人生只有一次,珍惜当下,追求卓越;适当采用图表和数据分析可以使总结更具说服力。以下是一些关于总结的经典案例,供大家参考和借鉴。
人教版分数除法应用二教学设计篇一
教学目标:
1、通过观察、探究,理解分数与除法的关系,并会用分数表示两个数相除的商。
2、经历分数与除法的关系的探究过程,明确可以用分数表示两个数相除的商。
3、通过观察、探究,渗透辩证思想,激发学生学习兴趣。
教学重难点:
难点:理解可以用分数表示两个数相除的商。
教学过程:
一、导入揭题。
1、复习:76是()数,它表示()。10/7的分数单位是(),它有()个这样的分数单位。
2、观察:5÷8=4÷9=这两道题能得到整数商吗?
3、谈话:同学们,在计算整数除法时经常会遇到除不尽或得不到整数商,有了分数就可以解决这个问题了,这是什么原因呢?这节课就让我们一起来探究分数与除法的关系。板书课题:《分数与除法》。
二、探索新知。
1、教学例1。
(1)课件出示例1。
把一个蛋糕平均分给3人,每人分得多少个?
(2)同桌讨论交流:根据分数的意义怎样解决“把一个蛋糕平均分给3人,每人分得多少个?”这个问题。
(3)汇报讨论结果。
(4)观察这两种解法有什么联系?
2、教学例2、
把3个饼平均分给4个孩子,每个孩子分得多少个?
(1)平均分同样可以列式为:3÷4。
(2)小组合作探究:3÷4的商能不能用分数表示呢?
(3)通过进一步探究,你发现分数与除法有什么关系了吗?
三、拓展应用。
一个正方形的周长是64cm,它的边长是周长的几分之几?
四、总结。
通过这节课的学习,你有什么收获?
五、作业布置。
完成教材第50页”做一做"。
人教版分数除法应用二教学设计篇二
(一)教材地位和作用。
(二)教学目标。
知识与技能。
(1)了解圆与圆的五种位置关系,掌握运用圆心的距离的数量关系或用圆与圆交点个数来确定圆与圆的五种位置关系的方法.
(2)了解切线、割线的概念.
过程与方法。
通过生活中的实际事例,探索圆与圆的五种位置关系。
情感态度与价值观。
(三)重点、难点。
重点:利用数量关系揭示圆与圆的位置关系。
难点:利用圆与圆位置关系解决实际问题。
二、教法学法。
教法的设计情境创设设疑启发引导交流探索创新。
学法的设计观察猜想自主探究合作交流归纳创新。
三、教与学互动设计。
1.情境引入。
2.合作探究。
3.得出结论。
4.巩固新知。
5综合拓展。
6布置作业。
1.情境引入。
同学们会各抒己见,老师不要过早的下结论,而是让同学们在下一环节继续探究。
2.合作探究。
在这一环节我让同学们拿出事先做好的圆,让他们小组合作探究圆和圆之间到底有几种位置关系。
老师巡回指导。
3.得出结论。
为了让同学们更加深刻的理解圆与圆的五种位置关系,在这里我又引导同学们从焦点个数对两圆位置关系进行分类。
为了让同学们理解圆心之间的距离在五中位置关系中和两圆半径之间有怎样的数量关系我在这里设计了五种动画课件,教师演示让同学们进行归纳。
4巩固新知。
为了巩固以上知识,我在这里设计了三个简单的练习题,只是简单的应用五种位置关系中圆心和半径之间的数量关系。
为了提高同学的能力,只是简单应用还不够,于是我又设计了例题。因为例题有难度所以需要师生共同完成。
5综合拓展。
为了巩固以上学习的内容我在这里设计一个练习题,希望同学们能够独立完成。
为了提高同学们学习数学的兴趣我在这里设计了一个环节,争当小小设计师。这一环节既能提高同学们学习数学的兴趣又能提高同学们的能力。同时还能活跃课堂气氛,让同学们体会到生活中处处有数学,数学就来源于生活,同时课堂变的丰富多彩让同学们能够学着乐乐着学。
6布置作业。
最后一个环节是布置作业,我的说课到此就结束了。
将本文的word文档下载到电脑,方便收藏和打印。
人教版分数除法应用二教学设计篇三
1.在涂一涂、算一算等活动中,探索理解分数除法的意义:把一个分数平均分成几份,求其中的一份就是求这个数的几分之一是多少。。
2.探索并掌握分数除以整数的计算方法,并能正确计算。
3.能够运用分数除以整数的方法解决简单的实际问题,培养学生的动手能力和发散思维能力,体会数形结合的重要方法。
2学情分析。
分数除以整数是学生继续学习的重要基础,在教材中占有重要的地位,在此之前,学生已经熟练掌握了分数乘法的意义,以及倒数的认识。所以本课旨在以活动为载体,利用数形结合的方法帮助学生理解分数除以整数的算理。
3重点难点。
教学重点:通过活动操作,掌握分数除以整数的计算方法。教学难点:理解分数除法的意义。
4教学过程。
4.1第一学时。
4.1.1教学活动。
活动1【导入】以旧引新,做好铺垫1.分数的意义,操作。2.除法的意义,列式。
这样的除法算式和以前的有什么不同?今天我们一起来学习分数除法。活动2【活动】动手操作,探究新知(一)、出示幻灯片涂一涂、算一算(1)把一张纸的4/5平均分成2份,每份是这张纸的几分之几?出示问题1。请大家拿出一张操作纸,涂色表示出这张纸的4/5。
师:把一张纸的4/5平均分成2份,每份是这张纸的几分之几?怎样列式?
