三角形内角和教学方案(优秀15篇)

格式:DOC 上传日期:2023-11-28 03:06:13
三角形内角和教学方案(优秀15篇)
时间:2023-11-28 03:06:13     小编:XY字客

在处理复杂问题时,制定适当的方案可以提高工作的效率和质量。写方案时,我们应当注重全面的思考和平衡各方面的利益和考虑。方案的优劣需要通过实施效果和用户反馈来评估。

三角形内角和教学方案篇一

《三角形的内角和》是九年制义务教育人教版四年级下册第五章《三角形》的第二节内容,本节课是在学生学习了与三角形有关的概念、边、角之间的关系的基础上,让学生动手操作,通过一些活动得出“三角形的内角和等于180°”成立的理由,由浅入深,循序渐进,引导学生观察、猜测、实验,总结。逐步培养学生的逻辑推理能力。

“问题的提出往往比解答问题更重要”,其实三角形内角和是多少?大部分的学生已经知道了这一知识,所以很轻松地就可以答出。但是只是“知其然而不知其所以然”,所以我特别重视问题的提出,再让学生各抒已见,畅所欲言,鼓励学生倾听他人的方法。

本课的重点就是要让学生知道“知其然还要知其所以然”,所以在第二环节里。鼓励学生亲自动手操作验证猜想。为此,我设计了大量的操作活动:画一画、量一量、剪一剪、折一折、拼一拼、撕一撕等,我没有限定了具体的操作环节,但为了节省时间,让学生分组活动,感觉更利于我的目标落实。但在分组活动中,我更注意解决学生活动中遇到了问题的解决,比如说画,老师走入学生中指导要领,因此学生交上来画的作品也非常的漂亮。学生观察能力得到了培养。再比如说折,有的学生就是折不好,因为那第一折有一定的难度,它不仅要顶点和边的重合,其实还要折痕和边的平行,这个认识并不是每个学生都能达到的。教师也要走上前去点拨一下。再比如撕,如果事先没有标好具体的角,撕后就找不到要拼的角了……所以在限定的操作活动中,既体现了老师的“扶”又体现了老师的“放”。做到了“扶”而不死,“伴”而有度,“放”而不乱。我还制作了动画课件,更直观的展示了活动过程,生动又形象,吸引学生的注意力。使学生感受到每种活动的特点,这对他认识能力的提高是有帮助的。在此环节增加了学生的合作探究精神培养。

在归纳总结环节,有意识地培养学生的说理能力,逻辑推理能力,增强了语言表达能力。

最后通过习题巩固三角形内角和知识,培养学生思维的广阔性,为了强化学生对这节课的掌握,我除了设计了一些基本的已知三角形二个内角求第三个角的练习题外,还设计了几道习题,第一道是已知一个三角形有二个锐角,你能判断出是什么三角形吗?通过这一问题的思考,使学生明白,任意三角形都有二个锐角,因此直角三角形的定义是有一个角是直角的三角形叫直角三角形;钝角三角形的定义是有一个钝角的三角形叫钝角三角形;而锐角三角形则必须是三个角都是锐角的三角形才是锐角三角形的道理。这道题有助于帮助学生解决三角形按角分的定义的理解。第二道题是一个三角形最大角是60°,它是什么三角形?通过对此题的研究,使学生发现判断是什么三角形主要看最大角的大小,如果最大角是锐角,也可以判断是锐角三角形。同时加深了学生对等边三角形的特点的认识和理解。第三题我拓展延伸到三角形外角,第四题我设计了多边形的内角和的探究。

三角形内角和教学方案篇二

教学目标:

1、通过量、剪、拼、摆等直观操作的方法,让学生探索并发现三角形内角和等于180度。

2、在活动交流中培养学生合作学习的意识和能力,让学生经历猜测探索总结的数学学习过程,在实验活动中体验探索的过程和方法。

3、通过运用三角形内角和的性质解决一些简单的问题,使学生体会数学与现实生活的联系,体会到数学的价值,增加学生学数学的信心和兴趣。

教学重点:

教学难点:

教学过程:

一、创设情境,提出问题。

师:大家喜欢猜谜语吗?

生:喜欢。

师:下面请大家猜一个谜语(大屏幕出示形状似座山,稳定性能坚。三竿首尾连,学问不简单。

(打一几何图形))。

生:三角形。

师:三角形中都有哪些学问?

生:三角形有三条边,三个角,具有稳定性。

生:三角形按角分,可以分成锐角三角形、直角三角形、钝角三角形。

生:三角形按边分,可以分成等腰三角形,不等边三角形,其中等腰三角形又包含了两条边相等的三角形和等边三角形。

生:一个三角形中最多只能有一个直角,最多只能有一个钝角,最少有两个锐角。

生:三角形的内有和是180。

生:(一脸疑惑)。

师:(板书:三角形的内角和是180),你有什么疑惑?生:什么是内角?

(根据学生的问题,在三角形的内角和是180后面加上一个?)。

二、自主探索,实践验证。

1、理解内角师:什么是内角?

生:我认为三角形的内角就是指三角形的三个角。

师:三角形的每个角都是三角形的内角,每个三角形都有三个内角。

2、理解内角和。

生:我认为三角形的内角和就是把三角形的三个内角的度数加起来的和。

师:为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它1、2、3,这三个角的度数和,就是这个三角形的内角和。

3、实践验证。

生:量一量每个角的度数,然后加起来看看是不是180。

师:请大家拿出课前准备的三角形,亲自量一量,算一算。(学生动手量一量)。

师:谁愿意把你的劳动成果和大家分享一下?

