一个好的教案能够帮助教师提高教学效果,使学生更加主动积极地参与学习。教案小编为大家搜集整理的教案范文,从多个角度展示了不同的教学思路和方法。
比的意义教案教学设计篇一
1、知识目标:使学生在经历实际测量的活动中,了解小数的产生。学生能理解小数的意义,认识小数的计数单位和相邻两个计数单位之间的进率。
2、能力目标:培养学生动手操作,观察,分析,推理能力和抽象概括能力。
3、情感目标:通过学习小数的产生和发展过程,提高学生学习数学的兴趣;增强对数学的理解和应用数学的信心。
小数的意义是一节概念教学课,是在学生学习了“分数的初步认识”和“元角分与小数”的知识下,以已有的经验为背景,让学生经历认、读、写小数的学习过程并理解小数的意义,体会小数与生活的密切联系,从而实现认识的提升。
认识小数的产生和意义。认识小数的计数单位和相邻两个计数单位之间的进率。
一、创设情境,了解小数的产生。
1、回忆一下:我们学过什么长度单位?
3、刚才我们在测量这条绳子的时候,如果用米作单位,就得不到整数的结果。其实像这样得不到整数结果的例子在生活中还有很多很多,于是聪明的人们除了发明用分数来表示之外,还发明了用小数来表示,于是小数就产生了。
4、揭题。(板书:小数的意义)。
二、自主探讨,理解小数的意义。
(一)研究一位小数。
这样的'3份是多长?写成分数是多少?写成小数是多少?这样的7份呢?
2、请同学们看,这几个小数的小数部分都只有一位,这样的小数我们把它叫做一位小数。
3、小结:我们把1米的尺子平均分成10份,这样的一份或几份可以用一位小数来表示。
4、说说你发现了什么?(分母是10的分数可以用一位小数来表示。)。
(二)研究两位小数(自助探究)。
2、像这样的小数,小数点后面有几位数,这样的小数我们叫做几位小数。
3、小结:我们把1米的尺子平均分成100份,可以用两位小数来表示。
4、说发现。
(三)研究三位小数。(自主探究)。
1、如果我把这每一段再平均分成10份,那么整条米尺我把它分成了几份?1份是多长?用米作单位,写成分数是多少?写成小数是多少?6份呢?13份呢?请同学们再说2个用毫米作单位的长度。刚才这两位同学说出了5毫米,23毫米,请同学们拿出草稿本,把这两个长度用分数表示,再用小数表示。
2、像这样的小数,小数点后面有几位数?这样的小数我们叫做三位小数。
3、小结:我们把1米的尺子平均分成1000份,可以用三位小数来表示。
4、说发现。
(四)推导。
1、如果我把1米的尺子平均分成了10000份,写成分数应该是几位小数呢?看来同学们的学习能力很强是,能够通过前面的知识,推出后面所学的知识。
1、讨论:分数和小数有怎样的联系呢?请同学们小组讨论,概括出分数和小数的联系。
刚才同学们通过讨论得出,分母是十的分数可以用一位小数来表示。分母是一百的分数可以用两位小数来表示。分母是一千的分数可以用三位小数来表示。这个就是小数的意义。
三、合作交流,探讨小数的计数单位。
1、填一填。
(1)0.3里有()个1/10,0.7里有()个1/10。0.04里有()个1/100,0.08里有()个1/100。
填一填,说说你是怎么想的。
像这样,0.3、0.7这样的一位小数,我们都可以看成是由若干个0.1来组成的,那么我们就说十分之一是一位小数的计数单位。读作十分之一,写作0.1。(板书:一位小数的计数单位时十分之一,写作:0.1)。
同样的道理,像这样,0.04、0.08这样的两位小数,我们都可以看成是由若干个0.01来组成的,那么我们就说百分之一是两位小数的计数单位。读作百分之一,写作0.01。(板书:两位小数的计数单位时百分之一,写作:0.01)。
请同学们猜一猜,三位小数的计数单位是什么?写作什么?(板书:三位小数的计数单位是千分之一,写作:0.001)。
2、0.1里有()个0.01,0.01里有()0.001。小组讨论,汇报。
四、巩固练习。
课件出示练习。
五、总结。
这节课你有什么收获?