4/5÷2请同学们通过涂一涂,算一算的方式来研究4/5÷2怎样计算。小组合作,汇报交流。
方法一:把4/5平均分成2份就是把分子里的4份平均分成2份,每份是2个1/5,也就是2/5。
1、用第一种方法就不能做了。因为:上一题的时候,分子4是2的倍数,4÷2能得到整数商。而4÷3时,分子4不是3的整倍数,得不到整数商。所以不能用分子除以整数这种方法了。
生2:把除法转化成乘法来做……4/5÷3=4/5×1/3=4/15能再讲讲这样做的道理吗?师:“4/5÷3”表示把4/5平均分成3份,取其中的一份。
请同学们拿出第二张操作纸,你能把图中的4/5平均分成3份,并表示出其中的一份吗?展示学生的分法师(指着涂色部分):你所表示的这一部分是4/5的多少?通过直观图理解4/5的1/3是4/15(3)比较归纳,发现规律。
活动4【讲授】数学故事,情感教育。
分数除法,最早的文字记载见于我国古代数学名著《九章算术》。公元263年,我国数学家刘徽注释《九章算术》时说:分数除法就是将除数的分子、分母颠倒与被除数相乘。这是世界上最早的分数运算法则,而欧洲直到1489年,才由维特曼提出相似的法则,已比刘徽晚了1200多年!
人教版分数除法应用二教学设计篇四
教学目标1.使学生在整理与复习中进一步体会数学知识和方法的内在练习,能综合运用学过的数学知识和方法解释日常生活现象,解决简单实际问题,提高解决实际问题的能力。
2.使学生在整理与复习中进一步评价和反思自己在本学期的整体学习情况,体会与同学交流和学习成功的乐趣,感受数学的意义和价值,发展对数学的积极情感。
3.在练习过程中培养学生认真审题,发现错误及时纠正的学习习惯,在交流过程中培养学生认真倾听,踊跃发言的习惯。
重点难点重点:能综合运用知识解决实际问题。
难点:能综合运用知识解决实际问题。
教学准备。
实物投影仪;学生收集一些用统计图或分数表示的信息。30根小棒或火柴,形如。
的框,今年的月历卡一张。
教学过程。
教学环节过程目标教师活动学生活动教学反思。
一
谈话引入通过谈话,使学生意识到数学在生活中的广泛应用及价值,并揭示课题。1.谈话:你在生活中遇到过哪些数学问题,曾经提出过哪些数学问题?哪些问题你已经用学过的知识和方法解决了呢?。
2.揭示课题:今天我们就要用学过的知识来解决一些实际问题。
3.板书课题:应用广角。
学生自由发言。在复习过程中学生能与其他同学开展有效的合作,并在合作中发挥自己的作用;能合理灵活地解决问题。但有一部分学生在审题方面还不够仔细,要有意识的进行培养。
二
综合应用。
通过练习帮助学生进一步体会统计和分数在生活中的广泛应用,增强用统计方法和分数描述交流信息的意识。
通过具体的操作活动解决一些实际问题,使学生在运用规律的过程中加深对有关数学规律的理解。
通过“个案探索===举例验证---归纳规律”的过程探索并发现以某个整数为分母的所有最简真分数的和的规律,使学生进一步感受存在于分数及其计算中的奥秘,产生进一步学习的愿望。
通过练习体会数对表示位置在实际生活中的应用。
通过观察研究物体作成圆形的好处,使学生在实践中加深对圆的特征的理解。
通过一个有趣的游戏让学生在实际的操作中运用“倒过来推想的策略探索取胜的方法。
通过解决问题提高学生综合运用知识解决实际问题的能力。
1.完成第25题。
让学生在小组中进行交流。
指名汇报并说说从数据中看出了什么?了解了哪些情况?
2.完成第26题。
帮助学生理解题意:只能横着框。
组织汇报交流,操作情况。
3.指导完成第27题。
让学生集体说出分母是8的最简真分数有哪些?它们的和是多少?
