2023年高中数学教案集锦(通用14篇)

格式:DOC 上传日期:2023-11-28 14:21:09
2023年高中数学教案集锦(通用14篇)
时间:2023-11-28 14:21:09     小编:文轩

教案应注重培养学生的综合素质和创新思维能力。教案的编写应该合理安排教学时间和使用教学资源。接下来分享一些优秀的教案案例,供大家借鉴和参考。

高中数学教案集锦篇一

1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。

(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?

引导学生互相交流.与此同时,教师对学生的活动给予评价.

2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征。

由此引出这节要学的内容。

设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫。

(二)研探新知,建构概念。

1.教师利用多媒体设备向学生投影出下面7个实例:

(1)1―20以内的所有质数;(2)我国古代的四大发明;。

(3)所有的安理会常任理事国;(4)所有的正方形;。

(5)海南省在20xx年9月之前建成的所有立交桥;。

(6)到一个角的两边距离相等的所有的点;。

(7)国兴中学20xx年9月入学的高一学生的全体.

2.教师组织学生分组讨论:这7个实例的共同特征是什么?

3.每个小组选出――位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.

4.教师指出:集合常用大写字母a,b,c,d,?表示,元素常用小写字母a,b,c,d?表示.

设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神。

(三)质疑答辩,发展思维。

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.

2.教师组织引导学生思考以下问题:

判断以下元素的全体是否组成集合,并说明理由:

(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.

3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.

4.教师提出问题,让学生思考。

高一(4)班的一位同学,那么a,b与集合a分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.

如果a是集合a的元素,就说a属于集合a,记作a?a.

如果a不是集合a的元素,就说a不属于集合a,记作a?a.

(2)如果用a表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合a的关系分别是什么?请用数学符号分别表示.

(3)让学生完成教材第6页练习第1题.

5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1a组第1题.

6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:

(1)要表示一个集合共有几种方式?

(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?

(3)如何根据问题选择适当的集合表示法?

使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

(四)巩固深化,反馈矫正。

教师投影学习:

(3)试选择适当的方法表示下列集合:教材第6页练习第2题.

设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象。

(五)归纳小结,布置作业。

小结:在师生互动中,让学生了解或体会下例问题:

1.本节课我们学习了哪些知识内容?2.你认为学习集合有什么意义?

3.选择集合的表示法时应注意些什么?

设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

作业:1.课后书面作业:第13页习题1.1a组第4题.

2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种。

呢?如何表示?请同学们通过预习教材.

高中数学教案集锦篇二

设计意图:利用公式解决问题。

练习:

(1)。

(2)(学生板演,师生点评)。

设计意图:观察公式特点,选择公式解决问题。

四.课堂小结:将任意角三角函数转化为锐角三角函数,体现转化化归,数形结合思想的应用,培养了学生分析问题、解决问题的能力,熟练应用解决问题。

高中数学教案集锦篇三

1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。“二面角”是人教版《数学》第二册(下b)中9.7的内容。它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。因此,它起着承上启下的作用。通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。

2、教学目标:。

知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。

(2)进一步培养学生把空间问题转化为平面问题的化归思想。

能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。

德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。

情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。

3、重点、难点:

重点:“二面角”和“二面角的平面角”的概念。

难点:“二面角的平面角”概念的形成过程。

高中数学教案集锦篇四

重点:集合的含义与表示方法.

难点:表示法的恰当选择.

教学目标。

l.知识与技能。

(1)通过实例,了解集合的含义,体会元素与集合的属于关系;。

(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;。

(4)会用集合语言表示有关数学对象;。

2.过程与方法。

(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.

(2)让学生归纳整理本节所学知识.

3.情感.态度与价值观。

使学生感受到学习集合的必要性,增强学习的积极性.

高中数学教案集锦篇五

在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+dx+ey+f=0表示圆的条件。

【过程与方法】。

通过对方程x+y+dx+ey+f=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。

【情感态度与价值观】。

渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。

高中数学教案集锦篇六

一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法――图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

高中数学教案集锦篇七

教学过程:

1、问题引入:

前面我们已经研究了一类特殊的数列――等差数列。

问题1:满足什么条件的数列是等差数列?如何确定一个等差数列?

(学生口述,并投影):如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。

要想确定一个等差数列,只要知道它的首项a1和公差d。

已知等差数列的首项a1和d,那么等差数列的通项公式为:(板书)an=a1+(n-1)d。

师:事实上,等差数列的关键是一个“差”字,即如果一个数列,从第2项起,每一项与它前一项的差等于同一个常数,那么这个数列就叫做等差数列。

(第一次类比)类似的,我们提出这样一个问题。

问题2:如果一个数列,从第2项起,每一项与它的前一项的……等于同一个常数,那么这个数列叫做……数列。

(这里以填空的形式引导学生发挥自己的想法,对于“和”与“积”的情况,可以利用具体的例子予以说明:如果一个数列,从第2项起,每一项与它的前一项的“和”(或“积”)等于同一个常数的话,这个数列是一个各项重复出现的“周期数列”,而与等差数列最相似的是“比”为同一个常数的情况。而这个数列就是我们今天要研究的等比数列了。)。