生:我量的这个三角形的三个内角的度数分别是60、60、60,加起来一共是180。

师:这位同学量的是一个锐角三角形,并且是比较特殊的三角形等边三角形。

生:我量这个三角形的三个内角的度数分别是45、45、90,加起来一共是180。

师:这是我们三角尺中的一个,也比较特殊,是一个等腰直角三角形。

生:我量的是三角尺中的另一个,三个内角的度数分别是60、30、90,加起来一共是180生:我量的是钝角三角形,三个内角的度数分别是85、60、38,加起来一共是183。

师:你发现了什么?

生:有的三角形的内角和是180,而有的三角形的内角和却不是180。

生:老师,测量会有误差,量出来的不是很精确,那么求出来的结果也不够精确。虽然不都是三个内角加起来不都是180,但都接近180。

生:都接近180就能说一定是180吗?

师:科学来不得半点虚假,看来这个是不能让大家信服的。那还可以用什么方法来验证呢?下面请同学们小组合作,发挥小组成员的智慧,充分利用大家的学具进行验证,比一比哪些组的方法富有新意,开始!

(学生在小组内进行探索验证。教师巡视,参与到学生的研究中)。

师:请每个小组选择一个代言人,和大家分享一下你们的智慧。

生:(边展示边交流)我们小组运用了折一折的方法,把三角形的三个内角都向内折,三个内角就拼成了一个平角,也就是180,所以我们小组得出三角形的内角和是180。

生:我们小组也有折的直角三角形,钝角三角形。

(其它的成员展示不同的三角形)。

师:看这个小组的同学想问题多全面呀,不仅想到了用什么方法,还想到了用不同的三角形进行验证,老师实在是佩服你们组的智慧,让我们把掌声送给他们!

师:哪个小组和他们的方法不一样?

生:我们小组把三角形的三个内角都撕了下来,拼在了一起,正好拼成了一个平角,也就是180。我们也实验了不同的三角形,三个内角都可以拼成平角,所以我们小组得出结论,三角形的内角和是180。

师:这个小组的方法简便,易操作,很好。

生:我们小组成员是这样想的,一个长方形有4个直角,每个直角90,那么长方形的内角和就是360,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180。师:你们小组很聪明,从长方形的内角和联想到直角三角形的内角和是180,从不同的角度去思考问题,谢谢你为我们提供了这么好的方法!

4、小结。

生:没有。

师:(去掉问号)那就让我们大声地读出来三角形的内角和是1800。

三、巩固应用,加深理解。

师:(出示一个大三角形)这个大三角形的内角和是多少度?

生:180。

师:(出示一个小三角形)这个小三角形的内角和是多少度?

生:180。

师:(演示)把这两个三角形拼在一起,拼成的大三角形的内角和是多少度?

生:180。

生:把两个三角形拼成一个大三角形,两个直角不再是大三角形的内角,所以少了180。

师:(演示)把一个大三角形分成两个三角形,每个三角形的内角和是多少度?

生:180。

2、求下面各角的度数。

师:如果老师告诉你一个三角形的两个角的度数,你能说出第三个角的度数吗?

(出)。

3、一个等腰三角形的风筝,它的一个底角是70,它的顶角是多少度?

师:三角形的内角和在我们的生活中应用很广泛,老师给大家带来一个在建筑中应用的例子。

生:用量角器量一量。

师:量哪个角?量一量斜拉的钢索与桥柱形成的夹角吗?

师:你真是个善于观察、善于思考的孩子,努力学习,将来一定会成为一名优秀的建筑师。

四、回顾总结,拓展延伸。

师:40分钟很快就过去了,你愿意把自己的收获与大家共同分享吗?

生:无论是大三角形,还是小三角形,无论是锐角三角形,还是钝角三角形,还是锐角三角形,内角和都是180。

生:把一个大三角形分成两个小三角形,每个三角形的内角和还是180,把两个小三角形拼成一个大三角形,大三角形的内角和还是180。

生:我可以用撕、拼、折等方法来验证三角形的内角和是180。

师:这个同学不仅学会了知识,而且学会了方法,我们只有学会了方法,才能更好地去探究更多的知识。

师:那你现在知道为什么一个三角形内只能有一个直角或一个钝角吗?

生:两个直角的度数之和是180,再加上一个角,三个角的度数之和超过了180,所以一个三角形中最多只能有一个直角。

生:两个钝角的度数之和就超过了180,再加上一个角,就更大了,所以一个三角形中最多只能有一个钝角。

师:我们学习知识,必须知其然并知其所以然。

师:三角形中还有许许多多的学问,让我们在以后的学习中继续去研究。

三角形内角和教学方案篇三

我所讲的课题是“三角形内角和定理的证明”。我认为本节的重点是通过证明三角形的内角定理让学生感悟出辅助线的做法。

我的导入市让学生感受一些动手操作实验中误差,从而进一步认识到证明的必要性,引出本节所要研究的课题“三角形的内角和定理”,这个定理我们在初一的时候就已经学会运用了,但是这个定理到底如何证明呢?这时,本节的目标就已经明确下来了——三角形内角和定了的证明。证明的过程中,我通过课前准备好的三角形道具,让我的学生通过撕撕拼拼的方法,把三角形的三个内角拼成我们所熟悉的平角或者是同旁内角的关系,那么这个定理的证明过程就完全展示出来了,然后师生共同把我们自己的做法转化成准确的数学语言加以证明,在证明的过程之中,辅助线就自然而然的运用到其中。这时,本节的重点和难点也就自然而然地被突破,要让学生感觉辅助线不是由老师强加告之而明白证明的方法,而是由学生自己在拼图的过程中亲身感悟出来的知识。