比的意义教案教学设计篇二
2、感受数学知识是在人类生产和实践中产生的,体会数学在实际生活中的运用,培养学生对数学的兴趣和利用所学数学知识解决实际问题的能力。
1、理解分数的意义;。
2、了解分数单位,并会找分数单位;。
多媒体课件、小棒、一米长的绳子、小正方体、长方形纸等。
讲授法、小组合作探究法等。
(一)复习导入。
师:三年级的时候我们已经学过分数的初步认识,板书出示,这个分数读作?你能说一说它各部分的名称吗?今天这节课我们继续学习分数的相关知识,板书“分数的意义”。
(二)课堂新授。
1、介绍分数的'产生。
生活中,在测量、分物或计算时往往不能得到整数的结果,这时我们可以用分数来表示。
2、初步感知:
ppt出示,把一个饼平均分成四份,其中的一份可以用哪个分数来表示?如果这样把一个饼分成4份,其中的一份可以用表示吗?为什么不可以?因为没有平均分,板书“平均分”,强调在谈到分数的时候我们要考虑到平均分。
3、活动一、动手操作,再认识。
(1)准备。老师给每个小组准备了不同的学具,(出示学具)你能利用你手中的学具通过折一折、分一分、摆一摆等方法,表示出吗?找同学为大家朗读活动要求。
(2)小组活动。小组合作,动手操作,教师巡视。
(3)汇报展示。你能表示出一张纸的吗?4跟小棒的应该如何表示?你还用什么表示了?
(4)总结,认识单位“1”。刚才我们都是把哪些物体平均分的?像把一张纸平均分我们可以说成把一个物体平均分;把一米长的绳子平均分我们可以说成把一个计量单位平均分;把4根小棒、八个小立方体平均分,我们可以说成把一些物体平均分。一个物体、一个计量单位、一些物体都可以看做一个整体,一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。板书单位“1”。介绍这个单位“1”同我们之前学过的1不一样所以要加引号。
4、活动二、联系实际,加深对单位“1”的理解。
(1)你举出用单位“1”表示一个物体的例子吗?你能举出用单位“1”表示一个计量单位的例子吗?你能举出用单位“1”表示一些物体的例子吗?总结,单位“1”可小可大,自然界中小到一粒尘埃,大到整个宇宙都可以用单位“1”表示。
5、活动三、理解分数的意义。
(2)活动。你能任意写一个分数,并和同桌说一说你写的这个分数表示的意义吗?抽签决定第几小组给大家分享自己写的分数。教师板书。
6、认识分数单位。
整数有计数单位个、十、百、千等,分数也有计数单位,分数的计数单位是什么呢?请看大屏幕,“把单位‘1’平均分成若干份,表示其中一份的数就是分数单位”。以为例,把单位“1”平均分成5分,表示其中一份的数是,所以的分数单位是。举例练习。
(三)生活中的分数。
分数在我们的生活中随处可见,ppt出示:据统计五三班女生人数占全班人数的,你能说一说这里的所表示的意义吗?五三班在午托班吃饭的人数占全班人数的,你能说一说这里的所表示的意义吗?人从小到大,身体的比例一直在变化,新生儿的头长占身长的,5岁时头长占身长的,成年人的头长占身体的。
(四)课堂小结。
(五)练习巩固。
接下来我们来检测下大家的知识掌握情况。
1、填空。
(1)表示把x平均分成x份,取其中的x份。
(2)说出下面各数的分数单位。
(3)在括号里填上合适的分数。
2、判断。
(1)把一堆苹果平均分成4份,每份占这堆苹果的。
(2)把5米长的绳子平均分成7份,每份占全长的。
(六)课堂小结。
通过这节课的学习,你学到了什么?你还有什么疑惑?你有什么问题要问?
