分数除法的应用教学设计人教版(实用16篇)

格式:DOC 上传日期:2023-11-28 10:40:09
分数除法的应用教学设计人教版(实用16篇)
时间:2023-11-28 10:40:09     小编:文轩

在回顾过去的同时,我们也能找到未来的方向。总结帮助我们更好地发现自己的优势和劣势。这些范文从结构、观点、语言等方面都有一定的亮点,值得我们学习和借鉴。

分数除法的应用教学设计人教版篇一

教学目标:。

使学生进一步理解分数与除法的关系,学会根据分数与除法的关系,把低级单位的名数改写成高级单位的名数以及解答“求一个数是另一个数的几分之几”的应用题.

教学重点:名数之间的互化.

教学难点:名数之间的互化的实质理解.

教学课型:新授课。

教具准备:课件。

教学过程:。

一,铺垫复习,导入新知。

1,用分数表示下面各式的商.[课件1]。

5÷614÷2512÷1218÷35。

2,在括号里填上适当的数或字母.[课件2]。

12÷35=()/()()÷()=4/7。

()÷()=a/b8÷()=()/9。

()÷17=7/()1÷()=()/d。

3,把5个饼分给9孩子吃,每个孩子分得多少个[课件3]。

4,小新家养鸡30只,养鸭10只.养的鸡是鸭的几倍。

5,填空.[课件4]。

30分米=()米180分=()小时。

二,变式类推,深化理解。

1,教学p91.例4:(1)3分米是几分之几米。

(2)17分是几分之几时。

思考:a,这两题与复习题有什么区别有什么相同。

b,第(1)题要把分米数改写成米数应该怎么办怎样计算。

板书:3÷10=3/10(米)。

c,第(2)小题是要将什么改写成什么怎样求得。

板书:17÷60=17/60(时)。

※p91.做一做。

2,教学p92.例5:小新家养鹅7只,养鸭10只.养的鹅是鸭的几分之几。

(1)提问:a,用谁作标准该怎样计算。

b,与复习题对比,有哪些不同点和相同点。

(2)归纳.

求一个数是另一个数的几倍与求一个数是另一个数的几分之几,都用除法计算,除数都作标准数,得到的商都表示两个数之间的关系,都不能写单位名称.

※p92.做一做。

习前提问:说说用什么作标准数。

三,加强练习,深化概念。

1,p93.4。

§要求说说题目的思路和单位之间的进率.

2,p93.6。

提问:这两个问题中的标准量相同吗请说说标准量分别是什么。

3,p93.7。

四,全课小结,抽象概括。

1,本节课所学的两个内容分别是什么。

2,你还有问题要问吗。

五,家作.

p93.5,8。

分数除法的应用教学设计人教版篇二

教学目标:

1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。

2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。

3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。

教学重难点:

难点:理解可以用分数表示两个数相除的商。

教学过程:

一、导入揭题。

1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。

2、观察:5÷8=4÷9=这两道题能得到整数商吗?

3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。

二、探索新知。

1、教学例1。

(1)课件出示例1。

把一个蛋糕平均分给3人,每人分得多少个?

(2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。

(3)汇报讨论结果。

(4)观察这两种解法有什么联系?

2、教学例2、

把3个饼平均分给4个孩子,每个孩子分得多少个?

(1)平均分同样可以列式为:3÷4。

(2)小组合作探究:3÷4的商能不能用分数表示呢?

(3)通过进一步探究,你发现分数与除法有什么关系了吗?

三、拓展应用。

一个正方形的周长是64cm,它的边长是周长的几分之几?

四、总结。

通过这节课的学习,你有什么收获?

五、作业布置。

完成教材第50页”做一做"。

分数除法的应用教学设计人教版篇三

教学目标:

1、使学生理解两个整数相除的商可以用分数表示。

2、使学生掌握分数与除法的关系。

3、培养学生的应用意识。

教学重点:

1、理解、归纳分数与除法的关系。

2、用除法的意义理解分数的意义。

教学难点:

1、理解、归纳分数与除法的关系。

2、用除法的意义理解分数的意义。

教学用具:圆片dvd。

教学方法:

教学过程:

(二)教学实施1、学习教材第65页利用例1。

(1)dvd出示例题把1个蛋糕平均分给3个人,每人分得多少个?

(2)请同学读题。

(3)分组讨论,如何解决这个问题。

(4)指名把讨论结果告诉大家。我解答这道题的列式是13,从分数的意义上理解13,就是把1个蛋糕看成单位1、把单位1平均分成三份,表示这样一份的数,可以用分数1/3来表示,1块的1/3就是1/3块。老师根据学生的回答。(板书:13=1/3)。

老师:从图中可以看出13和1/3都表示阴影部分这一块,它们之间是相等关系。2、学习教材第65页的例2。

(1)板书例题。把3块月饼平均分给4个人,每人分得多少块?