让学生每人选两个整数,写出用这个整数作分母的所有最简真分数,并求出和。
组织汇报交流,适当板书。
教师追问:你有什么发现?
得出结论:任何一个比2大的整数,用它作分母的所有最简真分数的和一定是整数。
4.完成第28题。
让学生独立完成后展示离校近的学生的作业,进行集体评价。
5.完成第29题。
教师指导学生正确表述。
6.完成第31题。
学生游戏结束后追问:谁有必剩的策略?说说你的想法。
要想取胜,可以倒过来推想:自己最后一次取之前应该留几根给对手?
让学生再做两次游戏,两人各先取一次完成后让学生说说取胜的策略。
7.课后分组完成第30题。
学生将收集到的用统计图或分数表示的信息,在小组里交流。
学生在小组进行操作,尝试完成。
学生齐答。
学生任选两个整数进行尝试。
学生说出自己的想法。
学生独立完成后展示自己的作业,说说自己家的位置。
学生先在小组中交流然后汇报。
学生理解题意后尝试做几次游戏。
学生思考后明白每次取完后留下的火柴根数必须是4的倍数。
学生同桌再次进行游戏,体会取胜的策略,说说自己的想法。
三
自我。
评价。
通过逐项对照作出自我评价,肯定学生取得的成绩,指出需要改进的地方,使学生得到帮助,从而激励学生的自信,提高进一步学习的兴趣。1.让学生在小组中说说每项指标的意义。
2.让学生进行自我评价。
3.组织交流,让学生自由发言说说自己学习中的优点及不足。学生在小组中互相说说自己对每项指标的理解。
学生在小组中进行自我评价。
学生自由发言。
板书。
设计应用广角。
1/8+3/8+5/8+7/8=2。
1/3+2/3=1。
1/5+2/5+3/5+4/5=2。
任何一个比2大的整数,用它作分母的所有最简真分数的和一定是整数。
人教版分数除法应用二教学设计篇五
上坝小学邵玉萍教学内容分析:
(一)》是第三单元第二课时的内容,是在学生学习了分数乘法、认识了倒数的基础上进行教学的,教材中呈现了两个问题,就是把4/7分别平均分成2份、3份,目的是让学生在涂一涂、算一算的过程中,借助图形语言,利用已学过的分数乘法的意义解决有关分数除法的问题,从而理解分数除法的意义,并从中总结出分数除以整数的计算方法。教学目标:
1、在涂一涂、算一算等活动中,探索并理解分数除法的意义。
2、引导学生探索并掌握分数除以整数的计算方法,并能正确计算。
3、能够运用分数除以整数的方法解决简单的实际问题。教学重点:
引导学生探索并掌握分数除以整数的计算方法,并能正确计算。教学难点:
2、能够运用分数除以整数的方法解决简单的实际问题。
一、创设情境提出问题。
二、自主探究小组交流。
(教师指导学生自主探究,尝试解决以上两个问题,同桌之间交流想法)自主学习提示。
1.利用手中的的学习纸,涂一涂,算一算,尝试解决这两个问题。2.同桌之间说一说彼此的想法。
3.有困难的同学,可以借助课本第25页的提示,完成这两个问题。三交流释疑。
把一张纸的4/7平均分成2份,每份是这张纸的几分之几?请同学们拿出图。
(一)来涂一涂。
交流:为什么要这样涂,每份是这张纸的几分之几呢?还有不同的涂法吗?
能根据这个过程列出一个除法算式吗?这个除法算式和以前学的除法有什么不同?这就是这节课我们要学习的分数除法。(板书)。
2、初探算法。
把一张纸的4/7平均分成3份,每份是这张纸的几分之几?请大家在图。
(二)的上面涂一涂。交流:(展示学生不同的涂法)。
4/5÷3。
1/3÷5指生口算。
让学生观察每一组算式,说一说发现了什么?
