学科学学术会议,被誉为数学界的“奥运会”.这就是本届大会的会徽的图案.你见过这个图案吗?教师作补充说明:这个图案是我国汉代数学家赵爽在证明勾股定理时用到的,被称为“赵爽弦图”

八年级数学教案设计全文篇六

一、创设情境,了解问题。

1.初步感知,形成表象。

教师手拿可变形的长方形框架。

回顾旧知:长方形边和角有什么特征?

师推拉长方形框让学生直观感受长方形框变成平行四边形框的过程。

揭示课题:像这样的图形是平行四边形。

二、抓住关键,建立表象。

1.动手操作,感悟特征。

学生动手推拉长方形框。

生动手操作,师巡视,给学生充分“玩”的时间。

思考:拉长方形的一组对角,长方形的边和角有什么变化?

2.交流汇报,描述特征。

师:仔细观察这个平行四边形,说一说,它有哪些特征?

思考:用什么办法知道平行四边形的对边相等?

师:老师也想和同学们再玩一玩这个平行四边形,我们边玩边说(推拉过程)这样叫容易变形,对边相等,这条边的对边是这条边,还有另一组对边是这两条边。

3.联系生活,深化表象。

师:生活中你在哪儿也见过平行四边形?

师用课件展示生活中平行四边形图片,感悟易变形特性在生活中的应用。

4、初步应用,识别图形。

出示练习九第1题。

提出疑问:为什么这些图形不是平行四边形?

三、应用知识,操作体验。

1.剪一剪。

师:如果要把这张长方形纸变成平行四边形形纸,该怎么变呢。

用课件演示长方形纸变成平行四边形的过程。

思考:如果长方形纸对折的次数越多,剪出来的平行四边形越()?

学生动手剪一个自己喜欢的平行四边形。(播放音乐,师辅导需要帮助的同学)。

2.画一画。

师:接下来,请同学们拿出方格纸,根据自己的想像画一个平行四边形吧!

展示学生不同的画法。

3.改一改。

做书上练习九第3题。师巡视感受学生不同的解题策略。

师:同学们会用这么多的方法把画错的图形改成平行四边形,余老师佩服你们。

四、表述呈现,体验成功。

说一说,想一想。

师:现在我们一起来放松一下,做个游戏:游戏的名称叫“我说你猜”。

老师出示图形的名称,一个同学描述图形的特征,其他同学猜图形的名称。

五、反思评价,小结收获。

1.自评学习过程。

八年级数学教案设计全文篇七

首先通过对问题的思考与解答,回顾总结梳理本章所学的知识,将所学的知识与以前学过的知识进行紧密联结。通过思考,知识得到内化,认知结构得到进一步完善。回忆本章内容,建立知识结构图。通过练习把知识加以巩固。

1.反比例函数的图象和性质。

2.能根据所给的条件,确定反比例函数,体会函数在实际问题中的应用价值。

3.反比例函数的应用:解决实际问题,学科内部的应用。

1.反思在具体问题中探索数量关系和变化规律的过程,理解反比例函数的概念,领会反比例函数作为一种数学模型的意义。

2.能画出反比例函数的图象,并根据图象和解析式掌握反比例函数的主要性质。

3.提高观察、分析、归纳的`能力,感悟数形结合的数学思想方法。

1.面对困难,树立克服困难的勇气和战胜困难的信心。

2.养成合作交流意识和运用数学问题解决实际问题的意识,认识数学的实用性。

重点是:反比例函数的概念、图象和主要性质。

难点是:对反比例函数意义的理解。

启发引导、小组讨论

1课时

课件

(一)创设问题情境,引入新课

问题l:你能举出现实生活中有关反函数的几个例子吗?