(2)指名读题,理解题意并列出算式。板书:34老师:34的计算结果用分数表示是多少?请同学们用圆片分一分。老师;根据题意,我们可以把什么看作单位1?(把3块月饼看作单位1。)把它平均分成4份,每份是多少,你想怎样分?通过演示发现学生有两种分法。方法一:可以1个1个地分,先把1块月饼平均分成4份,得到4个1/4,3块月饼共157=0.60.5=2.14+0.6=12-3.6=1.50.3=得到12个1/4,平均分给4个学生,每个学生分得3个1/4,合在一起是3/4块月饼。方法二:可以把3块月饼叠在一起,再平均分成4份,拿出其中的一份,拼在一起就得到3/4块月饼,所以每人分得3/4块。讨论这两种分法哪种比较简单?(相比较而言,方法二比较简单。)。

教学设计。

(三)课堂作业。

1、分数可以用来表示除法算式的。其中分数的分子相当于x,分母。

2、要分数表示下面各题的商。

(四)课堂小结通过今天这节课的学习,同学们发现了分数与除法之间的关系。分数的分子相当于除法的被除数,分数的分母相当于除法的除数,出号相当于分数的分数线。

(五)家庭作业练习十二1.2.3。

1.有余数的除法教学设计及反思。

2.《有余数的除法》教学设计。

3.五年级下册分数的意义教学设计。

4.除数是整十数的笔算除法教学设计。

5.小学四年级笔算除法教学设计。

6.《分数的认识》教学设计。

8.百分数单元教学设计。

分数除法的应用教学设计人教版篇四

一、从生活入手学数学。

国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。

二、关注过程,让学生获得亲身体验。

教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。

在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的`能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。

三、多角度分析问题,提高能力。

在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。

四、有破度有层次地设计练习,提高学生的思维能力。

教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。

分数除法的应用教学设计人教版篇五

学情分析:

五年级的学生已具有一定的操作、观察、归纳概括能力,有了以前学习分数乘法、倒数的基础,让学生通过涂一涂、算一算、想一想、填一填的活动来总结分数除以整数的计算方法,对于学生来说,难度不大。

教学内容分析:

《分数除法(一)》是第三单元第二课时的内容,是在学生学习了分数乘法、认识了倒数的基础上进行教学的,教材中呈现了两个问题,就是把4/7分别平均分成2份、3份,目的是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。

教学目标:

1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。

2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

3、能够运用分数除以整数的方法解决简单的实际问题。

教学重点:

引导学生探索并掌握分数除以整数的计算方法,并能正确计算。

教学难点:

2、能够运用分数除以整数的方法解决简单的实际问题。

教学方法:

导学教学法。

创新理念:

“有效的数学学习活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。“学生是数学学习的主人,教师是数学学习的'组织者、引导者、合作者”。基于以上理念,在教学过程中,我采用“导学教学法”,充分发挥了教师的引导作用,让学生在动手实践的过程中去探索新知,亲身经历知识形成的全过程。

教具准备:

长方形纸、课件。

教学流程:

一、创设情境提出问题。

(1)把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

(2)把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

二、自主探究小组交流。

(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)。

自主学习提示。

1.利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。

2.同桌之间说一说彼此的想法。

3.有困难的同学,可以借助课本第25页的提示,完成这两个问题。

三交流释疑。

把一张纸的4/7平均分成2份,每份是这张纸的几分之几?

请同学们拿出图(一)来涂一涂。

交流:为什么要这样涂,每份是这张纸的几分之几呢?

还有不同的涂法吗?

能根据这个过程列出一个除法算式吗?

这个除法算式和以前学的除法有什么不同?

这就是这节课我们要学习的分数除法。(板书)。

2、初探算法。

把一张纸的4/7平均分成3份,每份是这张纸的几分之几?

请大家在图(二)的上面涂一涂。

交流:(展示学生不同的涂法)。

同学们是把长方形纸的七分之四平均分成了三份,再把其中一份涂上颜色。谁能根据这一过程列出一个算式。

怎样才能算出得数呢?

(师提问:计算时为什么要用×1/3?)。

观察3和1/3有什么关系,由除以3变成乘3的倒数,是不是除以一个整数就可以乘它的倒数呢?我们来验证一下。

(教师出示三组算式)。

1/3÷54/5÷31/3÷5。

指生口算。

让学生观察每一组算式,说一说发现了什么?

根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算?

(学生口述算法后)。

四、实践应用。

1、算一算。

9/10÷3015/16÷/15÷218/9÷65/6÷15。

2、填一填。

师:学会了知识就要灵活的运用,这道题你们能填上吗?

学生独立在书上第26页填一填,想一想。

集体订正。

3、解决问题。

学生在练习本上列式解答。

指生汇报完成情况。

运用分数除法能解决生活中的很多问题呢,谁能像老师这样来说一说生活中的问题,让大家解决。

(指生口头编题,其他学生解决)。

五、课堂总结。

学生谈一谈本节课的收获。

同学们,这节课你们过的快乐吗?学习本来就是一件快乐的事,老师希望今后你们能快乐的学习,快乐的成长。

六、布置作业:

22页练一练。

分数除法的应用教学设计人教版篇六

(一)教材地位和作用。

(二)教学目标。

知识与技能。

(1)了解圆与圆的五种位置关系,掌握运用圆心的距离的数量关系或用圆与圆交点个数来确定圆与圆的五种位置关系的方法.

(2)了解切线、割线的概念.