比的意义教案教学设计篇三
教学目标:
1.理解比的意义,知道比是表示两个数之间的一种关系。
2.会读比、写比、知道比的各个部分名称。
3.渗透“变与不变”的函数思想。
教学重点:理解比的意义,知道比是表示两个数之间的一种关系。
教学难点:沟通比与倍数、分数(百分数)、除法之间的内在联系。教学过程:
一、初步理解比是一种关系。
1、引入比。
(1)问题:一个摸球游戏,在盒子里要放黄球和红球两种球,要求黄球和。
红球按4比1,应该怎么放?
方案1:黄球4个,红球1个。
方案2:黄球8个,红球2个。
讨论:8个对2个应该是8:2,为什么也可以说成4:1,你能说明理由吗?
学生独立思考。交流:1个看作1份,4个就是4份,2个红球也可以看作1份,黄球有这样的4份,所以是4:1。黄球个数是红球个数的4倍。方案3:红球12个、白球3个;红球16个、白球4个;。。。。。。
讨论:为什么这些方法都是4:1?
(2)红球和黄球的比呢?
(3)小结:黄球个数除以红球个数等于4,黄球除以红球等于1/4。两个。
数的比其实就是两个数相除,4:1就是4除以1,1:4就是1除以4。
2、认识比的各个部分的名称。
中间象冒号的叫做“比号”,前面的`数叫做比的“前项”,后面叫做比的“后项”。
1、出示羊毛衫图。
(1)讨论:从这个2:3中,你可以得到哪些信息?
(2)2:3是羊毛和兔毛的比,那么,3:2是谁和谁的比?
2、出示新生儿图。
(1)讨论:这里的1:4是什么意思?
交流:1:4是指新生儿的头长是身长的1/4,身长是头长的4倍。
(2)如果新生儿的头长是10厘米,那么身长是多少?头长是15厘米呢?
新生儿的头长是1米呢?
说明新生儿的头长是有一定范围的。一般新生儿的身高在40到60之间。
(3)讨论:(指名以为学生)这位学生的头长与身长的比是:4吗?那么。
你估计大概是多呢?也就是说这个1:4是特指新生儿的。
3、举例。
1、出示:我坐飞机从杭州出发到成都,飞行的路程大约上1800千米,大约飞行了3小时。
(1)你看出了什么?
交流:飞机飞行的速度是1800÷3=600千米/小时。
1800:3,这是路程和时间的比。
(2)我们以前学的路程除以时间等于速度,其实就是路程和时间的比,结果就是速度。我们称它为“比值”,这里的600千米就是这个比的比值。
2、出示:嘉兴的特产是五方斋的粽子,花20元可以买4个。
讨论:你看到比了吗?
交流:总价和单价的比是20:4=5元/个。这里的比值就是单价。
四、总结提升。
1、总结。
(1)今天我们研究了什么?说说什么是比?
(2)比和我们以前学习的很多知识有联系,你能说说吗?
2、应用。(机动)。
(1)出示:地球储水量中,淡水与海水的比是4:141。
从杭州坐火车到成都,路程约是2480千米,需要行驶41小时。
今年流行16:9的宽频数字电视。
最新统计显示:我们在新生的婴儿中,男女人数的比约为119:100。
(2)说说你看懂了什么意思?