2、新课:

1)等比数列的定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列。这个常数叫做公比。

师生共同简要回顾等差数列的通项公式推导的方法:累加法和迭代法。

公式的推导:(师生共同完成)。

若设等比数列的公比为q和首项为a1,则有:

方法一:(累乘法)。

3)等比数列的性质:

下面我们一起来研究一下等比数列的性质。

通过上面的研究,我们发现等比数列和等差数列之间似乎有着相似的地方,这为我们研究等比数列的性质提供了一条思路:我们可以利用等差数列的性质,通过类比得到等比数列的性质。

问题4:如果{an}是一个等差数列,它有哪些性质?

(根据学生实际情况,可引导学生通过具体例子,寻找规律,如:

3、例题巩固:

例1、一个等比数列的第二项是2,第三项与第四项的和是12,求它的第八项的值。

答案:1458或128。

例2、正项等比数列{an}中,a6・a15+a9・a12=30,则log15a1a2a3…a20=_10____.

(本题为开放题,没有唯一的答案,如对于{cn}:2,4,8,16,……,2n,……,则ck=2k=2×2k-1,所以{cn}中的第k项是等差数列中的第2k-1项。关键是对通项公式的理解)。

1、小结:

今天我们主要学习了有关等比数列的概念、通项公式、以及它的性质,通过今天的学习。

我们不仅学到了关于等比数列的有关知识,更重要的是我们学会了由类比――猜想――证明的科学思维的过程。

2、作业:

p129:1,2,3。

教学设计说明:

1、教学目标和重难点:首先作为等比数列的第一节课,对于等比数列的概念、通项公式及其性质是学生接下来学习等比数列的基础,是必须要落实的;其次,数学教学除了要传授知识,更重要的是传授科学的研究方法,等比数列是在等差数列之后学习的因此对等比数列的学习必然要和等差数列结合起来,通过等比数列和等差数列的类比学习,对培养学生类比――猜想――证明的科学研究方法是有利的。这也就成了本节课的重点。

2、教学设计过程:本节课主要从以下几个方面展开:

1)通过复习等差数列的定义,类比得出等比数列的定义;。

2)等比数列的通项公式的推导;。

3)等比数列的性质;。

有意识的引导学生复习等差数列的定义及其通项公式的探求思路,一方面使学生回顾旧。

知识,另一方面使学生通过联想,为类比地探索等比数列的定义、通项公式奠定基础。

在类比得到等比数列的定义之后,再对几个具体的数列进行鉴别,旨在遵循“特殊――一般――特殊”的认识规律,使学生体会观察、类比、归纳等合情推理方法的应用。培养学生应用知识的能力。

在得到等比数列的定义之后,探索等比数列的通项公式又是一个重点。这里通过问题3的设计,使学生产生不得不考虑通项公式的'心理倾向,造成学生认知上的冲突,从而使学生主动完成对知识的接受。

通过等差数列和等比数列的通项公式的比较使学生初步体会到等差和等比的相似性,为下面类比学习等比数列的性质,做好铺垫。

等比性质的研究是本节课的高潮,通过类比。

关于例题设计:重知识的应用,具有开放性,为使学生更好的掌握本节课的内容。

高中数学教案集锦篇八

三角函数的诱导公式是普通高中课程标准实验教科书(人教b版)数学必修四,第一章第二节内容,其主要内容是公式(一)至公式(四)。本节课是第二课时,教学内容是公式(三)。教材要求通过学生在已经掌握的任意角的三角函数定义和公式(一)(二)的基础上,发现他们与单位圆的交点坐标之间关系,进而发现三角函数值的关系。同时教材渗透了转化与化归等数学思想方法。

高中数学教案集锦篇九

有益的学习经验:

准备:

1、贴绒卡片:14的点卡一套。

2、每个幼儿14的点卡和实物图片10张。

活动与指导:

1、利用多种感官巩固对1、2、3、4各数的认识。

(1)复习认识14,逐张出示点卡,问幼儿每张卡片上有几个圆点,让幼儿点数后说出总数。

(2)听声音举点卡。如:老师学几声鸟叫,幼儿举起相应的点卡或看点卡做动作,如老师举起一个点卡,幼儿就拍几下手等等。

2、幼儿操作活动。

(1)将点卡按数量从少到多地排列。

(每一张点卡比前面的点卡多1个圆点)。

(3)幼儿给点卡和实物卡片配对。让幼儿思考:点卡上的圆点是几,就和数量是几的东西交朋友,应该怎样做?指导幼儿在点卡下面摆上相应的数量的实物卡片。

高中数学教案集锦篇十

而(课件演示,学生发现)。

所以。

于是可得:(三)。

设计意图:结合几何画板的演示利用同一点的坐标变换,导出公式。

由公式(一)(三)可以看出,角角相等。即:

公式(一)(二)(三)都叫诱导公式。利用诱导公式可以求三角函数式的值或化简三角函数式。

设计意图:结合学过的公式(一)(二),发现特点,总结公式。

1.练习。

(1)。

设计意图:利用公式解决问题,发现新问题,小组研究讨论,得到新公式。

(学生板演,老师点评,用彩色粉笔强调重点,引导学生总结公式。)。

高中数学教案集锦篇十一

1、在游戏的情景中感知排序的规律,并尝试按ab、abc、abb的规律排序。

2、让幼儿数活动中学着仔细观察和倾听。

3、初步培养观察、比较和反应能力。

4、喜欢数学活动,乐意参与各种操作游戏,培养思维的逆反性。

ppt、操作材料(红、绿、蓝雪花片若干)、四种不同排列的小路图片。

1、你们听过《小老鼠奇奇的》的故事吗?他是谁?

2、今天小兔又要到小老鼠奇奇家做客了,他请小朋友跟他一起去,因为小兔忘了小老鼠奇奇家该走那条路了,请小朋友帮帮他。

1、小兔来到了树林里,看见前面有好多条小路,看这里一共有几条路?(四条)。

2、应该走那条路才能到小老鼠奇奇的家呢?每条路都有颜色的,记得小。

老鼠奇奇说:“走一条颜色有规律的路才能找到他的家,到底哪一条路有规律呢?有什么样的规律呢?(红色、蓝色、白色)按这样的顺序,反复出现,就形成了规律。(第二条路对的)(abcabc)。

3、蘑菇排队——感知aab的排序规律。

小兔继续往前走,它来到草地上看见什么?蘑菇是怎样排队?他们有规。

律吗?它们排列的规律是什么呢?小兔请你们猜猜两个蘑菇后面是什么颜色的蘑菇,接着应该是缺了那只颜色的蘑菇?(aabaab)小兔踩了一只蘑菇把它当礼物送给小老鼠奇奇。

4、走过小桥——感知abb的排序规律。

小兔子走呀走,过了桥就要到奇奇家可是这座桥能过吗,为什么?小兔仔细一看,地上放着两块木板,只要把两块木板放到有规律的桥上就能通过啦,我们帮小兔找找这两块板应该放那里?(abcabc、abbabb)。

1、尝试按ab、abc、abb的规律排序。

小老鼠奇奇家到了,奇奇说:“春天到了,我要请朋友们来我家做客,要在门前铺一条特别的小路别人才能找到我家。今天请小兔和小四班的小朋友一起来帮忙。

小老鼠奇奇为你们准备了不同的小路的图片,但每条小路都是有规律的,请小朋友仔细看看小路怎么铺,有的小朋友是选两种颜色的路面,有的是选三种颜色的路面,然后一定要按规律来排列,朋友们才能找到奇奇的家。

2、幼儿操作,教师巡回指导,观察幼儿有规律排序的情况。

看看谁的小路最特别,它有什么规律。

幼儿园的数学活动相对于其他活动枯燥、单调,容易使幼儿失去学习兴趣。因为这个时期的幼儿年龄小,逻辑思维尚未发展,所以本次活动中我为幼儿创设了一个可操作的丰富材料的环境,为幼儿创设了一个可选择性、可操作性的空间。使幼儿能独立的操作材料,并大胆的表达自己的想法。幼儿的自主性,选择性,独立性得到了充分的体现。通过一系列的游戏活动,达到了主题总目标预设的要求。

高中数学教案集锦篇十二

等比数列性质请同学们类比得出.

【方法规律】。

1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题.方程观点是解决这类问题的基本数学思想和方法.

2、判断一个数列是等差数列或等比数列,常用的方法使用定义.特别地,在判断三个实数。

a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)。

3、在求等差数列前n项和的最大(小)值时,常用函数的思想和方法加以解决.

【示范举例】。

例1:

(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为.

(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=.

例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数.

例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项.

高中数学教案集锦篇十三

掌握圆的一般方程,以及用待定系数法求圆的一般方程。

【难点】。

二元二次方程与圆的一般方程及标准圆方程的关系。

三、教学过程。

(一)复习旧知,引出课题。

1、复习圆的标准方程,圆心、半径。

2、提问1:已知圆心为(1,―2)、半径为2的圆的方程是什么?

高中数学教案集锦篇十四

集合是中学数学的一个重要的基本概念在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题例如,在代数中用到的有数集、解集等;在几何中用到的有点集至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具这些可以帮助学生认识学习本章的意义,也是本章学习的基础把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础例如,下一章讲函数的概念与性质,就离不开集合与逻辑。

本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。

这节课主要学习全章的引言和集合的基本概念学习引言是引发学生的学习兴趣,使学生认识学习本章的意义本节课的教学重点是集合的基本概念集合是集合论中的原始的、不定义的概念在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集”这句话,只是对集合概念的描述性说明。

【本文地址:http://www.xuefen.com.cn/zuowen/16055584.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档