根据这三组算式再结合上一道题,你认为分数除以整数可以怎样计算?(学生口述算法后)。
四、实践应用。
1、算一算。
9/10÷30。
15/16÷20。
14/15÷21。
8/9÷6。
5/6÷15。
2、填一填。
师:学会了知识就要灵活的运用,这道题你们能填上吗?学生独立在书上第26页填一填,想一想。集体订正。
3、解决问题。
师:为了使我们的校园更整洁,学校给我们各班划分了卫生区,这一周轮到第一组负责卫生区的卫生,老师想卫生区的四分之三平均分给四个人来负责,你们能算出每个人负责整个卫生区的几分之几吗?学生在练习本上列式解答。指生汇报完成情况。
五、课堂总结。
六、布置作业:22页练一练。
人教版分数除法应用二教学设计篇六
一、从生活入手学数学。
国家数学课程标准》指出:“数学教学要从学生的生活经验和已有的知识背景出发,向他们提供充分的从事数学活动和交流的机会。”教学一开始教师就改变由复习旧知引入新知的传统做法,直接取材于学生的生活实际,用介绍该班的情况引发学生参与的积极性,使学生感到数学就在自已的身边,在生活中学数学,让学生学习有价值的数学。
二、关注过程,让学生获得亲身体验。
教学中,为让学生认识解答分数乘法应用题的关键是什么时,我故意不作任何说明,通过省略题中的一个已知条件,让学生发现问题,亲自感受应用题中数量之间的联系,想方设法让学生在学习过程中发现规律。从而让学生真切地体会并归纳出:解答分数乘法应用题的关键是从题目的关键句找出数量之间的相等关系。
在教学中体现了“自主、合作、探究”的教学方式。以往分数除法应用题教学效率并不高,究其原因,主要是教师教学存在偏差。教师喜欢重关键词语琐碎地分析,喜欢用严密的语言进行严谨地逻辑推理,虽分析得头头是道,但容易走两个极端,或者把学生本来已经理解的地方,仍做不必要的分析;或者把学生当作学者,对本来不可理解的,仍做深入的、细碎的剖析,这样就浪费了宝贵的课堂时间。教学中我把分数除法应用题与引入的分数乘法应用题结合起来教学,让学生通过讨论交流对比,亲自感受它们之间的异同,挖掘它们之间的内在联系与区别,从而增强学生分析问题、解决问题的`能力,省去了许多烦琐的分析和讲解。在教学中准确把握自己的地位。我想真正把自己当成了学生学习的帮助者、激励者和课堂生活的导演,凸显学生的主体地位,体现了生本主义教育思想。
三、多角度分析问题,提高能力。
在计算应用题的时候,我通过鼓励学生对同一个问题积极寻求多种不同的解法,拓展学生思维,引导学生学会多角度分析问题,从而在解决问题的过程中培养学生的探究能力和创新精神。另外,改变以往只从例题中草草抽象概括数量关系,而让学生死记硬背,如“是、占、比、相当于后面就是单位1”;“知1求几用乘法,知几求1用除法”等等的做法,充分让学生亲身实践体验,让学生在探究中加深对这类应用题数量关系及解法的理解,提高能力,为学生进入更深层次的学习做好充分的准备。
四、有破度有层次地设计练习,提高学生的思维能力。
教案还精心设计了练习题,通过看图,找等量关系,巩固了学生的分析思路;通过三类题的对比练习,使学生掌握了三类题的异同点,增强了学生的辨析能力,对于学生分析和解题起到了很好的推动作用,使学生无论遇到什么题,都会做到:抓住特点,学而不乱。
人教版分数除法应用二教学设计篇七
1、掌握并积累重要的文言文实词和虚词,掌握本文出现的通假字、词类活用的特殊文言句式。
2、学习本文比喻论证、对比论证的方法,提高学生围绕中心论点合理论证的能力。
3、明确认识学习的重要性以及学习必须“积累”“坚持”“专一”的道理。
二、教学重点。
1、诵读并背诵全文,积累文言词语。
2、比喻的含义和内在联系。
三、教学难点。
1.在诵读中渗透正字正音、辨词析句、层次疏理、文意理解、语言鉴赏等多项文言基础知识的学习。
2.掌握全文比喻和对比论证的特点。
四、教学准备。
课前让学生结合书后思考练习题预习课文。
五、教学过程。
1、解读第一段(7分钟)。
1)回忆上个课时的内容并结合学生自主预习的结果,提问:本文的中心论点是什么?(明确中心论点:学习不可以停止)。
2)齐背诵第一段后,提问:
a.请问本段论述了什么内容?
b.运用什么方法论述的?
d.发生什么样的变化?
e.作者又以“直木为轮”为喻,说明什么道理呢?
f.“金就砺”“木受绳”两个比喻引出什么结论?
g.此句与本段哪句相照应?
(问题层层递进,学生回答一个接一个问题时思考,本段的主旨即学习的意义为何?)。
3)教师总结。
荀子提出人性本恶的思想,认为只有用教育来陶冶,用礼法来约束,才能把这种生而具有的“恶”转变为“善”。这里作者运用5个比喻阐述学习的重要性。学习是人发展的过程,如果不停止地学习,人的知识、才能、品德会不断地增进、提高,达到“知明而行无过”的境界。
2、解读第二段(7分钟)。
1)同学们一起背诵第二自然段。
2)提问:
本段写了几层内容?
第一层阐明什么内容?
第二层与第三层是什么关系?
由此看来,第二层用什么方法阐述学习的重要性?
用哪几个比喻?