比的意义教案教学设计篇四
方程的意义(人教版义务教育课程标准实验教材五年级上册第四单元第二小节解简易方程的第一课时)。
新课标要求数学课程的培养目标要面向全体学生,适应学生个性发展的需要,使得人人都获得良好的数学教育,不同的人在数学上得到不同的发展。让学生获得数学活动经验,培养学生在活动中从数学的角度进行思考,直观地、合情地获得一些结果。学会用图形思考、想象问题,能从“数”与“形”两个角度认识数学。
本节课我根据盲生因视觉障碍,对事物缺少整体感知,不能准确地理解抽象的数学观念这一特点,我充分利用直观创设情境,恰当地构造数学问题,将抽象的数学关系具体化,调动学生的直观思维;让学生经历观察、感知、思考、猜想、验证、分类比较、归纳概括的过程。通过数形结合的方法实现抽象与具体之间的转变。
方程的意义这部分内容是在学生充分理解了四则运算的意义和会用字母表示数的基础上进行学习的。由学习用字母表示数到学习方程,从未知数只是结果到未知数参加运算,是学生学习数学方法的一次提升;也是学生又一次接触初步代数思想,是思维的一次飞跃。代数思维是数学学习的"核心思想",本课教学内容是学生从算术思维到代数思维的过渡。
1.根据天平平衡的原理,理解等式。能用方程表示简单的数量关系,理解方程的意义,渗透符号意识,发展数感。
2.使学生在观察、感知、思考、猜想、验证、分类比较、归纳概括的过程中,经历从现实生活或具体情境中抽象出数学问题,用数学符号建立方程,表示数学问题中的数量关系,培养学生形成方程模型的思想,掌握研究问题的方法。
3.分类分层教学,在学生学习数学知识的同时,体会数学与生活的密切联系,提高对数学的兴趣和应用意识。
结合具体情境理解方程的意义,用方程表示简单的等量关系。
从算术思维到代数思维的过渡。
玩具天平塑料香蕉小袋子多媒体课件、盲文及低视力卡片。
1.认识天平。
同学们认识天平吗?知道天平是干什么用的吗?(称质量、比较物体的质量)那天平是根据什么来称量或者比较物体的质量?(平衡)让学生用玩具天平来感知一下平衡(低视生看,老师协助全盲生用手慢慢向上托,直到手掌触到物体)。
低视力生看大屏幕,根据自己看到的画面,帮助全盲生把实物挂起来(天平左面有60克和40克的香蕉,右面有100克的香蕉)。
天平此时的状态怎么样哪?(低视力生观察,全盲生感知。)天平平衡说明什么?(左右两边质量相等)。
能用数学式子表示出来吗?
预设:40+60=10060+40=100(板书)。
像这样含有等号的式子我们叫它等式。
3、让学生再说几个等式。
1.理解不相等。
如果把左边40克的香蕉拿下去了,天平会怎样?(预设:左边轻,右边重。)。
此时天平的状态又怎样哪?(不平衡。)低视生观察,全盲生感知。
让学生用一个数学式子表示。(预设:60<100,10060。
刚才相等的式子叫等式,这样不相等的呢?(预设:不等式,或不知道。)。
2、让学生再说几个不等式。
1、猜想:如果把一个袋子放到天平的左边,天平会怎么样?可能会出现哪些情况?
2、交流。(预设:左边重,右边轻;右边重,左边轻;一样重。)。
3、验证:低视力生协助全盲生操作验证(教师协助)。
1、谈话:看来这一个小小的天平帮我们记录了这么多的数学现象,现在我把天平藏起来了(把玩具天平收起来)。
还有天平吗?(预设:没有。)。
你心中的天平还有没有?(有)。
2、出示课件:
3、低视力生看大屏幕,并叙述图意。
5、让学生用数学式子表示出来。(预设:5x=800)并让学生说一说5x表示的意思。(预设:5x是5个苹果的质量)。
6、说一说:5个苹果的质量为什么用5x来表示?(预设:因为一个苹果的质量不知道,可以用x表示,5个苹果的质量就用5x来表示。)。
7、评价:真了不起,会用字母来表示不知道的数量,这个未知的数量也可以参与到我们的运算中来解决问题。
1、一小组为单位,让学生拿出自己的卡片,给刚才的式子分类。并思考分类标准。
2、学生交流(预设:
1、按是否是等式来分。
2、是否含有字母来分。
3、还有学生把60+x=100,5x=800单分一类)。
3、教师揭示:象60+x=100,5x=800就是方程。
4、让学生根据这两个式子的特点说一说什么叫方程?