课后我认为本节中的成功之处有以下几点。

4、在本节“三角形内角和定理”的应用阶段,我设置了“你来讲”题目,而且此类题目的要求是哪位同学想尝试一下,等学生站起来准备好之后,教师再把题目投影出来,不仅要锻炼学生的思维速度,而且也间接地培养了学生的临考能力,同时得到结果后要为同学们讲解本题的解法。我个人认为,给同学们讲题目的过程中收获是更多的。

5、在本节课的整个流程中,师生之间的配合非常地默契,教师能够关注每一个学生,学生的思维也在短短的45分钟内得到了充分地发散和发挥,通堂的气氛活跃、轻松。

课后我认为本节课中的不足之处:

3、还是没有改掉急躁的毛病,一些问题还是急于说出答案,没有给学生们足够的思考时间,这是其一。其二,教师讲得过多,没有给学生充足的自主权,没有把课堂还给学生。针对自己的优点和缺点,在以后的教学工作中要注意积累和进步。

三角形内角和教学方案篇四

课时:1。

教学准备:三角形、量角器。

教学目标:1、通过测量撕拼、折叠等方法,探索和发现三角形三个内角的度数和等于180°。

2、已知三角形两个角的度数,会求出第三个角的度数。

基本教学过程:

一、创设问题情境。

大三角形说:“我的个头大,所以我的内角和一定比你大。”小三角形很不甘心地说:“是这样的吗?”我们来做一回裁判。

二、自主探究,创建数学模型。

1、分小组测量,比较。寻找不同形状的三角形。填在书上。

2、你发现了什么?

3、那如果把三个角撕下来,拼在一起,应该很接近平角了?

这是三角形的一个很隐秘的特征,你记得了吗?

三、巩固与应用。

1、那如果知道三角形三个角中的'两个角,就应该可以知道另一个角的大小了。第31页试一试。

2、第32页练一练1。

3、第2题。

4、实践活动。

四、总结与拓展。

这节课你了解到了什么?

教学反思:一开始上课创设问题情境,提出疑问,引导学生自主探究,分组测量三角形内角和的度数,在测量的过程中学生发现每个三角形的三个内角和接近180度。提醒学生注意测量时有误差。接下来通过撕拼、折叠等方法,验证三角形的内角和。这样学生记忆深刻。

三角形内角和教学方案篇五

在学校教学示范课上,讲了《三角形的内角和》一课。整节课还算比较顺利,在课堂是完成了教学目标,并且体现了小组合作学习的探究的过程。现在总结一下课堂上的几点不足:

在课堂教学的重点过程中,我设计的是小组合作探究,“先讨论有几种验证方法,再分别选择不同的方法验证,验证后在小组内交流”这样的目的是为了在尽量短的时间内使学生通过不同的验证方法得出共同的的结论,在交流的过程中学生能够清晰的观察到不同的验证方法,这样一个人的验证过程就成了几个人人学习成果。既节省了时间,又能让学生接受到尽量多的信息。但是学生们的表现却不令人满意,也许是公开课学生放不开的原因,他们只是各自验证完了和同桌交流一下,完全没有以往在班级里那种热烈讨论的气氛。虽然我在后面的学习汇报过程中使用了投影仪展示,但还是不如学生小组内交流更直接。因此,我这一设计的目的效果不理想。

由于在试讲的过程中我设计的最后一个练习题没有完成,而这一道题又是这堂课教学内容一个升华,因此我想尽量完成。在课堂教学的过程中我尽量控制时间,由于过于注意时间,导致了在学生用投影仪演示完后,为了更清晰的演示折、拼的过程的动画忘了播放,影响了又一个给学生直观展示的机会。这一问题的出现我觉得是我自身驾驭课堂的能力还不够,有待于进一步提高。

三角形内角和教学方案篇六

整节课通过巧妙的设计,让学生经历了观察、发现、猜测、验证、归纳、概括等数学活动,切实体现了新课程的核心理念“以学生为本,以学生的发展为本”。具体体现在以下几个方面:

为学生提供了丰富的结构化的学习材料,有各类的三角形、相同的三角形等,促使学生人人动手、人人思考,引导学生在独立思考的基础上进行合作与交流。在这一过程中发展学生的动手操作能力、推理归纳能力,实现学生对知识的主动建构。

在验证三角形内角和是180度的过程中,有意识地引导学生认识到撕拼的验证方法其实是把三角形的内角和转化成了平角,使学生对“转化”的数学思想有所感悟;在对测量的结果出现不同答案的交流过程中,使学生认识到测量时会出现误差,从而培养学生严谨的、科学的学习态度和探究精神。

本节课上,延伸了教材,拓宽了学生的知识面,把学生的学习置于更广阔的数学文化背景中,激起了学生对数学的强烈兴趣,激发了学生积极向上的学习情感。

学生在折纸验证三角形的内角和后汇报时,学生的表达不够清楚,老师的引导不能及时跟进。再次教学中,要充分发挥学生的主体作用,适时地引导好学生思考,注重学生的实际操作,同时培养学生的语言表达能力。