(问题层层递进,环环相扣,引导学生自主剖析第二段的层次和主旨--学习的重要性)。
3)教师总结。
第一、二自然段是文章的第一部分,主要论述了学习的重要性。在写法上最大的特点是运用大量的比喻,从各个方面对中心论点加以阐释,使论点既鲜明又生动。第二段作者用了五个比喻。开头作者用“终日而思”,“不如须臾之所学”先来阐说,接着就用“揉而望”,“不如登高之博见”这个比喻,形象说明只有摆正“学”和“思”的关系才能使学习产生显著效果。为了把道理说得更透辟,作者顺势而下,连用“登高而招”、“顺风而呼”、“假舆马”、“假舟楫”四个比喻,从见、闻、陆、水等方面阐明了在实际生活中由于利用和借助处界条件所起的重要作用,从而说明人借助学习,就能弥补自己不足,取得更显著的成效。最后由此得出结论,君子所以能超越常人,并非先天素质与一般人有差异,而完全靠后天善于学习。
3、解读第三段(7分钟)。
1)引导学生仿照第二段的学习方法自主学习第三段(本段主要论述什么问题?分几层?作者是用什么方法论述问题的?每一层的两个比喻句是什么关系?本段的三层内容都用对比设喻的方法阐述。这样的写法什么好处?)。
4、请同学们拿出纸来,按要求作练习。要求:每人写一个比喻句阐述知识的重要性,比喻要恰当。
5、布置作业:写一篇不少于500字的议论文,论述人要有崇高的理想。适当运用比喻论证法。
刘里。
[劝学教学设计(人教版高一必修三)]。
将本文的word文档下载到电脑,方便收藏和打印。
人教版分数除法应用二教学设计篇八
第一课时两位数乘两位数(不进位)。
教学内容:教科书第63页例1及做一做,练习十五。
教学目标:让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数不进位的乘法。在学习活动中感受数学与生活的密切联系。
重点难点:掌握笔算方法并正确计算;解决乘的顺序和第二部分积的书写位置问题。
教具准备:例2主题图。
教学过程:
一、复习。
1、口算。
52×1043×30=12×40=31×20=17×20=21×30=。
2、笔算并说出计算过程。
41×7=。
二、新课。
1、教学例2。
出示例2的主题图,让学生说一说,这幅图所展示的情境是什么。(小红的妈妈带着小红去书店买书,小红要买一套12本,每本24元的书,她在想一共要付多少钱。)。
老师组织学生进行讨论,然后展示不同的计算过程和结果。
例:24×12=24024×10=24024×2=28240×28=288。
有些学生会想到把12看成10和2的和,先用24×10,再用24×2,然后把两次乘得的结果相加。
有些学生会想到用笔算乘法。先让学生说他是如何写的,老师家以指导。
老师在指导分析过程中把每步板书,强调每步难点。
例1:24×12=288(24×10=24024×2=48240+48=288)。
24。
×12。
4824×2的积。
2424×10的积。
288(个位的0可不写)。
在总结过程中提问:
(1)两位数乘两位数一种是口算方法,一种是笔算方法,你认为哪种方法好?
(2)笔算中乘了几层,为什么?乘得的结果怎么样?(乘了两层,因为第二因数是两位数,2和24乘完后,1和24还要乘,把两层乘得的结果相加。)。
(3)十位上的1和24乘完后“4”为什么和十位对齐?(因为十位上的1和4相乘乘得的结果是4个十,所以要和十位对齐,个位的0可以省略不写。)。
教师总结完后出示课题,说明我们今天主要学习的是笔算两位数乘两位数的乘法,而且是不需要进位的。
2、指导学习完成“做一做”。
(1)让学生先做前4题,板演,并说出计算过程。
(2)后4题学生做完后,集体订正。
三、小结。
同学们,今天学习的是什么内容,应该注意什么?(今天我们学习的是两位数乘两位数不进位笔算乘法,应注意的是用十位上的数去乘时,乘得的末位数要和十位上的数对齐,也就是和个位乘得的积错开一位。)。
第二课时两位数笔算乘法(进位)。
教学内容:教科书第65页例2、做一做,练习十六第1、2题。
教学目标:让学生经历两位数乘两位数的笔算过程,学会计算两位数乘两位数进位的乘法。在学习活动中感受数学与生活的密切联系。
教具准备:多媒体课件(有下围棋的录像或画面);
多个南瓜形算式卡片(每张上一个算式)。
教学过程:
一、提出问题。
呈现下围棋的录像或画面,介绍有关围棋赛的事例(或战绩)。
放大棋盘,让学生观察棋盘结构。使学生了解到:围棋的棋盘面由纵横19道线交叉组成。
接着,把棋子放在纵横线的交叉点上,引出问题:“棋盘上一共有多少个交叉点?”