八年级数学教案设计全文篇八

一、教学设计思路:

本节课是《4.2平行四边形的判定2》,前面已经有三个判定定理的学习,本节课只是在原有基础上补充多一个判定定理。从孩子作业反映上来看,孩子们对判定定理的选择与应用做得并非太好,特别是对判定定理的选择上,经常是使用自己较熟悉的一种,结果有时使到整个证明过程呈得繁琐。

因此,本节课的教学环节我做了这样的设计:

第一环节:课前阅读:一方面是复习旧知,另一方面是使学生尽快进入课堂教学;

第二环节,课前小测:五道基础性题目检测学生之前的与上节课所学的知识;

第四环节,探索两条对边分别相等的四边形是平行四边形的判定定理;

第五环节,课本上的随堂练习巩固知识点;

第七环节,练习:三道练习题。其中有时间时最后一题进行适当的变式。

二、教学完成情况:

教学任务基本完成,就是最后一环节当中变式题目没有讲,不过那个本来就是多预备的。

三、满意与不足之处:

本节课中虽然说教学任务基本完成。但有些环节中的处理做得不是很好。课前阅读与课前小测方面是比较满意的,能做得多关注差生,尽可能地减少差生面,提高孩子的学习信心。但是,第三环节中定理的选择的练习中,出发点是好,但花费的.时间较多,导致新课讲授的时间较少。第四环节探索判定定理时,实验题安排了学生在练习本上写,老师巡视,最后评讲,其实最好是让学生板演;第六环节是找学生板演时应有所挑选,课堂中选了一个基础好与一个基础差的学生,差些的学生主要看着基础好的学生来完成,没太大意义;最后的练习讲评中时间比较不充裕,所以导致讲得比较简单,更多的是引导与提示,没有充分留有时间给孩子思考。另外,方法性的指导也略显不足。

四、改进措施:

作为一个刚毕业一年的老师,经验性的不足也有一定关系。为了更快地完善自己的教学,近期主要注意以下几个方面:

1、抓好课前的准备。从严做起,重在落实。对学生课前练习本、课本等课堂需要用到的东西都要让学生养成习惯做好准备。

2、对教学设计与时间地分配要做更好的思考,以增强对时间控制地敏感度,更好地分配好每一环节所花的时间。

3、让课堂慢下来,争取让更多的学生消化好课堂新知,理解好知识点与例题。

4、在课堂上放心地让学生去尝试错误,多些让学生自主思考。

5、对学生的学习与做题多些方法性的指导。

八年级数学教案设计全文篇九

种子发芽实验(二)。

【教学目标】。

科学概念:绿豆种子发芽需要水和适宜的温度。

过程与方法:学习整理收集到的数据,依据数据得出科学的结论。

情感、态度、价值观:认识到对比实验、严格控制实验、重复实验的重要性。

【教学重点】通过实验知道绿豆种子发芽需要水和适宜的温度。

【教学难点】学习整理收集到的数据,依据数据得出科学的结论。

【教学准备】实验计划单和实验记录表,实验信息统计表(参考书5面)。

【教学过程】。

一、交流实验中的发现:

1、我们种下的绿豆种子都发芽了吗?其他小组的绿豆种子呢?

二、整理分析实验信息:

1、教师分发实验信息统计表,由组长负责收集相同实验小组的实验信息。

2、分析实验信息:

(1)实验组和对照组的数据有什么不同?

(2)从实验数据中我们可以得出结论吗?

(3)实验结论和我们实验前的猜测一致吗?

三、交流实验信息:

1、认真听取其他不同实验小组介绍他们的实验方法和获取的信息。

2、和其他的小组交流,了解他们在实验中有什么发现,听听他们怎样用数据来解释实验结果的。

3、汇集全班同学的实验,分析绿豆种子发芽需要的条件。对大家有异议的内容进行辨析。

4、小结:绿豆种子发芽的必需条件是温度、水分和空气。

四、种植绿豆芽:

1、引导:已经发芽的绿豆芽怎么处理?

2、确定任务:把绿豆芽种植在花盆中,放到适合的地方,让绿豆芽生长一段时间。

3、预测哪些条件会影响绿豆芽的生长。

4、建议对绿豆芽的生长做观察日记或者记录。

参考资料:种子发芽的基本条件是:

三是充足的氧气。

八年级数学教案设计全文篇十

《正方形》这节课是九年义务教育人教版数学教材八年级下册第十九章第二节的内容。纵观整个初中教材,《正方形》是在学生掌握了平行线、三角形、平行四边形、矩形、菱形等有关知识及简单图形的平移和旋转等平面几何知识,并且具备有初步的观察、操作等活动经验的基础上出现的。既是前面所学知识的延续,又是对平行四边形、菱形、矩形进行综合的不可缺少的重要环节。