三角形内角和教学方案篇七

遵循由特殊到一般的规律进行探究活动是这节课设计的主要特点之一。同学对三角尺上每个角的度数比较熟悉,就从这里入手。先让同学算出每块三角尺三个内角的和是180°,引发同学的猜测:其它三角形的内角和也是180°吗?接着,引导同学小组合作,任意画出不同类型的三角形,用通过量一量、算一算,得出三角形的内角和是180°或接近180°(丈量误差),再引导同学通过剪拼的方法发现:各类三角形的三个内角都可以拼成一个平角。再利用课件演示进一步验证,由此获得三角形的内角和是180°的结论。这一系列活动潜移默化地向同学渗透了“转化”数学思想,为后继学习奠定了必要的基础。最后让同学运用结论解决实际问题,练习的布置上,注意练习层次,共布置三个层次,逐步加深。练习形式具有趣味性,激发了同学主动解题的积极性。第一个练习从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。这些题检测不同层次的同学是否掌握所学知识应该达到的基本要求,顾和到智力水平发展较慢和中等的同学,第3个练习设计了开放性的练习,在小组内完成。由一个同学出题,其它三个同学回答。先给出三角形两个内角的度数,说出另外一个内角。有唯一的答案。训练多次后,只给出三角形一个内角,说出其它两个内角,答案不唯一,可以得出无数个答案。让同学在游戏中消除疲倦激发兴趣,拓展同学思维。兼顾到智力水平发展较快的同学。在整个公开课教案中,本着“学贵在思,思源于疑”的思想,不时创设问题情境,让同学去实验、去发现新知识的微妙,从而让同学在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念和推理能力。

教学目标。

1.让同学亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。

2.让同学在动手获取知识的过程中,培养同学的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向同学渗透“转化”数学思想。

3.使同学体验胜利的喜悦,激发同学主动学习数学的兴趣。

教材分析。

三角形的内角和是三角形的一个重要特征。本课是布置在学习三角形的概念和分类之后进行的,它是同学以后学习多边形的内角和和解决其它实际问题的基础。同学在掌握知识方面:已经掌握了三角形的分类,比较熟悉平角等有关知识;能力方面:经过三年多的学习,已具备了初步的动手操作能力和主动探究能力以和合作学习的习惯。因此,教材很重视知识的探索与发现,布置了一系列的实验操作活动。教材出现教学内容时,不但重视体现知识的`形成过程,而且注意留给同学充沛进行自主探索和交流的空间,为教师灵活组织教学提供了清晰的思路。概念的形成没有直接给出结论,而是通过量、算、拼等活动,让同学探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

教学重点。

让同学经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备。

多媒体课件、学具。

教学重点。

让同学经历“三角形内角和是180°”这一知识的形成、发展和应用的全过程。

教学准备。

多媒体课件、学具。

教学流程:

一、游戏激趣,设置悬念。

1、猜角游戏:学生任意报出两个角的度数,教师快速猜出第三个角的度数。

2、你们想知道游戏的秘密吗?这节课我们共同研究三角形的内角和,板书课题。

二、探究新知,猜想验证。

2.验证。怎样验证“三角形的内角和等于180°”呢?请同学们先在小组里讨论讨论,可以怎样进行验证?再选择合适的材料,以小组为单位进行验证。比一比,哪个组验证的方法多,有创意。学生分小组活动,教师参与学生的活动,并给予必要的指导。

3、汇报哪个小组先来汇报,你们是怎样验证的?

4、归纳。通过刚才的活动,我们得出了什么结论?板书:三角形的内角和等于180°。

小结:“猜想—验证”是一种很有效的科学研究方法。有很多重大的科学发现,就是通过这一方法得到的。

6、下面,我们来看看书中是怎样验证的。你还有什么疑问吗?

7、游戏的秘密:因为三角形的内角和等于180°,所以用180°减去已知的两个角的度数,就可以得到第三个角的度数。

三、师生互动,拓展提高。

1.猜一猜:猜角游戏”a已知两个角的度数,求第三个角的度数。b给出一个角,求其它两个角的度数。c等边三角形,求三个角的度数。

2.算一算:四边形、六边形的内角和用三角形内角和的知识知道了四边形内角和,六边形的内角和,七边形,八边形,n边形的内角和是多少度?有没有什么规律可循,希望同学们能用学到的知识和方法去探究问题,你还会有一些精彩的发现。

四、师生交流,体验成功。

今天你的收获是什么?你还有什么不明白的地方吗?

三角形内角和教学方案篇八

“合作探究,实验论证”生动地诠释了新教育的基本理念,我在本节课新知识传授时很好的把握三个环节。

一、通过两个三角形因为内角和大小吵架导出新课,提出问题到底是谁的内角和大,激发了学生的求知欲,和学习兴趣。

二、让学生先猜想内角和的大小。教师引导学生讨论验证方法,掌握要领。上课开始,我通过提问三角板中每个角的度数以及每块三角板的内角的和是多少?初步让学生感知直角三角形的内角和是180,然后质疑:这仅仅是一副三角板的内角和,而且也是直角三角形,那是不是所有的三角形中的三个内角的都是180°呢?这个问题一提出去就激发学生的探究学习的热情。因此接着就让学生讨论:有什么办法可以验证得出这样的结论。学生提出度量、折一折、拼一拼等方法。

三、动手操作验证猜想。要求学生小组合作,动手验证。通过小组内交流,使学生认识到可以通过多种途径来验证,可以量一量、撕一撕、拼一拼、折一折。在明确验证方法后,学生在小组内通过动手操作、记录、观察,验证三角形的内角和是否为180°。之后我组织学生在全班汇报交流,有的小组通过量一量、算一算的方法,得出三角形的内角和是180°或接近180°(测量误差);有的小组通过撕一撕、拼一拼的方法发现:各类三角形的三个内角可以拼成一个平角。还有的小组通过折一折、拼一拼的方法也发现:各类三角形的三个内角都可以拼成一个平角。此时我利用课件进行动态演示,在演示中进一步验证,使学生在小组合作、自主探究、全班交流中获得了三角形的内角和的确是180°的结论。

四、练习设计,由易到难。

这节课在练习的安排上,我注意把握练习层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角度数,求另一个角。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决,在没有告知直角三角形的另一个角时,如何求出第三个角。

通过一节课的学习,同学们基本掌握三角形内角和的知识,并能运用知识点进行习题练习。小组合作也激发了学生们的学习兴趣,效果不错!