5、教师点题:含有未知数的等式叫做方程。
1、让学生试着说一说方程与等式的关系。
2、学生交流。
3、教师引导:如果方程是一个大圆,方程应该是什么?(预设:一个小圆,在大圆中)。
刚才我们认识了方程,你能判断什么是方程吗?
1.应用概念,判断方程。
判断下面的式子是否是方程。(提问c类学生)。
x+515+5=202x+31036-x=9×32.应用概念,解决问题。
(1)课件出示:(提问b类学生)。
(5)课件出示:(提问a、b类学生)。
教法同上。
(6)课件出示:(提问a类学生)。
(7)先让低视生说说这幅图的意思?
(9)评价:真棒!用字母表示未知数参与到运算中,找到了图中的等量关系。
总结提升这节课你学到了什么?
(结合学生的回答,小结)。
(2)根据今天学习的知识,编一个关于方程的数学故事。
教学内容:苏教版四年级(第八册)教学目标:(1)使学生理解方程概念,感受方程思想。(2)经历从生活情景到方程模型的建构过程。
(3)培养学生观察、描述、分类、抽象、概括、应用等能力。
比的意义教案教学设计篇五
教学内容:。
人教版课标教材六年级上。
教学目标:。
1.理解比的意义,知道比是表示两个数之间的一种关系。
2.会读比、写比、知道比的各个部分名称。
3.渗透“变与不变”的函数思想。
教学重点:。
理解比的意义,知道比是表示两个数之间的一种关系。
教学难点:。
沟通比与倍数、分数(百分数)、除法之间的内在联系。
教学过程:。
1、引入比。
方案1:黄球4个,红球1个。
方案2:黄球8个,红球2个。
讨论:8个对2个应该是8:2,为什么也可以说成4:1,你能说明理由吗?
学生独立思考。交流:1个看作1份,4个就是4份,2个红球也可以看作1份,黄球有这样的4份,所以是4:1。黄球个数是红球个数的4倍。
(2)红球和黄球的比呢?
(3)小结:黄球个数除以红球个数等于4,黄球除以红球等于1/4。两个数的比其实就是两个数相除,4:1就是4除以1,1:4就是1除以4。
2、认识比的各个部分的名称。
中间象冒号的叫做“比号”,前面的数叫做比的“前项”,后面叫做比的“后项”。
1、出示羊毛衫图。
(1)讨论:从这个2:3中,你可以得到哪些信息?
(2)2:3是羊毛和兔毛的比,那么,3:2是谁和谁的比?
2、出示新生儿图。
(1)讨论:这里的1:4是什么意思?
交流:1:4是指新生儿的头长是身长的1/4,身长是头长的4倍。
说明新生儿的头长是有一定范围的'。一般新生儿的身高在40到60之间。
(3)讨论:(指名以为学生)这位学生的头长与身长的比是:4吗?那么你估计大概是多呢?也就是说这个1:4是特指新生儿的。
3、举例。
1、出示:我坐飞机从杭州出发到成都,飞行的路程大约上1800千米,大约飞行了3小时。
(1)你看出了什么?
交流:飞机飞行的速度是1800÷3=600千米/小时。
1800:3,这是路程和时间的比。
(2)我们以前学的路程除以时间等于速度,其实就是路程和时间的比,结果就是速度。我们称它为“比值”,这里的600千米就是这个比的比值。
2、出示:嘉兴的特产是五方斋的粽子,花20元可以买4个。
讨论:你看到比了吗?
交流:总价和单价的比是20:4=5元/个。这里的比值就是单价。
1、总结。
(1)今天我们研究了什么?说说什么是比?
(2)比和我们以前学习的很多知识有联系,你能说说吗?
2、应用。(机动)。
(1)出示:地球储水量中,淡水与海水的比是4:141。
从杭州坐火车到成都,路程约是2480千米,需要行驶41小时。
今年流行16:9的宽频数字电视。
最新统计显示:我们在新生的婴儿中,男女人数的比约为119:100。
(2)说说你看懂了什么意思?