过程与方法。

通过生活中的实际事例,探索圆与圆的五种位置关系。

情感态度与价值观。

(三)重点、难点。

重点:利用数量关系揭示圆与圆的位置关系。

难点:利用圆与圆位置关系解决实际问题。

二、教法学法。

教法的设计情境创设设疑启发引导交流探索创新。

学法的设计观察猜想自主探究合作交流归纳创新。

三、教与学互动设计。

1.情境引入。

2.合作探究。

3.得出结论。

4.巩固新知。

5综合拓展。

6布置作业。

1.情境引入。

同学们会各抒己见,老师不要过早的下结论,而是让同学们在下一环节继续探究。

2.合作探究。

在这一环节我让同学们拿出事先做好的圆,让他们小组合作探究圆和圆之间到底有几种位置关系。

老师巡回指导。

3.得出结论。

为了让同学们更加深刻的理解圆与圆的五种位置关系,在这里我又引导同学们从焦点个数对两圆位置关系进行分类。

为了让同学们理解圆心之间的距离在五中位置关系中和两圆半径之间有怎样的数量关系我在这里设计了五种动画课件,教师演示让同学们进行归纳。

4巩固新知。

为了巩固以上知识,我在这里设计了三个简单的练习题,只是简单的应用五种位置关系中圆心和半径之间的数量关系。

为了提高同学的能力,只是简单应用还不够,于是我又设计了例题。因为例题有难度所以需要师生共同完成。

5综合拓展。

为了巩固以上学习的内容我在这里设计一个练习题,希望同学们能够独立完成。

为了提高同学们学习数学的兴趣我在这里设计了一个环节,争当小小设计师。这一环节既能提高同学们学习数学的兴趣又能提高同学们的能力。同时还能活跃课堂气氛,让同学们体会到生活中处处有数学,数学就来源于生活,同时课堂变的丰富多彩让同学们能够学着乐乐着学。

6布置作业。

最后一个环节是布置作业,我的说课到此就结束了。

分数除法的应用教学设计人教版篇七

《笔算除法例3》的教学,主要是让学生能够把接近几十五的数看作几十五来计算感受数学与自然科学的紧密联系,提高学习数学的兴趣。整节课教师让学生参与“观察、探索、合作、发现”等数学活动获得了新知识。

教学中,我创设学生熟悉的、能够理解的问题情境,发现要解决问题,在做题的`过程中,就出现了两种情况:一是把24看做20来试商,但需要两次试商;二是把24看做25一次完成试商。这时让第一种做法的学生谈一下感受,让第二种做法的学生也谈一下自己的感受。通过计算和同学的讲解,使学生在试商是,如果接近25,怎样算比较好,并让学生讨论一下,亲自试一试,这是学生们表现的都很主动,积极地参与。通过讨论、比较大家一致认为如果除数接近25,就看作25来试商比较简单。

不足之处有个别学生在试商时不会试商,即便知道把除数看作几十五来试商,也找不准该商几。原因是他们不能算出几十五和几十相乘接近被除数,这就要求在平时教学中加强学生的口算练习。

分数除法的应用教学设计人教版篇八

吴兴区学校(幼儿园)具体课时备课表(成熟型教师用)。

单元(章)主题百分数任课教师与班级。

本课(节)课题纳税第8课时/共9课时。

教学目标(含重点、难点)。

及设置依据1.使学生知道纳税的含义和重要意义,知道应纳税额和税率的含义,以根据具体的税率计算税款。

2.在计算税款的过程中,加深学生对社会现象的理解,提高解决问题的能力。

3.增强学生的法制意识,使学生知道每个公民都有依法纳税的义务。

重点:税额的计算。

难点:税率的理解。

教学准备。

多媒体课件。

教学过程。

内容与环节预设个人二度备课课后反思。

一、复习。

1.口答算式。

(1)100的5%是多少?(2)50吨的10%是多少?

(3)1000元的8%是多少?(4)50万元的20%是多少?

内容与环节预设个人二度备课课后反思。

2.什么是税率?

二、新授。

1.阅读p98页有关纳税的内容。说说:什么是纳税?

2.税率的认识。

(1)说明:纳税的种类很多,应纳税额的计算方法也不一样。应纳税额与各种收入的比率叫做税率。一般是由国家根据不同纳税种类定出不同的税率。

(2)试说以下税率表示什么。

a、商店按营业额的5%缴纳个人所得税。这里的5%表示什么?

b、某人彩票中奖后,按奖金的20%缴纳个人所得税。这里的20%表示什么?

3.税款计算。

(1)出示例5(课本99页)。

(2)理解:这里的5%表示什么?(应缴纳营业税款占营业额的百分比。)。

(3)要求“应缴纳营业税款多少”就是求什么?

(4)让学生独立完成?

4.看课本98页内容。读一读,什么是纳税?什么是税率?

内容与环节预设个人二度备课课后反思。

三、练习。

1.巩固练习:练习二十三第4题。(要点:5%对应的单位“1”是营业额,7%对应的单位“1”是营业税。)。

2.依据第5题,学生各自发表意见。

(有关税率的常识:由于不同行业的经营效果有差别,又由于国家为了保护和扶持某些人民群众迫切需要的产品和服务行业等,会减少这些行业的税率,因此消费税和营业税的税率会有很大差别。如例5中说到饭店的营业税率是5%,而审稿费的个人所得税率就是3%。)。

四、小结:今天你有什么收获?