三角形内角和教学方案篇九

北师大版四年级数学下册。

1、探索与发现三角形的内角和是180°,已知三角形的两个角度,会求出第三个角度。

2、培养学生动手操作和合作交流的能力,促进掌握学习数学的方法。

3、培养学生自主学习、积极探索的好习惯,激发学生学习数学应用数学的兴趣。

重点掌握三角形的内角和是180°,会应用三角形的内角和解决实际问题;难点是探索性质的过程。

《三角形内角和》属于空间与图形的范畴,是在学生已经接触了三角形的稳定性和三角形的分类相关知识后对三角形的进一步研究,探索三个内角的和。教材中安排了学生对不同形状的、大小的三角形进行进行度量,运用折叠、拼凑等方法发现三角形的内角和是180°。扩充了学生认识图形的一般规律从直观感性的认识到具体的性质探索,更加深入的培养了学生的空间观念。

一、创设情境,激发兴趣。

出示课件,提出两个两个疑问:

1、两个大小不一样的两个三角形的对话我比你大,所以我的内角和比你大,是这样的吗?

二、初建模型,实际验证自己的猜想。

在第一步的基础上学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和,从而证明三角形的内角和与三角形的大小和形状没有关系都接近180度。这时教师要组织学生进行小组合作,每人用量角器量出一种三角形(锐角三角形、钝角三角形、直角三角形、等腰三角形、等边三角形)的三个内角,并计算出它们的总和是多少?把小组的测量结果和讨论结果记录下来以便全班进行交流。

三、再建模型,彻底的得出正确的结论。

因为在上一环节学生已经得出三角形的内角和大约都是或接近180度。因为我们在测量时由于测量人不同、测量工具不同可能产生一些误差。有的同学难免可能猜想三角形的内角和就是180度呢?我们继续研究和探索。除了测量外我们是否可以利用我们手中的三角形通过拼一拼、折一折、画一画的方法来证明三角形的内角和都是180度呢?教师放手让学生去思考、去动手操作,对有困难和有疑问的同学进行提示和指导。然后让学生到前面演示验证的方法,教师借助多媒体进行演示。

四、应用新知,巩固练习。

1、算一算,对于不同形状的三角形给出其中的两个角求第三个角的度数。(1小题属于基本练习)。

2、试一试,在直角三角形中已知其中的一个角求另一个角的度数。

3、想一想,已知等腰三角形的顶角如何算出它的两个底角;已知等腰三角形的一个底角的度数求三角形的顶角。

五、拓展与延伸。

通过三角形的内角和是180度的事实来探讨四边形、五边行的内角和。

三角形内角和教学方案篇十

这也正是我本节课要与学生共同研究的问题。这时学生想说为什么又不知怎么说,又因不知道怎么说而感情特别激动。处于这种状态的学生注意力特别集中,学习兴趣异常高涨,到了一触即发的地步。于是我让他们将课前准备好的三角形拿出来进行研究,学生通过折一折、拼一拼、剪一剪、之后找到自己的验证方法时,他们体验了成功,也学会了学习。在这节课中我们共同找到了几种验证三角形内角和是180°方法。学生们拿着他们手中的三角形,在讲台上讲述自己的验证方法,虽然有的`方法很不成熟,但也可以看出这个过程中,渗透了他们发现的乐趣。

有的学生将三角形的三个角都撕下来拼接到一起,有的同学将三角形的三个角沿着三角形的中位线折到一起……其中有一组同学竟然用稚嫩的声音说:可以用数学方法来证明。于是他们阐述自己借助与三角形底边平行的线与三角形所形成的内错角进行证明的方法。

至此学生完成了感性认识到理性认识的转化过程,充分展示了数学地思维方式和思想方法。

三角形内角和教学方案篇十一

1、通过量、剪、拼、摆等直观操作的方法,让学生探索并发现三角形内角和等于180度。

2、在活动交流中培养学生合作学习的意识和能力,让学生经历猜测探索总结的数学学习过程,在实验活动中体验探索的过程和方法。

3、通过运用三角形内角和的性质解决一些简单的问题,使学生体会数学与现实生活的联系,体会到数学的价值,增加学生学数学的信心和兴趣。

探索发现三角形内角和等于180并能应用。

三角形内角和是180的探索和验证。

师:大家喜欢猜谜语吗?

生:喜欢。

师:下面请大家猜一个谜语(大屏幕出示形状似座山,稳定性能坚。三竿首尾连,学问不简单。

(打一几何图形))

生:三角形。

师:三角形中都有哪些学问?

生:三角形有三条边,三个角,具有稳定性。

生:三角形按角分,可以分成锐角三角形、直角三角形、钝角三角形。

生:三角形按边分,可以分成等腰三角形,不等边三角形,其中等腰三角形又包含了两条边相等的三角形和等边三角形。

生:一个三角形中最多只能有一个直角,最多只能有一个钝角,最少有两个锐角。

生:三角形的内有和是180。

生:(一脸疑惑)

师:(板书:三角形的内角和是180),你有什么疑惑? 生:什么是内角?