本节课的重点是正方形的概念和性质,难点是理解正方形与平行四边形、矩形、菱形之间的内在联系。根据大纲要求,本节课制定了知识、能力、情感三方面的目标。

(一)知识目标:

1、要求学生掌握正方形的概念及性质;

2、能正确运用正方形的性质进行简单的计算、推理、论证;

(二)能力目标:

1、通过本节课培养学生观察、动手、探究、分析、归纳、总结等能力;

2、发展学生合情推理意识,主动探究的习惯,逐步掌握说理的基本方法;

(三)情感目标:

1、让学生树立科学、严谨、理论联系实际的良好学风;

2、培养学生互相帮助、团结协作、相互讨论的团队精神;

3、通过正方形图形的完美性,培养学生品格的完美性。

该段学生具有一定的独立思考和探究的能力,但语言表达能力方面稍有欠缺,所以在本节课的教学过程中,特意设计了让学生自己组织语言培养说理能力,让学生们能逐步提高。

针对本节课的特点,采用"实践--观察--总结归纳--运用"为主线的教学方法。

通过学生动手,采取几种不同的方法构造出正方形,然后引导学生探究正方形的概念。通过观察、讨论、归纳、总结出正方形性质定理,最后以课堂练习加以巩固定理,并通过一道拔高题对定义、性质理解、巩固加以升华。

本节课重点是从培养学生探索精神和分析归纳总结能力为出发点,着重指导学生动手、观察、思考、分析、总结得出结论。在小组讨论中通过互相学习,让学生体验合作学习的乐趣。

第一环节:相关知识回顾。

以提问的形式复习平行四边形、矩形、菱形的定义及性质之后,引导学生发现矩形、菱形的实质是由平行四边形角度、边长的变化得到的。并启发学生考虑,若这两种变化同时发生在平行四边形上,则会得到什么样的图形?让学生们通过手上的学具演示以上两种变化,从而得出结论。

第二环节:新课讲解通过学生们的发现引出课题“正方形”

1、正方形的定义:引导学生说出自己变化出正方形的过程,并再次利用课件形象演示出由平行四边形的边、角的变化演变出正方形的过程。请同学们举手发言,归纳总结出正方形定义:一组邻边相等,且一个角是直角的平行四边形是正方形。再由此定义启发学生们发现正方形的三个必要条件,并且由这三个条件通过重新组合即一组邻边相等与平行四边形组成菱形再加上一个角是直角可得到正方形的另两个定义:一个角是直角的菱形是正方形;一组邻边相等的矩形是正方形。此内容借助课件演示其变化过程,进一步启发学生发现,正方形既是特殊的菱形,又是特殊的矩形,从而总结出正方形的性质。

2、正方形的性质定理1:正方形的四个角都是直角,四条边都相等;

定理2:正方形的两条对角线相等,并且互相垂直、平分,每条对角线平分一组对角。

以上是对正方形定义和性质的学习,之后是进行例题讲解。

4、课堂练习:第一部分采用三道有关正方形的周长、面积、对角线、边长计算的填空题,目的是对正方形性质的进一步理解,并考察学生掌握的情况。

第二部分是选择题,通过体现生活中实际问题,来提升学生所学的知识,并加以综合练习,提高他们的综合素质,使他们充分认识到数学实质是来源于生活并要服务于生活。

5、课堂小结:此环节我是通过图框的形式小结正方形和前阶段所学特殊四边形之间的内在联系,通过对所学几种四边形内在联系体现正方形完美的本质,渲染学生们应追求象正方形一样方正的品质,从而要努力学习以丰富的知识充实自己,达到理想中的完美。

6、作业设计:作业是教材159页,第12、14两小道证明题,通过此作业让同学们进一步巩固有关正方形的知识。

八年级数学教案设计全文篇十一

正比例函数的概念。

2、内容解析。

一次函数是最基本的初等函数,是初中函数学习的重要内容,正比例函数是特殊的一次函数,也是初中学生接触到的第一种函数,要通过对正比例函数内容的学习,为后续类比学习一般一次函数打好基础,了解研究函数的基本套路和方法,积累研究一般一次函数乃至其他各种函数的基本经验。