比的意义教案教学设计篇六
1、使学生认识比例的“项”以及“内项”和“外项”。
2、理解并掌握比例的基本性质。
3、通过自主学习,让学生经历探究的过程,体验数学学习的快乐。
理解并掌握比例的基本性质。
探究发现比例的基本性质。
本课时设计,在“项”以及“内项”和“外项”的认识的设计上,以学生在老师的引导下逐步理解比例的有关知识,是以教师讲授为主。而在本课时第二大块内容,理解并掌握比例的基本性质,本课时设计中,为学生提供开放真实的问题,通过学生自主收集信息,尝试探索规律,引导学生写出不同比例,在此基础上放手让学生在观察中发现、思考,引导学生主动探索比例的基本性质。
教学步骤教师活动学生活动。
导入新课。
1、找找比比:
(判断下面的比,哪些能组成比例?把组成的比例写出来。)。
3:518:300.4:0.21.8:0.9。
5/8:1/47.5:32:89:27。
学生独立完成,重点说说判断过程。
2、今天我们继续研究比例的有关知识。
学生练习。
学生回顾判断两个比能否组成比例的方法。
探索规律1、认识比例各部分的名称。
(1)介绍“项”:组成比例的四个数,叫做比例的项。
(2)3:5=18:30学生尝试起名。
师介绍:比例的两项叫做比例的外项,中间的两项叫做比例的内项。
3:5=18:30。
内项。
外项。
(3)如果把比例写成分数的形式,你还能指出它的内、外项吗?
出示:3/5=18/30。
2、教学例4。
(1)理解题意,信息搜索:
提问:你能根据图中的数据写出比例吗?
(2)、学生写不同比例:
引导学生写出尽可能多的比例。并逐一板书,同时说出它们的内项和外项。
引导思考:仔细观察写出的'这些比例式,你能否发现有没有什么相同的特点或规律呢?
(3)、学生探索规律。
学生先独立思考,再小组交流,探究规律。(板书:两个外项的积等于两个内项的积。)。
(4)、写比例,验证规律:
是不是任意一个比例都有这样的规律?学生任意写一个比例并验证。
(5)、师生归纳比例的基本性质:在比例里,两个外项的积等于两个内项的积。这就是比例的基本性质。
3、思考分数形式的比例3/6=2/4,通过连线使学生明确:在这样的比例中,比例的基本性质可以表达为:把等号两端的分子、分母交叉相乘,结果相等。
4、练习:“试一试”判断能否组成比例。
出示“3.6:1.8和0.5:0.25”。让学生自己根据比例的基本性质判断,如果能组成比例就写出这个比例式。
学生练习:找出比例中的内项和外项。
6:5=36:30。
4:7=21:49。
学生自主表达,图中有哪些数据信息?
学生独立思考,再小组交流。
学生练习:如果用字母表示比例的四项,即a:b=c:d,那么这个规律可以表示成()。
学生分析哪两个数是外项,哪两个数是内项。
比较理解比例的基本性质。
学生思考后归纳:判断时可以先把两个比看成是比例。如果两个外项的积等于两个内项的积,两个比就能组成比例;如果不相等,就不能组成比例。
拓展提高。
1、做“练一练”
使学生明确:可以把四个数写成两个比,根据比值是否相等作出判断。也可将四个数分成两组,根据每组中两个数的乘积是否相等作出判断,其中运用比例的基本性质进行判断比较简便。
2、在()里填上合适的数。
5:3=():6。
4:()=():5。
3、做练习十第1.2题学生尝试练习后交流讨论。
先让学生尝试填写,再交流明确思考方法。
总结反馈通过今天的学习,你有哪些收获?
把你发现规律的方法介绍给朋友、亲人。
比的意义教案教学设计篇七
1、借助计数器,掌握小数的数位。
2、根据小数的数位顺序表,能理解数位顺序表上的计数单位,以及进率关系。
3、结合具体情境,能抽象出小数的基本性质的具体内容,并能牢固掌握和灵活运用。教学重点:
掌握小数的数位和计数单位。
掌握小数的基本性质。
课件、计数器。
(课件出示)1、填空。
3写成小数是10。
表示()写成小数是()100。
表示()写成小数是()表示()。
2、读一读下面一段话中的小数。
北京地铁10号线列车的'最高运行速度是80千米/时,约为米/秒。
师揭题:今天这节课,我们首先要来研究小数“”中每个数字的含义。(板书课题:小数的意义(三))。
出示计数器,师问:这个计数器有什么特点?