板书。

设计纳税。

应缴税款=应纳税金额×税率个人二度备课:课后反思:

作业布置或设计学习、宣传税法知识。课后反思:

教后整体反思。

分数除法的应用教学设计人教版篇九

1、掌握并积累重要的文言文实词和虚词,掌握本文出现的通假字、词类活用的特殊文言句式。

2、学习本文比喻论证、对比论证的方法,提高学生围绕中心论点合理论证的能力。

3、明确认识学习的重要性以及学习必须“积累”“坚持”“专一”的道理。

二、教学重点。

1、诵读并背诵全文,积累文言词语。

2、比喻的含义和内在联系。

三、教学难点。

1.在诵读中渗透正字正音、辨词析句、层次疏理、文意理解、语言鉴赏等多项文言基础知识的学习。

2.掌握全文比喻和对比论证的特点。

四、教学准备。

课前让学生结合书后思考练习题预习课文。

五、教学过程。

1、解读第一段(7分钟)。

1)回忆上个课时的内容并结合学生自主预习的结果,提问:本文的中心论点是什么?(明确中心论点:学习不可以停止)。

2)齐背诵第一段后,提问:

a.请问本段论述了什么内容?

b.运用什么方法论述的?

d.发生什么样的变化?

e.作者又以“直木为轮”为喻,说明什么道理呢?

f.“金就砺”“木受绳”两个比喻引出什么结论?

g.此句与本段哪句相照应?

(问题层层递进,学生回答一个接一个问题时思考,本段的主旨即学习的意义为何?)。

3)教师总结。

荀子提出人性本恶的思想,认为只有用教育来陶冶,用礼法来约束,才能把这种生而具有的“恶”转变为“善”。这里作者运用5个比喻阐述学习的重要性。学习是人发展的过程,如果不停止地学习,人的知识、才能、品德会不断地增进、提高,达到“知明而行无过”的境界。

2、解读第二段(7分钟)。

1)同学们一起背诵第二自然段。

2)提问:

本段写了几层内容?

第一层阐明什么内容?

第二层与第三层是什么关系?

由此看来,第二层用什么方法阐述学习的重要性?

用哪几个比喻?

(问题层层递进,环环相扣,引导学生自主剖析第二段的层次和主旨--学习的重要性)。

3)教师总结。

第一、二自然段是文章的第一部分,主要论述了学习的重要性。在写法上最大的特点是运用大量的比喻,从各个方面对中心论点加以阐释,使论点既鲜明又生动。第二段作者用了五个比喻。开头作者用“终日而思”,“不如须臾之所学”先来阐说,接着就用“揉而望”,“不如登高之博见”这个比喻,形象说明只有摆正“学”和“思”的关系才能使学习产生显著效果。为了把道理说得更透辟,作者顺势而下,连用“登高而招”、“顺风而呼”、“假舆马”、“假舟楫”四个比喻,从见、闻、陆、水等方面阐明了在实际生活中由于利用和借助处界条件所起的重要作用,从而说明人借助学习,就能弥补自己不足,取得更显著的成效。最后由此得出结论,君子所以能超越常人,并非先天素质与一般人有差异,而完全靠后天善于学习。

3、解读第三段(7分钟)。

1)引导学生仿照第二段的学习方法自主学习第三段(本段主要论述什么问题?分几层?作者是用什么方法论述问题的?每一层的两个比喻句是什么关系?本段的三层内容都用对比设喻的方法阐述。这样的写法什么好处?)。

4、请同学们拿出纸来,按要求作练习。要求:每人写一个比喻句阐述知识的重要性,比喻要恰当。

5、布置作业:写一篇不少于500字的议论文,论述人要有崇高的理想。适当运用比喻论证法。

刘里。

[劝学教学设计(人教版高一必修三)]。

将本文的word文档下载到电脑,方便收藏和打印。

分数除法的应用教学设计人教版篇十

一、本节课的教学目标是:

1、初步掌握用“四舍”法试商的方法,会用这种试商法进行有关的笔算。

2、使学生经历探索过程,自主尝试、讨论的学习方式经历调商的过程。

3、在学习中感觉数学与生活的密切联系。教学重点是掌握试商和调商的方法。教学难点是理解调商的方法。

二、本节课是在《除数是整十数的笔算除法》的基础上进行教学的,所以我设计了两组复习题,口算和笔算,为学习新知巧埋伏笔。在探索新知时,我主要以学生为主,力求体现学生的自主性,让学生在具体的情境中经历探索除数不是整十数的笔算除法试商和调商方法的过程,培养学生知识迁移的能力,教师在其中只是一个组织者、合作者。

我觉得以下三方面自己做的还是比较好的。

一、比较合理的处理教材。教材给我们呈现的情境图是文具专柜的一角,把情境图用三个问题串连起来,第一个问题要解决的是试商。学生据题意列式为84÷21,并让学生比较与复习题的除数的不同,接着讨论把21看做几试商?并请学生发表意见。之后,再让学生经历试商的过程,完成竖式计算,初步体验试商的方法。最后出示两题练习巩固试商方法。第二个问题要解决的是调商。学生据题意列式,接着让学生自主尝试,然后让学生解说计算的过程,老师板演,通过汇报交流,认识到为什么要调商,怎样调商,突出对算理的理解。最后出示问题三,目的是强化调商方法。三个问题揉和在一起,但又“各司其职”,比较贴合学生的生活实际,激发学生学习的兴趣。