请学生说一说用什么方法解决这个问题,从而列出算式19×19。
二、探讨计算方法。
1.各组讨论:怎样计算19×19。
请把想出的计算方法写在纸上。
2.组织交流。
各组展示本组的算法。不容易说清楚的,就写在黑板上。
3.师生评议。
(1)请学生说一说,喜欢哪种方法?为什么?
(2)教师对学生发表的意见作以肯定或补充。使学生了解每一种算法的特点和适用范围。例如:估算的方法能很快算出大约有400个交叉点,但它不能满足解决问题的要求。
(3)重点评议笔算。
用检查竖式每一步计算的方式,再现笔算过程。在此基础上,夸赞学生:能用刚学过的两位数乘两位数的知识解决今天的新问题。并且,能正确解决乘的过程中的进位问题。你们真棒!
三、练习。
1.尝试练习。
用竖式计算第65页“做一做”中的4道题。可以让几个组的学生做前2道,另几个组的学生做后2道题。
完成计算后,组织交流。说出笔算的过程,加深学生对笔算过程的了解。
2.完成练习十六第1题。
独立计算,集体订正。根据班上出现错题的情况,和学生一起讨论错误的原因,请学生订正错题。请学生注意:计算时要认真仔细。
3.解决问题。
请学生独立完成练习十六第3、4题。
完成后,请学生向全班说一说,解决问题的过程和结果。
4.游戏。
贴出写有算式的南瓜卡片。用语言描述菜园里收南瓜的情境,请同学们帮助菜农收南瓜。
让学生自由选择卡片,算对的就收获了这个南瓜。
完成后,先检查是不是算对了,再比一比哪组学生收获的南瓜多。奖励优胜组。
四、总结。
1.请学生讨论笔算乘法时要注意什么问题,并交流。
2.教师强调:用竖式计算时,每次乘得的数的末位应该和那一位对齐。还要注意记住进位数,正确处理进位问题。
人教版分数除法应用二教学设计篇九
教学内容:
浙教版第十一册第103页例1例2,练习十七题。
教学目标:
1、掌握求一个数与它的几分之几的差(和)是多少的应用题的数量关系,并能正确解答。
2、通过分析、比较,培养学生善于思考问题提出问题的能力。
3、培养学生良好的审题习惯。
4、渗透环保观念和终身学习观念。
教学重点和难点和关键。
教学重点:分析题中的数量关系和掌握解题思路,并能正确解答。
教学难点:1、寻求所求问题对应的几分之几。2、弄清两种不同的解题思路。
教学关键:1、确定单位“1”。2、找出所求问题占单位“1”的几分之几。
教学过程:
一、复习铺垫。
1、找单位“1”
(1)一本书,已经看了1/4,还剩几分之几?
(2)实际投资是计划投资的4/5。
(3)男生25人,占全班人数的5/9。
2、口答:
(1)一堆煤,运走了3/5,还剩几分之几?
(2)女生人数比男生人数多1/3,女生比男生多的人数占()的1/3。
(3)白兔比黑兔少1/4,白兔是黑兔的几分之几?
二、创设情景、引入新知。
1、你们喜欢鸟吗?鸟类种数减少了,就意味着许多美丽的鸟类从此就永远消失了。你们知道为什么吗?由于人类的这些行为,有的鸟类灭绝了,还有一些鸟类,尽管还存在,但数量已经很少了,如果再不加以保护,也将很快灭绝掉。丹顶鹤就是这样的一种鸟类。丹顶鹤是国家的一级保护动物,是我国特产鸟类,群居黑龙江省的扎龙,丹顶鹤生活特别有规律,它体姿优美文雅、风貌优秀、翩翩起舞可与孔雀开屏媲美,是长寿动物与龟并称,古人将它作为长寿和幸福的象征,所以特别受中国人的钟爱。
2、今天老师还给大家带来了几条有关丹顶鹤的信息。
出示信息1:国家一级保护动物野生丹顶鹤,2001年全世界约有2000只,我国占其中的1/4。
根据这些信息:你能算出2001年我国约有多少只丹顶鹤吗?怎样列式?你是怎么想的?