对正比例函数概念的学习,既要借助具体的函数进一步加深对函数概念的理解,即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的每一个确定的值,另一个变量都有唯一确定的值与之对应,这是理解正比例函数的核心;也要加强对正比例函数基本特征的认识,即根据实际问题构建的函数模型中,函数和自变量每一对对应值的比值是一定的,等于比例系数,反映在函数解析式上,这些函数都是常数与自变量的积的形式,这是正比例函数的基本特征。

本节课主要是通过对生活中大量实际问题的分析,写出变量间的函数关系式,观察比较概括出这些函数关系式具有的共同特征,根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念,再用正比例函数的概念对具体函数进行辨析,对实际事例进行分析,根据已知条件写出正比例函数的解析式。

基于以上分析,确定本节课的教学重点:正比例函数的概念。

1、目标。

(1)经历正比例函数概念的形成过程,理解正比例函数的概念;

(2)能根据已知条件确定正比例函数的解析式,体会函数建模思想。

2、目标解析。

达成目标(1)的标志是:通过对实际问题的分析,知道自变量和对应函数成正比例的特征,能概括抽象出正比例函数的概念。

达成目标(2)的标志是:能根据实际问题中的已知条件确定变量间的正比例函数关系式,将实际问题抽象为函数模型,体会函数建模思想。

正比例函数是是初中学生接触到的第一种初等函数,由于函数概念比较抽象,学生对函数基本概念理解未必深刻,在对实际问题进行分析过程中,需进一步强化对函数概念的理解:即实际问题的两个变量中,当一个变量变化时,另一个变量随着它的变化而变化,而且对于这个变量的`每一个确定的值,另一个变量都有唯一确定的值与之对应;对正比例函数概念的理解关键是对正比例函数基本特征的认识,要通过大量实例分析,写出变量间的函数关系式,观察比较发现这些函数具有的共同特征,即函数与自变量的每一对对应值的比值一定,都等于自变量前的常数,这些函数都是常数与自变量的积的形式,再根据共同特征抽象出正比例函数的基本模型,归纳得出正比例函数的概念。对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程学生有一定难度。

因此本节课的教学难点是:对正比例函数基本特征的认识和正比例函数概念的抽象归纳过程。

八年级数学教案设计全文篇十二

2.会用立方运算求一个数的立方根,了解开立方与立方互为逆运算.。

3.了解立方根的性质----唯一性.。

4.区分立方根与平方根的不同.。

5.分清两个互为相反数的立方根的关系,即。

5.渗透特殊---一般的数学思想方法.

1.经历对立方根的探究过程,在探究中学会解决立方根的一些基本方法和策略.。

3.通过对立方根性质的探究,在探究中培养学生的逆向思维能力和分类讨论的意识.。

2.学生通过对实际问题的解决,体会数学的实用价值.。

重点:立方根的概念及求法.。

难点:立方根的求法,立方根与平方根的联系及区别.。

本节内容教学法为:类比法。

八年级数学教案设计全文篇十三

教学目标:

1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

重点与难点:

重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

难点:分析典型图案的设计意图。

疑点:在设计的图案中清晰地表现自己的设计意图。

教具学具准备:

提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

教学过程设计:

1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)。

明确在欣赏了图案后,简单地复习旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

2、课本。

1欣赏课本75页图3—24的图案,并分析这个图案形成过程。

评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

(二)课内练习。

(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

(三)议一议。

生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

(四)课时小结。

本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)。

进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

八年级数学教案设计全文篇十四

1.理解分式的基本性质.

2.会用分式的基本性质将分式变形.

二、重点、难点。

1.重点:理解分式的基本性质.

2.难点:灵活应用分式的基本性质将分式变形.

3.认知难点与突破方法。

教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。

三、例、习题的意图分析。

1.p7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。

2.p9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。

教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。

3.p11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。

“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5。

四、课堂引入。

1.请同学们考虑:与相等吗?与相等吗?为什么?

2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?

3.提问分数的基本性质,让学生类比猜想出分式的基本性质.

五、例题讲解。

p7例2.填空:

[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.

p11例3.约分:

[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.

p11例4.通分:

[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.

(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.

[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变.

解:=,=,=,=,=。

六、随堂练习。

1.填空:

(1)=(2)=。

(3)=(4)=。

2.约分:

3.通分:

(1)和(2)和。

(3)和(4)和。

4.不改变分式的值,使下列分式的分子和分母都不含“-”号.