二、在练习的处理上,而是把课后的练习进行整合,有层次,有侧重点的进行练习设计,从而使学生掌握本节课的知识。第一题,()里最大能填几?训练、提高学生的试商速度;第2题,根据试商情况,很快说出准确的商,训练学生的调商方法;第三题,商是几?比一比谁试商的速度快?综合强化学生试商和调商的方法;第4题,解决问题,用所学知识解决生活中的问题,使学生在学习中感觉数学与生活的密切联系。三、整个教学过程中,始终以学生为主体,让学生自主去探索除数不是整十数的笔算除法的试商和调商的方法。在实际教学中,学生的思维完全暴露了出来,思维的积极性相当的高,达到了原先设计的效果。

三、在课件制作和教学中也有不足的地方。

课件制作上,有两处遗憾,第一,口算得数打错,第二,练习题的第3题的第(1)小题,动画设计出错。

教学中,首先,开始时由于有些紧张,受学生的学习会在原有的试商方法上产生认知冲突的影响,所以在订正84÷21的竖式时,余数没有及时的订正,得数没有搬到横式后面。其次,在试商和调商的过程中,没有让学生充分讨论和说算理。我意识到,对于计算教学,如果学生的口算能力不强,就会直接影响计算的正确率和速度,所以今后应该加强学生的口算训练,提高学生的口算能力。

另外,在请部分同学板演时,应该让其他同学注意计算过程,发现他们的不足,以便反思自己。在共同检查时,不要我自己一个人说,应该点名请别的同学来指出不足,让同学们共同梳理,找到易错处。这时,老师在说这些重点之处时,应该放慢语速,引导同学们一起说,让他们通过说,巩固重点,减少出错率。第三,数学课堂语言不够精准,简洁。感觉有点啰嗦。在今后的教学中,要不断完善自身素质,不断提高业务能力和教学水平。期望得到上级领导多指导!

分数除法的应用教学设计人教版篇十一

教学目标:使学生学会分析分数乘法应用题的数量关系,会应用一个数乘分数的意义解答两步计算的分数乘法应用题;培养学生解决问题的能力,提高学生的分析能力;进一步提高学生思考问题的逻辑性。

教学重,难点:掌握分数连乘的计算方法,突出一次计算,会解答分数连乘计算的实际问题。

教学过程:

(一)、导入。

1、说出下面各题算式所表示的意义,再口算各题。

1/2×2=2/5×3=2/3×1/2=3/4×5=。

2、说出下面各题中的两个量,应该把谁看着单位“1”。然后再给每题补充一个已知条件和一个问题,使它成为一道一步计算的分式乘法应用题。

母牛的头数是公牛的1/3,公牛头数的2/3和母牛相等。

母牛的头数相当于公牛头数的3/4,公牛的头数相当于母牛头数的1/2。

小组完成,集体订正。

(二)、教学实施。

1.板书:公牛有30头,母牛的头数相当于公牛的1/3,小牛的头数相当于木牛的2/5,小牛有多少头?(认真读题,弄清题意)。

2.指导学生画线段图:怎样用线段图表示已知条件和问题?要求小牛的头数,就要知道哪个量?(母牛的量)母牛的头数又和哪个数量有关?(公牛的头数)先画一条线段,表示哪个数量?(公牛的头数)崽化一条线段,表示哪个数量?(母牛的头数)画多长?根据什么?表示小牛的头数的线段应该怎样画?板书:

公牛:|||||||||||。

30头。

母牛:||。

小牛:

3.分析数量关系:

4.列式解答:根据以上分析,这道题应该怎样解答?怎样列综合算式解答?板书:

30×1/3×2/5=。

根据综合算式让学生说说每一步分别求的是什么,每一步分别是把哪个数量看着单位“1”。同时强调:分数连乘不必像整数,小数连乘那样,逐次计算,可以一次计算,遇到整数和分数相乘,要用整数与分数的分母约分,不能约分的直接与分数的分之相乘。

(三)巩固练习。

完成第18页第4、5、9、10题,学生要说明每一步所表示的意义,每一步是把哪个数量看着单位“1”。

(四)课堂小结:解答两步计算的分数乘法应用题与解答一步计算的分数乘法应用题的相同点都是求一个数的几分之几是多少的应用题,不同点是分数连乘应用题要连续求一个数的几分之几是多少。解题关键是要找准每一步的单位“1”。

教学反思:

第三课时求比一个数少几分之几的数是多少的实际问题。

教学目标:使学生认识“求比一个数少几分之几的数是多少”的应用题的结构特征,学会利用线段图来分析数量关系,掌握解答这类应用题的思路和方法,并能正确列式计算;培养学生分析问题及综合运用所学知识的能力。

教学重、难点:了解“求比一个数少几分之几的数是多少”的应用题的结构特征;正确分析数量关系,比较熟练的画出线段图。

教学过程:(一)导入。

板书:超市运来花生油和豆油共600桶,花生油的桶数占总桶数的2/5。

(二)、教学实施。

1.根据以上两个条件,我们可以提出以下数学问题:

2.能用图表示豆油的部分吗?板书:

“1”

花生油占总桶数的。

||||||。

豆油?桶。

600桶。

3.分析数量关系;看图想想,豆油占总桶数的几分之几?求豆油的桶数就是在求什么?交流讨论得出:豆油的桶数占总桶数的,求豆油的桶数也就是在求600的是多少,用乘法计算。

后者方法很容易理解,主要是从“总桶数-花生油的桶数=豆油的桶数”这个数量关系入手分析,也就是“和-一个量=另一个量”

“1”

原来:||||||||。

85分贝。

降低了。

现在:||||||||。

分贝。

根据线段图想到了什么?