(2000×1/4=500(只),求2000只的1/4是多少?)。
3、如果我们把我国约有多少只?这个问题去掉,你能提出哪些问题?(外国约有多少只?)。
出示信息2(例4):
揭示课题:这就是我们今天共同探讨的问题“稍复杂的求一个数的几分之几的应用题”(板书课题)。
三、引导探究,解决问题。
1、请同学们把信息2表达的'意思用线段图表示出来。
展示并口述画的线段图。
2、是把什么看着单位“1”?平均分成几份?(1/4)表示谁占谁的几分之几呢?怎样解答这道题呢?请同学们根据线段图列出算式。(先独立解答,师巡视,再交流)。
3、两名学生板演两种解法。
4、你怎样想的?能说出解题思路吗?(学生口述思路,教师在线段图上展示)。
方法一:把全世界的丹顶鹤的只数看着单位“1”,先求出我国的只数,再用总只数减去我国的只数,剩下的就是其他国家的只数。
5、比较一下,这两种解法有什么区别?有什么联系?(学生小组交流、汇报。)。
〈1〉相同点:单位“1”相同。
〈2〉不同点:第一种解法是用总只数减去我国的只数算出其它国家的。第二种解法是先求出其他国家的只数占总数的几分之几,再用总只数乘这个几分之几,就算出其他国家有多少只。
四、再次探索。
1、教师引言:正如前面所说:丹顶鹤是“长寿和幸福”的象征,人们称它为仙鹤,因此我国在扎龙专门设立自然保护区又誉为“鹤的乐园”。在人们的得力保护下,近两年来,丹顶鹤的数量逐年增多,请看下面信息:
2、请同学们默读信息3,已知什么?要求什么?理解哪一句话对解题最有帮助?怎样理解2007年我国丹鹤的只数比2001年的只数多呢?(把2001年500只丹顶鹤看作单位“1”,2007年比2001年多的只数是2001年只数的4/5)。
3、(师生齐画线段图)这道题有几个不同的数量相比,画几条线段图更好表示?(用两条线段表示)。
教师引导学生画出2001年的线段,然后让学生独立完成余到此为下部分,一人板演。(巡视)。
4、展示线段图并叙述。
指线段图引导分析:我们把什么看着单位“1”?平均分成几份?把2007年的只数分成了几部分?哪两部分?(一部分与2001年同样多,另一部分比2001年多2/5。)。
5、请同学们根据线段图列出算式。(师巡视,指名板演两种代表性的解法)。
6、你能说出解题思路吗?
(第一种解法:先求多的只数+2001年的只数=2007的只数,第二种解法:先求出2007年占单位“1”的几分之几,或2007年是2001年的(1+4/5)倍,再求2007年的只数;也就是求500只的(1+4/5)倍是多少)。
五、回顾小结。
1、刚才同学们用自己的聪明才智解决了以上问题,现在我们一起研究信息2和信息3这两问题有什么共同特点。
(信息2把总数2000只分成两部分,一部分是我国的只数,另一部分是其它国家的只数。信息3是把2007年和2001年相比,把2007年的只数分成两部分,一部分是和2001年的只数同样多,另一部分比2001的只数多2/5。
2、相同点:
单位“1”的数量都是已知的。
3、没有直接告诉所求问题占单位“1”量的几分之几,解题时需要用单位“1”的量减去或加上它的几分之几,或者先算出要求的数量占单位“1”的几分之几,再用单位“1”的量乘这个几分之几。)。
4、指导学生看书例题5,完成课本内容并质疑问难。
人教版分数除法应用二教学设计篇十
教学内容:教科书第11页的例5、练一练、练习四的第1~4题。
教学目标:1.进一步提高学生分析问题和灵活解答应用题的能力,引导学生通过画线段图表示题目中的数量关系,启发学生联系已有知识经验自主地列方程解决问题。
2.重视方程后检验方法的交流。
教学重点:应用题数量关系的分析。
教学难点:培养学生列方程解应用题的意识和分析应用题的能力。
设计理念:数学活动不在于教师教会学生多少,而在于学生学会了解决问题的方法没有。教师需树立“授人予鱼不如授人予渔”的观念,因此教学本课的目的是让学生学会运用画线段图,找数量关系,列方程等方法来解决相关的类似的题目。
教学步骤教师活动学生活动。
一、激情促思。
通过之前的学习,大家已掌握了不少百分数的知识,今天给大家呈现的是一种稍复杂的百分数应用题(板书课题),想不想攻克它。
要攻克它,我们首先要了解它,分析它,师出示例题。
二、探究新知。
三、巩固练习。
四、评价总结。
2.从图上你获取了什么信息?
教师根据学生的交流板书(板书有意义的信息,教师适当引导):
男生人数×80%=女生人数。
男生人数+女生人数=36人。
引导学生将上面的关系式进行综合后老师板书:男生人数+男生人数×80%=36人。使学生用方程解答成为一种迫切的内因。
下面你会求男生人数了吗?怎样求?
3.这个方程你会解吗?女生人数怎样求?你解得对吗?
板书学生的方程,解读学生的方程。
追问:你是怎样检验的?
追问:你为什么设男生为?为什么不设女生为呢?(通过比较让学生明白设单位“1”为较为合理。
怎样确保自己的正确率?
1、做练一练的第1题。
思考:数量关系在哪句话中,是什么?应该把谁看作,另一个量怎样表示?