七、课后练习。

1.判断下列约分是否正确:

(1)=(2)=。

(3)=0。

2.通分:

(1)和(2)和。

3.不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.

八、答案:

六、1.(1)2x(2)4b(3)bn+n(4)x+y。

2.(1)(2)(3)(4)-2(x-y)2。

3.通分:

(1)=,=。

(2)=,=。

(3)==。

(4)==。

八年级数学教案设计全文篇十五

【教学重点】设计对比实验。

【教学难点】在设计对比实验中严格控制变量,并注意收集实验数据用事实说话。

【教学准备】每组一份:长方形扁纸盒两个,黑布、塑料薄膜、玻璃片、蚯蚓15条、干土、湿土。

【教学过程】。

一、谈话导入:

1、见过蚯蚓吗?一般在什么地方见到它们?你们觉得蚯蚓喜欢怎样的环境?

2、学生自由发表。

二、实验一:蚯蚓喜欢黑暗还是光亮的环境?

1、我们先来研究蚯蚓喜欢黑暗还是光亮的环境,该怎样设计实验呢?

2、学生说说自己的想法,引导他们进行对比实验,并注意控制条件。

3、出示实验器材,讨论实验步骤:

(1)把长方形盒子一端剪去一部分,盖上玻璃片,再在另一端用黑布包住。

(2)在盒底放入塑料薄膜,以保护蚯蚓,方便它爬行。

(3)把5条蚯蚓放在盒子的中间,盖好盖子。

(4)5分钟以后打开盒盖,做好观察和记录。

(5)再做2次。

4、分发记录单和相关实验材料,学生实验,教师巡回指导。

5、收回材料,组织交流,概括:蚯蚓喜欢黑暗的环境。

三、实验二:蚯蚓喜欢干燥还是湿润的环境?

1、过渡:那么,蚯蚓喜欢干燥还是湿润的环境呢,让我们也来设计一个对比实验。

2、学生设计实验,自由发表自已的。

3、教师出示材料,在交流中概括出比较合理的实验步骤:

(1)在另外的盒子两端分别铺上同样土质的泥土,不同的是一边干燥,一边湿润。

(2)把5条蚯蚓放在盒子的中间,盖好盖子。

(3)3一5分钟以后打开盒盖观察,并记录观察结果。

4、分发记录单和相关实验材料,学生实验,教师巡回指导。

5、收回材料,组织交流,概括:蚯蚓喜欢湿润的环境。

四、动物对环境的需要和适应:

1、让学生归纳:蚯蚓适合怎样的生活环境?

2、过渡:跟蚯蚓一样,各种动物都喜欢生活在一定的环境里。

3、学生看书11面的图片,说说这些动物是怎样适应环境的?

五课外作业。

能发现一些小动物的习性.

六教后反思:略。

八年级数学教案设计全文篇十六

教学目标:

1.算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.

2.体会算术平均数和加权平均数的联系和区别,并能利用它们解决一些现实问题,发展学生数学应用能力.

教学重点:会求一组数据的算术平均数和加权平均数.

教学难点:体会平均数在不同情境中的应用.

教学方法:引导-讨论-交流.

教学手段:多媒体。

教学过程:

创设情景,引入新课(出示篮球比赛的一些画面)。

活动1:前后桌四人交流.

找同学回答后,给出算术平均数的定义.

一般地,对于n个数x1,x2,…,xn我们把。

叫做这个n数的`算术平均数,简称平均数,记为.读作“x拔”.

想一想:

小明是这样计算东方大鲨鱼队的平均年龄的:

年龄/岁1618212324262934。

相应队员数12413121。

平均年龄=(16×1。

八年级数学教案设计全文篇十七

多媒体投影一组图片,让同学们从中抽象出平面图形,从而引出课题。

二、自主学习,指向目标。

学习至此:请完成《学生用书》相应部分。

三、合作探究,达成目标。

多边形的定义及有关概念。

活动一:阅读教材p19。

小组讨论:结合具体图形说出多边形的边、内角、外角?