3.分析数量关系:求现在听到的声音是多少分贝该怎样计算?先求什么,再求什么?(先求降低了多少分贝,再求现在听到的声音分贝是多少;还可以先求现在声音的分贝占原来声音分贝的几分之几,再求现在听到的声音是多少分贝。)。

4.列式解答:

=70(分贝)=70(分贝)。

(三)、深化练习。

完成教材20页的“做一做”;完成练习五的第2、4、5、8、10题。

(四)课堂小结。

今天我们学习了“求比一个数少几分之几的数是多少”的应用题,这类题需要两步完成,通过今天的学习我们能够准确地分析并计算出这类题。

课后反思:

将本文的word文档下载到电脑,方便收藏和打印。

分数除法的应用教学设计人教版篇十二

吴兴区学校(幼儿园)具体课时备课表(成熟型教师用)。

单元(章)主题百分数任课教师与班级。

本课(节)课题利息第9课时/共9课时。

教学目标(含重点、难点)。

及设置依据1.通过教学使学生知道储蓄的意义;明确本金、利息、税后利息和利率的含义;掌握计算利息的方法,会进行简单计算。

2.对学生进行勤俭节约,积极参加储蓄;支援国家、灾区、贫困地区建设的思想品德教育。

重点:掌握利息的计算方法。

难点:正确地计算利息,解决利息计算的实际问题。

教学准备多媒体课件。

教学过程。

内容与环节预设个人二度备课课后反思。

一、导入。

随着改革开放,社会经济不断发展,人民收入增加,人们可以把暂时不用的钱存入银行,储蓄起来。这样一是支援国家建设,二是对个人也有好处,既安全和有计划,同时又得到利息,增加收入。那么,怎样计算利息呢?这就是我们今天要学的内容。

内容与环节预设个人二度备课课后反思。

二、新课。

1.介绍存款的种类、形式。

存款分为活期、整存整取和零存整取等方式。

2.阅读p99页的内容,自学讨论例题,理解本金、利息、税后利息和利率和含义。

本金:存入银行的钱叫做本金.小丽存入的100元就是本金。

利息:取款时银行多支付的钱叫做利息。

税后利息:国家规定,存款的利息要按20%的税率纳税。小丽实际得到的1.8元是税后利息。国债的利息不纳税。

利率:利息和本金的比值叫做利率。

(1)利率由银行规定,根据国家的经济发展情况,利率有时会有所调整,利率有按月计算的,也有按年计算的。

(2)阅读p99页表格,了解同一时期各银行的利率是一定的。

4.利息的计算。

(1)出示利息的计算公式:利息=本金×利率×时间。

(2)计算方法:

按照书上的利率,如果李奶奶的1000元钱存整取两年,到期的利息是多少?学生计算后交流。

内容与环节预设个人二度备课课后反思。

(3)两年后取款,李奶奶能得到93.6元利息吗?为什么?

(4)学生计算后回答,教师板书:。

1000×4.68%×2=93.6(元)1000×4.68%×2=93.6(元)。

93.6-93.6×5%=88.92(元)93.6×(1-5%)=88.92(元)。

比较两种方法?

加上她存入本金1000元,到期时她可以实际取回多少元?

5.练习。

1、完成二十三的第6题,学生读题后,提问:贝贝存入的本金是多少?利率是多少?存期是多少?然后由学生解答,集体订正。

2、完成100页做一做。

3、完成练习二十三的第9题。

三、小结:这节课你懂得了什么?

板书。

设计利息。

利息=本金×利率×时间。

1000×4.68%×2=93.6(元)1000×4.68%×2=93.6(元)。

93.6-93.6×5%=88.92(元)93.6×(1-5%)=88.92(元)。

个人二度备课:课后反思:

作业布置或设计自学103页什么是成数?说说自己对成数的了解。课后反思:

教后整体反思。

分数除法的应用教学设计人教版篇十三

第一课时两位数乘两位数(不进位)。

教学内容:教科书第63页例1及做一做,练习十五。

教学目标:让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数不进位的乘法。在学习活动中感受数学与生活的密切联系。

重点难点:掌握笔算方法并正确计算;解决乘的顺序和第二部分积的书写位置问题。

教具准备:例2主题图。

教学过程:

一、复习。

1、口算。

52×1043×30=12×40=31×20=17×20=21×30=。

2、笔算并说出计算过程。

41×7=。

二、新课。

1、教学例2。

出示例2的主题图,让学生说一说,这幅图所展示的情境是什么。(小红的妈妈带着小红去书店买书,小红要买一套12本,每本24元的书,她在想一共要付多少钱。)。

老师组织学生进行讨论,然后展示不同的计算过程和结果。

例:24×12=24024×10=24024×2=28240×28=288。

有些学生会想到把12看成10和2的和,先用24×10,再用24×2,然后把两次乘得的结果相加。

有些学生会想到用笔算乘法。先让学生说他是如何写的,老师家以指导。

老师在指导分析过程中把每步板书,强调每步难点。

例1:24×12=288(24×10=24024×2=48240+48=288)。

24。

×12。

4824×2的积。

2424×10的积。

288(个位的0可不写)。

在总结过程中提问:

(1)两位数乘两位数一种是口算方法,一种是笔算方法,你认为哪种方法好?