生:每个三角形的内角和都是180吗?

(根据学生的问题,在三角形的内角和是180后面加上一个?)

1、理解内角 师:什么是内角?

生:我认为三角形的内角就是指三角形的三个角。

师:三角形的每个角都是三角形的内角,每个三角形都有三个内角。

2、理解内角和。

师:那三角形的内角和又是指什么?

生:我认为三角形的内角和就是把三角形的三个内角的度数加起来的和。

师:为了方便,我们将三角形的每个内角编上序号1、2、3、我们叫它1、2、3,这三个角的度数和,就是这个三角形的内角和。

3、实践验证

师:每个三角形的内角和都是180吗?用什么方法来验证呢?

生:量一量每个角的度数,然后加起来看看是不是180。

师:请大家拿出课前准备的三角形,亲自量一量,算一算。(学生动手量一量)

师:谁愿意把你的劳动成果和大家分享一下?

生:我量的这个三角形的三个内角的度数分别是60、60、60,加起来一共是180。

师:这位同学量的是一个锐角三角形,并且是比较特殊的三角形等边三角形。

生:我量这个三角形的三个内角的度数分别是45、45、90,加起来一共是180。

师:这是我们三角尺中的一个,也比较特殊,是一个等腰直角三角形。

生:我量的是三角尺中的另一个,三个内角的度数分别是60、30、90,加起来一共是180 生:我量的是钝角三角形,三个内角的度数分别是85、60、38,加起来一共是183。

师:你发现了什么?

生:有的三角形的内角和是180,而有的三角形的内角和却不是180。

师:看来三角形的内角和不一定是180。

生:老师,测量会有误差,量出来的不是很精确,那么求出来的结果也不够精确。虽然不都是三个内角加起来不都是180,但都接近180。

生:都接近180就能说一定是180吗?

师:科学来不得半点虚假,看来这个是不能让大家信服的。那还可以用什么方法来验证呢?下面请同学们小组合作,发挥小组成员的智慧,充分利用大家的学具进行验证,比一比哪些组的方法富有新意,开始!

(学生在小组内进行探索验证。教师巡视,参与到学生的研究中)

师:请每个小组选择一个代言人,和大家分享一下你们的智慧。

生:(边展示边交流)我们小组运用了折一折的方法,把三角形的三个内角都向内折,三个内角就拼成了一个平角,也就是180,所以我们小组得出三角形的内角和是180。

生:我们小组也有折的直角三角形,钝角三角形。

(其它的成员展示不同的三角形)

师:看这个小组的同学想问题多全面呀,不仅想到了用什么方法,还想到了用不同的三角形进行验证,老师实在是佩服你们组的智慧,让我们把掌声送给他们!

师:哪个小组和他们的方法不一样?

生:我们小组把三角形的三个内角都撕了下来,拼在了一起,正好拼成了一个平角,也就是180。我们也实验了不同的三角形,三个内角都可以拼成平角,所以我们小组得出结论,三角形的内角和是180。

师:这个小组的方法简便,易操作,很好。

生:我们小组成员是这样想的,一个长方形有4个直角,每个直角90,那么长方形的内角和就是360,每个长方形都可以平均分成两个直角三角形,每个直角三角形的内角和就是180。 师:你们小组很聪明,从长方形的内角和联想到直角三角形的内角和是180,从不同的角度去思考问题,谢谢你为我们提供了这么好的方法!

4、小结

生:没有。

师:(去掉问号)那就让我们大声地读出来三角形的内角和是1800。

1、说一说每个三角形的内角和是多少度

师:(出示一个大三角形)这个大三角形的内角和是多少度?

生: 180

师:(出示一个小三角形)这个小三角形的内角和是多少度?

生:180

师:(演示)把这两个三角形拼在一起,拼成的大三角形的内角和是多少度?

生:180

生:把两个三角形拼成一个大三角形,两个直角不再是大三角形的内角,所以少了180

师:(演示)把一个大三角形分成两个三角形,每个三角形的内角和是多少度?

生:180

2、求下面各角的度数

师:如果老师告诉你一个三角形的两个角的度数,你能说出第三个角的度数吗?

(出)

3、一个等腰三角形的风筝,它的一个底角是70,它的顶角是多少度?

师:三角形的内角和在我们的生活中应用很广泛,老师给大家带来一个在建筑中应用的例子。

生:用量角器量一量

师:量哪个角?量一量斜拉的钢索与桥柱形成的夹角吗?

师:你真是个善于观察、善于思考的孩子,努力学习,将来一定会成为一名优秀的建筑师。

四、回顾总结,拓展延伸

师:40分钟很快就过去了,你愿意把自己的收获与大家共同分享吗?

生:我知道了三角形的内角和是180。

生:无论是大三角形,还是小三角形,无论是锐角三角形,还是钝角三角形,还是锐角三角形,内角和都是180。

生:把一个大三角形分成两个小三角形,每个三角形的内角和还是180,把两个小三角形拼成一个大三角形,大三角形的内角和还是180。

生:我可以用撕、拼、折等方法来验证三角形的内角和是180。

师:这个同学不仅学会了知识,而且学会了方法,我们只有学会了方法,才能更好地去探究更多的知识。

师:那你现在知道为什么一个三角形内只能有一个直角或一个钝角吗?