反思小结:多边形的定义及相关概念。

针对训练:见《学生用书》相应部分。

多边形的对角线。

活动二:(1)十边形的对角线有35条。

(2)如果经过多边形的一个顶点有36条对角线,这个多边形是39边形。

反思小结:当n为已知时,可以直接代入求得对角线的条数,当对角线条数已知时,可以化为方程来求多边形的边数。

小组讨论:如何灵活运用多边形对角线条数的规律解题?

针对训练:见《学生用书》相应部分。

正多边形的有关概念。

活动二:阅读教材p20。

小组讨论:判断一个多边形是否是正多边形的条件?

反思小结:由正多边形的概念知:满足各边、各角分别相等的多边形是正多边形。

针对训练:见《学生用书》相应部分。

四、总结梳理,内化目标。

本节学习的数学知识是:

1、多边形、多边形的外角,多边形的对角线。

2、凸凹多边形的概念。

五、达标检测,反思目标。

1、下列叙述正确的是(d)。

a、每条边都相等的多边形是正多边形。

c、每个角都相等的多边形叫正多边形。

d、每条边、每个角都相等的多边形叫正多边形。

2、小学学过的下列图形中不可能是正多边形的是(d)。

a、三角形b。正方形c。四边形d。梯形。

3、多边形的内角是指多边形相邻两边组成的角;多边形的外角是指多边形的边与它的邻边的延长线组成的角;多边形的内角和它相邻的外角是邻补角关系。

4、已知一个四边形的四个内角的比为1∶2∶3∶4,求这个四边形的各个内角的度数。

八年级数学教案设计全文篇十八

(1)感受生活中的等腰三角形。在学习等腰三角形之前,多数学生早已认识了等腰三角形。所以在课前,我收集了一些轮廓为等腰三角形的图片,通过让学生欣赏图片,引导学生感受等腰三角形在生活中的优美存在,进一步引导学生寻找“你身边的等腰三角形”。课堂上学生反应热烈,举出了如:三角板、自行车、房顶、松树等例子。就连原来数学基础不是很好的学生,也可以举出身边的等腰三角形。学生们兴趣盎然地走进了《等腰三角形》的知识世界。

(2)形象认识等腰三角形性质特点。设计“已知等腰三角形的两边长分别为5和2,求周长”,我的目的是检查学生对“三角形两边和大于第三边”知识的掌握情况及“等腰三角形有两条相等的边”的理解,课堂上学生能够直接回答,并且有一个学生的回答时指出:“等腰三角形两腰相等”。由于等腰三角形的腰、底边、顶角和底角多数学生已提前掌握,因此本环节学习学生感觉很轻松。通过图形变异,学生认清了顶角是两腰的夹角而非上面的角,底角是腰与底边的夹角而非是下面的角。课堂上学生表现出极强的参与意识,指认变异图形的腰、底边、顶角和底角时,相当一部分后进生纷纷举手,而且回答准确率极高。由于收获了成功的喜悦,同学们对于下面的等腰三角形的性质探究跃跃欲试。

(3)通过折纸探究等腰三角形的性质。课堂上,当我介绍完操作规则后,学生迫不及待地拿出他们课前准备好的三角形纸片,仔细地翻折。可以看到同桌两个同学在小声的讨论。等腰三角形“等边对等角”、“三线合一”都是由其具有轴对称性质引出的,学生得出“两个底角相等”较为容易。因为担心“三线合一”学生会感到困难,我特意介绍了三角形中的角平分线、高和中线,并为学生设计出对应表格,让学生填出“三线合一”的性质。这样做好处是降低了“三线合一”性质得出的难度,学生较易了解,但由于设定表格,学生就被牵着鼻子走,限制了他们在实践过程的发现,学生的填表仅是印证了课本上的说明,如果让学生自主发挥,时间多费些,课堂上不确定因素也多了点,但学习效果应该会好一点。

(4)运用“等边对等角”解决实际问题。

本节课从总体上看,学生基本掌握了等腰三角形“等边对等角”及“三线合一”的性质,学会了“等边对等角”的运用,较好的完成了教学目的。但我总觉得,这样上课,学习基础较好的学生不能满足,会有吃不饱的感觉。若在课堂教学过程中,尝试分组练习,整体效果可能会好些。