(2)笔算中乘了几层,为什么?乘得的结果怎么样?(乘了两层,因为第二因数是两位数,2和24乘完后,1和24还要乘,把两层乘得的结果相加。)。

(3)十位上的1和24乘完后“4”为什么和十位对齐?(因为十位上的1和4相乘乘得的结果是4个十,所以要和十位对齐,个位的0可以省略不写。)。

教师总结完后出示课题,说明我们今天主要学习的是笔算两位数乘两位数的乘法,而且是不需要进位的。

2、指导学习完成“做一做”。

(1)让学生先做前4题,板演,并说出计算过程。

(2)后4题学生做完后,集体订正。

三、小结。

同学们,今天学习的是什么内容,应该注意什么?(今天我们学习的是两位数乘两位数不进位笔算乘法,应注意的是用十位上的数去乘时,乘得的末位数要和十位上的数对齐,也就是和个位乘得的积错开一位。)。

第二课时两位数笔算乘法(进位)。

教学内容:教科书第65页例2、做一做,练习十六第1、2题。

教学目标:让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数进位的乘法。在学习活动中感受数学与生活的密切联系。

教具准备:多媒体课件(有下围棋的录像或画面);

多个南瓜形算式卡片(每张上一个算式)。

教学过程:

一、提出问题。

呈现下围棋的录像或画面,介绍有关围棋赛的事例(或战绩)。

放大棋盘,让学生观察棋盘结构。使学生了解到:围棋的棋盘面由纵横19道线交叉组成。

接着,把棋子放在纵横线的交叉点上,引出问题:“棋盘上一共有多少个交叉点?”

请学生说一说用什么方法解决这个问题,从而列出算式19×19。

二、探讨计算方法。

1.各组讨论:怎样计算19×19。

请把想出的计算方法写在纸上。

2.组织交流。

各组展示本组的算法。不容易说清楚的,就写在黑板上。

3.师生评议。

(1)请学生说一说,喜欢哪种方法?为什么?

(2)教师对学生发表的意见作以肯定或补充。使学生了解每一种算法的特点和适用范围。例如:估算的方法能很快算出大约有400个交叉点,但它不能满足解决问题的要求。

(3)重点评议笔算。

用检查竖式每一步计算的方式,再现笔算过程。在此基础上,夸赞学生:能用刚学过的两位数乘两位数的知识解决今天的新问题。并且,能正确解决乘的过程中的进位问题。你们真棒!

三、练习。

1.尝试练习。

用竖式计算第65页“做一做”中的4道题。可以让几个组的学生做前2道,另几个组的学生做后2道题。

完成计算后,组织交流。说出笔算的过程,加深学生对笔算过程的了解。

2.完成练习十六第1题。

独立计算,集体订正。根据班上出现错题的情况,和学生一起讨论错误的原因,请学生订正错题。请学生注意:计算时要认真仔细。

3.解决问题。

请学生独立完成练习十六第3、4题。

完成后,请学生向全班说一说,解决问题的过程和结果。

4.游戏。

贴出写有算式的南瓜卡片。用语言描述菜园里收南瓜的情境,请同学们帮助菜农收南瓜。

让学生自由选择卡片,算对的就收获了这个南瓜。

完成后,先检查是不是算对了,再比一比哪组学生收获的南瓜多。奖励优胜组。

四、总结。

1.请学生讨论笔算乘法时要注意什么问题,并交流。

2.教师强调:用竖式计算时,每次乘得的数的末位应该和那一位对齐。还要注意记住进位数,正确处理进位问题。

分数除法的应用教学设计人教版篇十四

在分数应用题中,有一些比较复杂的分数应用题,其中有一种应用题,其单位“1”在发生变化,针对这种题,我教给学生的解决策略是“以不变应万变”。

例如:一根绳子剪去的部分是剩下的1/6,如果多剪10厘米,则剪去部分是剩下部分的1/5,这根绳子全长多少厘米?在这题中最容易找到的单位“1”是剩下的绳子,但是这个剩下的绳子在发生变化,两个剩下绳子长度不一样,剪去的部分也在发生变化,但不管剪去的和剩下的绳子如何变化,这根绳子的长度是不会发生变化的.,所以可以找剪去部分和剩下部分分别与全长的关系。根据“一根绳子剪去的部分是剩下的1/6”,可以知道剪去的部分是全长的1/7,或者剩下部分是全长的6/7,根据“剪去部分是剩下部分的1/5”,可以知道,剪去的部分是全长的1/6,或者剩下部分是全长的5/6,这是就可以设全长为x厘米。1/6x+10=1/5x或者6/7x―10=5/6x,就可以求出这根绳子的全长。

例如:六(1)班有女生24人,占全班人数的4/9,今年转出若干名女生,这时女生占全班人数的2/5,求今年转出多少名女生。在这一题中的单位“1”全班人数在发生变化,女生也在发生变化,但是男生却不变,转出学生之前男生是多少人,转出学生之后男生也应该是那么多人。根据“六(1)班有女生24人,占全班人数的4/9”先求出转出学生之前全班的人数是(24÷4/9=)54人,那么男生是(54―24=)30人,后来转出学生了,女生占全班人数的2/5,那么男生占全班人数3/5,就可以求出转出之后的全班人数(30÷3/5=)50人,那么转出去的女生人数是(54―50)4人。