生:两个直角的度数之和是180,再加上一个角,三个角的度数之和超过了180,所以一个三角形中最多只能有一个直角。

生:两个钝角的度数之和就超过了180,再加上一个角,就更大了,所以一个三角形中最多只能有一个钝角。

师:我们学习知识,必须知其然并知其所以然。

师:三角形中还有许许多多的学问,让我们在以后的学习中继续去研究。

三角形内角和教学方案篇十二

教学内容:。

教材第67页例6、“做一做”及教材第69页练习十六第1~3题。

教学目标:。

1.通过动手操作,使学生理解并掌握三角形的内角和是180°的结论。

2.能运用三角形的内角和是180°这一结论,求三角形中未知角的度数。

3.培养学生动手动脑及分析推理能力。

重点难点:。

教学准备:。

导学过程。

1、什么是平角?平角是多少度?

2、计算角的度数。

3、回忆三角形的相关知识。(出示直角三角形、锐角三角形、钝角三角形)。

(设计意图:让学生经历质疑验证结论这样的思维过程,真正整体感知三角形内角和的知识,真正验证了“实践出真知”的道理,这样的教学,将三角形内角和置于平面图形内角和的大背景中,拓展了三角形内角和的数学知识背景,渗透数学知识之间的联系,有效地避免了新知识的“横空出现”。同时,培养学生的综合素养)。

1、读学卡的学习目标、任务目标,做到心里有数。

4、验证:

(1)初证:用一副三角板说明直角三角形的内角和是180°。

(2)质疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。

(3)再证:请按学卡提示,拿出学具,选择自己喜欢的方式验证三角形的内角和是180°(师巡视)。

(4)汇报结论(清楚明白的给小组加优秀10分)。

5、结论:修改板书,把“?”去掉,写“是”。

6、追问:把两块三角板拼在一起,拼成的大三角形的内角和是多少?说明三角形无论大小它的内角和都是180°(课件演示)。

7、看微课感知“伟大的发现”(设计意图:让学生感受自己所做的和帕斯卡发现三角形内角和是180°的过程是一样的,从而培养孩子的自信心和创造力。)。

1、填空。

(1)一个三角形,它的两个内角度数之和是110,第三个内角是().

(2)一个直角三角形的一个锐角是50,则另一个锐角是()。

(4)一个等腰三角形,它的一个底角是50,那么它的顶角是()。

(5)一个等腰三角形的顶角是60,这个三角形也是()三角形。

2、判断。

(1)一个三角形中最多有两个直角。()。

(3)有一个角是60的等腰三角形不一定是等边三角形。()。

(4)三角形任意两个内角的和都大于第三个内角。()。

(5)直角三角形中的两个锐角的和等于90。()。

根据所学的知识,你能想办法求出四边形、五边形的内角和吗?

1、小组讨论。2、汇报结果。3、课件提示帮助理解。

教学反思。

今天我讲了《三角形内角和》这部分内容,学生其实通过不同途径已经知道三角形内角和是180°,是不是说这节课的重难点就已经突破了,只要学生能应用知识解决问题就算是达到这节课的教学目标了呢?我想应该好好思考教材背后要传递的东西。

任何规律的发现都要经过一个猜测、验证的过程,不经历这个探究的过程,学生对于这一内容的认识就不深刻,聪明的孩子还会怀疑三角形内角和是180°吗?。因此这个结论必须由实践操作得出结论。所以最终我把本课定为一个实践探究课。

如何开篇点题,是我这次要解决的第一个问题。怎样才能让学生由已知顺利转向对未知的探求,怎样直接转向研究三个角的“和”的问题呢?因此我只设计了三个简单的问题然学生快速进入主题。

如何验证内角和是180°,是我一直比较纠结的环节。由于小学生的知识背景有限,无法利用证明给予严格的验证。只能通过动手操作、空间想象来让孩子体会,这些都有“实验”的特点,那么就都会有误差,其实都无法严格的证明。但是这节课我们除了要尊重知识的严谨还应该尊重孩子的认知。如果通过剪拼、折叠、想象后,还有的孩子认为三角形内角和是180°值得怀疑的话,这无非也是件好事,说明孩子体会到了这些方法的不严谨,同时对知识有一种尊重,对自己的操作结果充满自信,否则拼个差不多也可以简单的认同了内角和是180°。

本节课的练习的设置也是努力做到有梯度、有趣味、有拓展。从开始的抢答内角和体会三角形内角和跟大小无关、跟形状无关,到已知两个角的度数求第三个角,这些都是巩固。之后的,求拼接两个完全一样的直角三角形后,得到的图形的内角和是多少度,求被剪开的三角形,形成的新图形的内角和是多少度,这些都是对三角形内角和的一次拓展。让学生的认知发生冲突,提出挑战。

给学生一个平台,她会给你一片精彩。通过动手操作来验证内角和是否是180°,学生最容易出现的就是把3个角剪下来拼一拼,个别人可能会想到折的方法。而这节课上有个小姑娘研究的是直角三角形,她的折法很巧妙,将两个锐角折过来,刚好拼成一个直角,这个直角和原来三角形已有的直角就重叠在了一起,两个直角就180°。虽然我知道这样的方法,但是通过试讲,孩子们没有这样的表现,我就没有奢求什么。但是今天的课堂太丰富多元了。这样的方法都出现了让我觉得特别值得肯定。为什么会这样呢?我想还是因为我给了他们足够的时间去思考。当有了空间,孩子才会施展他们的才华。这是我的一大收获。