你能根据数量关系列出方程吗?会解这个方程吗?你怎样检验自己的结果是否正确?
2.做练一练的第2题。
3.做练习四的第1题,看谁做得又对又快。
4.做练习四的第2、3两题。
先说一说各题的数量关系,再列方程解答。
5.做练习四的第4题。
说说学了这节课你有哪些收获?
学生在教师指导下画线段图。
学生讨论后交流。
引导学生讨论得到综合后的数量关系。
引导学生把男生人数设为列出方程。
学生解方程,并引导学生进行检验。
引导学生计算20+16是否等于36。
学生思索比较。
学生可能会说两种答案:“美术组有36人”和“女生人数是男生人数的80%”,通过比较让学生明白后者说的是相关联的两种量之间的倍比关系,用来解设更为方便。
指名学生回答。
学生列出方程。
解方程。
检验。
学生口答。
列方程并解答。
检验。
学生练习,尽量口算,集体订正。
学生说数量关系。
列方程解答。
集体检验。
学生口答。
列方程解答。
检验。
引导学生讨论得到:两个关键句中梨树都是1份数,桃树都是3份数,虽然单位“1”不同了,但倍比关系并未改变。
人教版分数除法应用二教学设计篇十一
吴兴区学校(幼儿园)具体课时备课表(成熟型教师用)。
单元(章)主题任课教师与班级。
本课(节)课题整理和复习(一)第课时/共课时。
教学目标(含重点、难点)。
及设置依据1.通过复习进一步理解百分数的意义,掌握百分数的写法。
2.掌握百分数和小数、百分数和分数互化的方法,熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。
重点:熟练解答求一个数是(比)另一个数(多或少)百分之几应用题以及百分比应用题。
难点:百分数意义的理解。
教学准备多媒体课件。
教学过程。
内容与环节预设个人二度备课课后反思。
一、基本练习。
1.完成下面表格。
内容与环节预设个人二度备课课后反思。
小数0.16。
分数。
百分数24.5%0.9%。
2.只列式,不计算。
(1)40占50的几分之几?(2)50是40的百分之几?
(3)5比8少百分之几?(4)8比5多百分之几?
二、知识梳理。
1.百分数和分数在意义上有什么不同?百分数写法有什么特点?
2.说一说百分数和小数互化的方法,百分数和分数互化的方法?
3.求一个数是另一个数的百分之几的应用题用什么方法解答?
如:甲数是200,乙数是150。
(1)甲数是乙数的百分之几,算式:_____________,把________看作单位“1”。
(2)乙数是甲数的百分之几,算式:_____________,把________看作单位“1”。
(3)甲数比乙数多百分之几,算式:_____________,把________看作单位“1”。
(4)乙数比甲数少百分之几,算式:_____________,把________看作单位“1”。
三、深化练习:
1.李师傅加工一批零件,其中合格率是95%,这里的95%表示什么?
2.一条水渠已修的比未修的长25%,这里的25%表示什么?未修的比已修的短百。
内容与环节预设个人二度备课课后反思。
分之几?
四、小结:这节课复习了什么?
板书。
设计。
整理和复习(一)个人二度备课:课后反思:
作业布置或设计p104第1、2、3题。
课后反思:
教后整体反思。
人教版分数除法应用二教学设计篇十二
(至上学期)。
六年级数学学科教师:高春枝。
学习。
内容分数乘法一步应用题。
学习。
目
标1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。
2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。
3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。
重难。
点及。
突破。
措施教学重点:理解题中的单位“1”和问题的关系。
教学难点:抓住知识关键,正确、灵活判断单位“1”。
课前。
准备。
导学案设计个性化设计。
预
习
学
案1、先说下列各算式表示的意义,再口算出得数。
12××。
2、列式计算。
(1)20的是多少?(2)6的是多少?
3、由以上练习,你能得出什么结论?
自
主
乐
学
合
作
交
流1、小组合作学习例1。
(1)抓住关键句“我国人均耕地面积仅占世界人均耕地面积的”,结合线段图理解题意,找到解题思路。
(2)在小组内讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的是多少)。
(3)在分析题意的基础上,独立列式、计算。
2500×=1000(平方米)。
2、结合计算结果,说说自己的想法,培养学生分析数据的能力,进行国情教育。
3、(1)巩固练习:“做一做”,独立画线段图表示题意,说说自己是怎样想的?依据是什么?然后独立解答。
(2)练习四第2题:先找出单位“1”--全世界的丹顶鹤数只。
(3)练习四第3题:先找到单位“1”,再独立列式解答。
4、讨论小结:解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?
检
测
反
馈
课
外
拓
展作业:练习四第4、7、8、9题。
教
学
反
思
审核人:
【本文地址:http://www.xuefen.com.cn/zuowen/15873771.html】