解决复杂的分数应用题还有许多策略,但是学生的基础是前提。希望其他老师能与我交流,一起来探讨解决分数应用题的解决策略。

分数除法的应用教学设计人教版篇十五

2.使学生正确认识到依法纳税可以支援国家建设,对学生进行思想道德教育。

教学重点:税率的意义以及求纳税额的方法。

教学难点:个人所得税的教学。

设计理念:新的数学课程改革强调,数学学习并不是单纯的解题训练,现实的和探索性的数学学习活动要成为数学学习内容的有机组成部分。本课安排的内容正是和日常生活息息相关的内容,税收这种生活化的情境有助于激发学生的学习兴趣,使学习成为一种乐趣,成为学生的一种自觉行为。个人所得税的教学还要突出探索性和开放性。

教学步骤教师活动学生活动。

一、创设情境。

由此引出税收和纳税。

你知道税收是怎么回事吗?

师:税收都是根据国家税法的规定,按照一定的税率,把收入的一部分缴纳给国家。

为什么要纳税呢?一起来看一段录像。

看完这段录像,你知道了什么?

师生小结:看来,依法纳税可以支援国家建设,税收真是取之于民,用之于民。

学生讨论。(学生可能会说错,教师应利用好他们的这个知识盲点对学生进行依法纳税的思想教育)。

学生讨论并举手回答。

二、教学例2。

三、巩固练习1.(过渡)在税收中也有许多百分数问。

题,一起来看纳税中的百分数问题,出示例2。

学生读题后让学生思考:关键句中的5%是以谁作为单位“1”的?

师:这里的5%就是税率,是指应纳税额占收入总数的百分之几,就叫做税率。

你认为怎样列式求纳税额呢?用什么方法计算?

2.怎样计算60×5%呢?(引导学生把百分数化成分数或小数来计算)。

按自己的想法计算出结果。

3.追问:如果十二月份的营业额是80万元呢,应缴纳税款多少元?要求学生口答列式。

4.小结:怎样求纳税额?

1.读题后明确:买车一共要花的钱应包括车的价格和车辆购置税。

要求最后的问题应该先求出什么?

(引导学生说出可以先算出要缴纳的车辆购置税是多少元)。

题目中的10%指的是什么?以谁作为单位“1”?怎样列式解答?

2.完成练一练的题目。

3.师:刚才我们研究的是怎样缴纳营业税。税收还有很多种,比如说增值税、消费税、个人所得税等。不同的税种有不同的税率,请感兴趣的同学可以课后查阅有关资料。

学生思考,小组讨论。

学生列出算式。

学生讨论。

学生计算,集体订正。

指名学生口答。

学生说说求纳税额的方法以及百分数的计算方法。

学生列式解答,集体订正。

学生解答,集体订正。

四、巩固练习1.做练习二的第1题。

2.做练习二的第2题。

“应缴纳17%的增值税”是什么意思?谁是单位“1”的量?你会做吗?

3.做练习二的第3题。

读题后讲解什么是个人所得税:是国家为了调节个人收入差距,由税法规定的按个人收入一定的比率征收的税目。

问题求实际得到奖金多少元首先要求什么?实际得到奖金怎样求?(明确实际收入=应得收入-纳税额)。

学生回答后列式。

学生回答后列式。

根据分析列出算式,集体订正。

五、指导练习。

1.向学生详细讲解个人所得税征收的目的。(调节个人收入差距,让较高收入者为社会作更多的贡献)。

2.自学个人所得税的征收标准。

3.理解“月收入超过1600元,超过部分按下面的标准征税”这句话的意义。

举例说明哪些情况不交税,哪些情况要交税。

4.试着让学生分解李明的妈妈月收入1800元。

要求自己试着列式。

5.阅读书上第7页的《你知道吗》。

学生自学第4题的标准部分。

学生讨论1800元应分成几部分,哪一部分要交税,交税部分的税率是多少?汇报后教师及时纠正错误的认识。

学生列式,集体订正。

六、全课小结。

通过本节课的学习,你有哪些收获与同学们分享?

分数除法的应用教学设计人教版篇十六

(至上学期)。

六年级数学学科教师:高春枝。

学习。

内容分数乘法一步应用题。

学习。

标1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。

2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。

3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。

重难。

点及。

突破。

措施教学重点:理解题中的单位“1”和问题的关系。

教学难点:抓住知识关键,正确、灵活判断单位“1”。

课前。

准备。

导学案设计个性化设计。

案1、先说下列各算式表示的意义,再口算出得数。

12××。

2、列式计算。

(1)20的是多少?(2)6的是多少?

3、由以上练习,你能得出什么结论?

流1、小组合作学习例1。

(1)抓住关键句“我国人均耕地面积仅占世界人均耕地面积的”,结合线段图理解题意,找到解题思路。

(2)在小组内讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的是多少)。

(3)在分析题意的基础上,独立列式、计算。

2500×=1000(平方米)。

2、结合计算结果,说说自己的想法,培养学生分析数据的能力,进行国情教育。

3、(1)巩固练习:“做一做”,独立画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。

(2)练习四第2题:先找出单位“1”--全世界的丹顶鹤数只。

(3)练习四第3题:先找到单位“1”,再独立列式解答。

4、讨论小结:解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?

展作业:练习四第4、7、8、9题。

审核人:

【本文地址:http://www.xuefen.com.cn/zuowen/15995409.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档