前边验证时间过多,到练习时间就有些少,特别是求四边形和六边形内角和时,给的时间过短,学生没有充分思维。

总而言之,这次的公开课,给了我一次学习和锻炼的机会。在教案设计时,该怎么样把每一个环节落实到位,怎么样说好每一句话,预设好每一个环节,在教研中听取各位教师的点评,让我有了茅塞顿开的感觉。在此,我衷心感谢数学团队教师对我中肯的评价,感谢他们对我的直言不讳,无私奉献自己的想法,让我在教学中,能够在一个轻松和谐的教学氛围中与学生共同去探讨,去发现,去学习。

三角形内角和教学方案篇十三

在学校教学示范课上,讲了《三角形的内角和》一课。整节课还算比较顺利,在课堂是完成了教学目标,并且体现了小组合作学习的探究的过程。现在总结一下课堂上的几点不足:

1、学生小组合作学习的能力还有待于进一步培养。

在课堂教学的重点过程中,我设计的是小组合作探究,“先讨论有几种验证方法,再分别选择不同的方法验证,验证后在小组内交流”这样的目的是为了在尽量短的时间内使学生通过不同的验证方法得出共同的的结论,在交流的过程中学生能够清晰的观察到不同的验证方法,这样一个人的验证过程就成了几个人人学习成果。既节省了时间,又能让学生接受到尽量多的信息。但是学生们的表现却不令人满意,也许是公开课学生放不开的原因,他们只是各自验证完了和同桌交流一下,完全没有以往在班级里那种热烈讨论的气氛。虽然我在后面的学习汇报过程中使用了投影仪展示,但还是不如学生小组内交流更直接。因此,我这一设计的目的效果不理想。

2、我本身驾驭课堂的能力还有待于提高。

由于在试讲的过程中我设计的最后一个练习题没有完成,而这一道题又是这堂课教学内容一个升华,因此我想尽量完成。在课堂教学的过程中我尽量控制时间,由于过于注意时间,导致了在学生用投影仪演示完后,为了更清晰的演示折、拼的过程的动画忘了播放,影响了又一个给学生直观展示的机会。这一问题的出现我觉得是我自身驾驭课堂的能力还不够,有待于进一步提高。

三角形内角和教学方案篇十四

核心提示:《三角形的内角和》是人教版数学四年级下册第五单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、...

《三角形的内角和》是人教版数学四年级下册第五单元的一节课,是在学生学习了三角形的特征以及三角形分类的基础上,进一步研究三角形三个角的关系。课堂上我注意留给学生充分进行自主探究和交流的空间,让学生探索、实验、发现、讨论交流、推理归纳出三角形的内角和是180°。

一、创设情境,营造探究氛围。

二、小组合作,自主探究。

三、练习设计,由易到难。

探究新知是为了应用,这节课在练习的安排上,我注意把握练习层次,共安排三个层次,由易到难,逐步加深。在应用“三角形的内角和是180°”这一结论时,第一层练习是已知三角形两个内角或一个内角的度数,求另一个角。练习内容的安排从知识的直接应用到间接应用,数学信息的出现从比较显现到较为隐藏。第二层练习是判断题,让学生应用结论思考分析,检验语言的严密性。第三层练习是让学生用学过的知识解决四边形、六边形的内角和,使学生的思维得到拓展。这些练习顾及到了智力水平不同的学生,形式上具有趣味性,激发了学生主动解题的积极性。

本着“学贵在思,思源于疑”的思想,这节课我不断创设问题情境,让学生去猜想、去探究、去发现新知识的奥妙,从而让学生在动手操作、积极探索的活动中掌握知识,积累数学活动经验,发展空间观念。

三角形内角和教学方案篇十五

备学提纲:

1、你能用哪些方法验证“三角形的内角和是180°”这一猜想?至少想出两种。写出具体的操作过程。

3、准备三个锐角三角形,三个直角三角形,三个钝角三角形和一张正方形纸。

批阅了孩子们的预习作业,亮点是孩子开始会提问题了,如:

1、什么是内角?

2、两个三角尺拼成一个三角形,这个三角形的内角和是多少?是360°吗。

5、用正方形纸折几次,才有8个三角形呢?

6、既然有内角那有没有外角呢?如果有外角,那外角的度数是和内角的一样吗?

存在的问题:

1、孩子们想到的验证内角和的方法局限在:用计算直角三角形的各个角的度数的和;画一个三角形,量出每个角的度数再计算。只有一人(季##提到用折的方法来验证,看来,孩子们还是不会读数学课本,没有看懂课本上图示的折的过程,要加强阅读课本的指导,这是以前忽视阅读文本带来的不良结果,直接影响了孩子们的自学能力。

2、我设计的预习题,没能从学生的实际出发,我觉得孩子们已经知道了三角形的内角和是180°,就没有引导他们去理解什么叫内角?这也是孩子们不知如何去验证内角和的一个原因。

今天的课堂,花了一些时间指导孩子如何阅读课本,尤其是阅读课本上的图,看着课本上的图示来操作,所以教学环节不那么紧凑了,印象最深的是:

孙##和陈##两个有些内向的女孩子,在课堂上能主动站起来说出自己的想法,带着自己的三角形到前面来演示如何用折的方法验证三角形的内角和是180°。刘##今天能主动补充别人的回答。

每一个孩子都充满着无穷的潜力,他们暂时的落后,是因于学习对象没有激起他们的兴趣,是因为缺少一个能挖掘潜力的人!

【本文地址:http://www.xuefen.com.cn/zuowen/15871724.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档