八年级数学教案设计全文篇十九

种子发芽实验(一)。

【教学目标】。

科学概念:种子发芽需要一定的条件。

过程与方法:经历设计种子发芽实验的过程,用对比实验的方法观察、记录影响种子发芽的条件。

情感、态度、价值观:养成对实验观察的兴趣。

【教学重点】学习运用对比实验中控制某个条件的方法,研究影响种子发芽的条件。

【教学难点】能根据要求设计出自己的实验计划。

【教学准备】绿豆种子若干,实验计划单(参考书3面),实验记录表(参考书4面)。

【教学过程】。

一、讨论种子发芽的条件:

1、谈话导入:植物的一生是从种子发芽开始的。那么,你觉得种子发芽需要哪些条件呢?

2、学生自由讨论,教师摘要板书。(预设:要种到土里获得养料,需要浇水,需要合适的温度,需要阳光,需要空气等。这时候教师不要给予取舍,保留学生的各种观点)。

3、进一步引导(拿起一颗绿豆种子):这是一颗完好的绿豆种子,如果要让它发芽,刚才大家说的这些条件是不是都需要呢?哪些是绿豆种子发芽的必须条件呢?(说明:从种子发芽过渡到具体的绿豆种子发芽,这样的讨论更有针对性,而且更合理,因为不同种子需要的条件是有些区别的。)。

4、师:大家的意见不一样,看来我们必须通过实验来判别了。

二、设计种子发芽实验:

1、师:该怎样用实验来证明呢?大家说说要注意什么?(预设:制订周密的实验计划,只能改变一个条件等。)。

2、师点拨:为了把实验做好,建议大家选择自己最想研究的一个条件进行研究,而且在研究之前要设计好实验方案。

3、学生自由选择研究内容,及时进行统计。(预设:水组,光组,温度组,土壤组等,可在此适当排除不适合课堂研究的内容。)。

4、以其中一个组为范例,集体讨论如何设计实验计划。

(1)你们想研究什么问题,你们计划怎样做?

(2)你们预测结果会是怎样的?

(3)你们的研究中,改变了什么条件?

(4)哪些条件是没有改变的?

(5)怎样知道改变的条件是不是对种子发芽产生了影响?

(6)在实验研究过程中还应该注意什么?

5、分发实验计划单,学生完成自己的实验方案设计,教师巡回指导,鼓励选择相同条件的同学互相交流。

三、阅读书4面种子发芽实验内容:

1、进一步阅读教材上的举例,教师引导关注其中的注意点,比如绿豆的大小应该差不多,为什么要在每个盒子分别放入2-3颗绿豆,为什么要垫纸巾等。

2、教师提供表格,共同讨论如何进行记录。

四、布置实践作业和下节课内容提示:

1、鼓励学生回家认真完成实验,并做好观察记录。

2、下节课将对我们的实验结果进行分析,请大家准备好实验计划单和实验记录表,将对认真完成实验的同学加星评价。

3、有能力、有条件的同学还拍摄绿豆种子发芽各个变化的照片,尝试撰写研究报告。

八年级数学教案设计全文篇二十

以《初中数学新课程标准》为指导,贯彻党的教育方针,开展新课程教学改革,对学生实施素质教育,切实激发学生学习数学的兴趣,掌握学习数学的方法和技巧,建立数学思维模式,培养学生探究思维的能力,提高学习数学、应用数学的能力。同时通过本期教学,完成八年级上册数学教学任务。

1.知识与技能目标

学生通过探究实际问题,认识三角形、全等三角形、轴对称、整式乘除和因式分解、分式,掌握有关规律、概念、性质和定理,并能进行简单的应用。进一步提高必要的运算技能和作图技能,提高应用数学语言的应用能力,通过一次函数的学习初步建立数形结合的思维模式。

2.过程与方法目标

掌握提取实际问题中的数学信息的能力,并用有关的代数和几何知识表达数量之间的相互关系;通过探究全等三角形的判定、轴对称性质进一步培养学生的识图能力;初步建立数形结合的数学模式;通过对整式乘除和因式分解的探究,培养学生发现规律和总结规律的能力,建立数学类比思想。

3.情感与态度目标

通过对数学知识的探究,进一步认识数学与生活的密切联系,明确学习数学的意义,并用数学知识去解决实际问题,获得成功的体验,树立学好数学的信心。体会到数学是解决实际问题的重要工具,了解数学对促进社会进步和发展的重要作用。认识数学学习是一个充满观察、实践、探究、归纳、类比、推理和创造性的过程。养成独立思考和合作交流相结合的良好思维品质。了解我国数学家的杰出贡献,增强民族的自豪感,增强爱国主义。

本册教材的主要内容有:三角形、全等三角形、轴对称、整式、分式。其中,三角形主要学习三角形的三边关系、分类,三角形的内角、多边形的内外角和。本章节是后两章的基础,了解了相关的知识,教学时加强与实际的联系,加强推理能力的`培养,开展好数学活动。全等三角形主要介绍了三角形全等的性质和判定方法及直角三角形全等的特殊条件。更多的注重学生推理意识的建立和对推理过程的理解,学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质,探索三角形全等的条件。轴对称立足于已有的生活经验和初步的数学活动经历,从观察生活中的轴对称现象开始,从整体的角度直观认识并概括出轴对称的特征;通过逐步分析角、线段、等腰三角形等简单的轴对称图形,引入等腰三角形的性质和判定的概念。整式在形式上力求突出:整式及整式运算产生的实际背景——使学生经历实际问题“符号化”的过程,发展符号感;有关运算法则的探索过程——为探索有关运算法则设置了归纳、类比等活动;对算理的理解和基本运算技能的掌握——设置恰当数量和难度的符号运算,同时要求学生说明运算的根据。分式主要学习分式的概念、性质、能用基本性质进行约分和通分并进行相关的四则混合运算。教学时重视和分数类比,加强分式、分式方程与实际的联系,体现数学建模思想。

写法上均存在着一定的困难,对几何有畏难情绪,相关知识学得不很透彻,厌学普遍,听不懂的学生太多,上课发言的同学太少,回答问题没人愿意举手。

要在本学期获得理想成绩,老师和学生都要付出艰苦的努力,要在培养学生良好的学习习惯上狠下功夫,激发学生学习数学的兴趣,充分发挥学生学习的主体作用,并做好学生的查漏补缺工作。通过本学期教学,争取让学生的成绩得到提高。

(1)、认真做好教学工作。把认真教学作为提高成绩的主要方法,认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作测试试卷,也让学生学会认真学习。

(2)、上课时,老师要关注学生,让学生能专心听课,认真思考问题,不说话、不开小差、不做小动作、不做与上课无关的事。

(3)、兴趣是最好的老师,应激发学生学习数学的兴趣,给学生介绍数学家,数学史,介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。

(4)、引导学生积极参加知识的构建,营造民主、和谐、平等、自主、探索、交流、分享发现快乐的高效的学习课堂,让学生体会学习的快乐,享受学习。引导学生做笔记,捋清课堂知识脉络,使知识来源于学生的创造中。

(5)、引导学生积极归纳解题规律,引导学生一题多解,多解归一,培养学生透过现象看本质,提高学生举一反三的能力,这是提高学生素质的根本途径之一,培养学生的发散思维,让学生处于一种思如泉涌的状态。

(6)、培养学生良好的学习习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。

(7)、进行个别辅导,优生提升能力,扎实打牢基础知识,对差生,一些关键知识,辅导差生过关,为差生以后的发展铺平道路。

认真上好每一堂课,坚持教改教研,与同行共同探讨数学教学方法,取长补短,吸取优秀教师的先进经验和教学技能。

6.提高自身科研能力,争取创造新的教学理念,促进教学发展;

7.不断进行教学反思,在工作中积累更多,更好,更宝贵的教学经验,撰写经验文章。

针对差生、优生辅导,我想采取以下做法: 1.优生辅导

主要要求班上成绩突出的学生,尽量会做课本“问题解决”中的练习,并能适当做些课外资料上的练习题。在此基础上,教师争取个别或小范围内对他们进行指导,讲解,并对一些提高题、难题的解题思路作出相应的分析,教给他们一些学习方法和解题技巧。

教兵”的方法,让一些成绩较好的学生帮助他们,指导监督他们的学习。适时也可由教师亲自辅导他们,让他们感受到温暖与自信。

【本文地址:http://www.xuefen.com.cn/zuowen/16104491.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档