学生观察后汇报。
师小结并引导学生拨数:同学们的观察都非常仔细,??百位、十位、个位、十分位、百分位、千分位??都是小数的数位。小数点的左边依次是个位、十位、百位??右边依次是十分位、百分位、千分位??那你们能在这个计数器上拨出“”吗?学生尝试在计数器上拨数,师指名上台演示。
课件出示拨数情况,引导学生认识:
师提问:小数点右边第2个“2”在百分位上,它表示2个。
师追问:说得很有道理,那最后一个“2”在什么位置,表示多少呢?
学生思考后回答:最后一个“2”在千分位上,表示2个1,也可以表示2个1000。
师引导学生再次思考:小数点左边两个2分别表示多少?
学生先独立思考,再小组内交流,最后集体汇报。
课件出示小数的数位顺序表,介绍数位名称及对应的计数单位:
小数点右边第一位是十分位,计数单位是十分之一();
小数点右边第二位是百分位,计数单位是百分之一();
小数点右边第三位是千分位,计数单位是千分之一();
小数点右边第四位是万分位,计数单位是万分之一();
相同点:相邻计数单位间的进率都是10.
师强调:小数的半数单位也是“满十进1”,引导学生观察教材第6页“看一看,说一说”的图片,进而发现:10个元是1元;10个元是元,再次明确小数的计数单位是“满十进1”。
引导学生讨论后交流汇报。
2、出示教材第7页“试一试”情境二:涂一涂,你发现了什么?
让学生自主涂色,并汇报:和0一样大。
师提问:哪位同学能够运用我们学过的数位和计数单位的相关知识来解释一下为什么和0一样大?师归纳小结小数的基本性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
3、即时练习。
课件出示题目:下面的数中哪些“0”可以去掉?哪些“0”不能去掉?
通过这节课的学习,我们学会了哪些知识?
板书。
比的意义教案教学设计篇八
教学目标:
(一)知识与技能目标。
1、认识生命的来之不易,生命对于每个人只有一次。
2、认识生命的意义在于让它充实,焕发光彩。
(二)情感态度价值观目标。
1、珍爱自己的生命。
2、立志做一个有志向的人,做一个对别人、对社会、对祖国有用的人,让自己的生命焕发光彩。
(三)过程与方法目标。
1、增强应对挫折的勇气,培养笑对困难、挑战挫折的乐观精神。
2、形成良好的学习习惯,积极的处世态度,不断充实自己的生命,不断增加生命的分量。
德育渗透目标:通过每个同学参与讨论,了解到人生道路上有许多岔路口,如何选择让生命更有价值的道路,让人生更加灿烂。跨越一切艰难险阻,懂得生命存在的意义。
教学重点:认识生命的意义在于让它充实,焕发光彩。
教学难点:形成良好的学习习惯,积极的处世态度,不断充实自己的生命,不断增加生命的分量。
教学方法:教授法、小组讨论法、
课时安排:一课时完成教学。
教学过程:
课堂导入:
让学生就此问题发表自己的看法,以此引入“生命”这个话题。
(2)欣赏小品。
甲:哎,考试又不及格,回家又要挨批了!
乙:是呀,还要家长在试卷上签名,真讨厌!
丙:上学真没意思,活着真没意思,不如死了算了,少受点罪。
甲:对呀,现在不是很多人跳楼嘛,就是不想活了。
乙:哇,他们很勇敢哦,连死都不怕!
甲:我听说人死了是要到另一个世界去,到那里大家还可以再见面呢。
乙:不,那是迷信,人死了就什么都没有了,就像一缕青烟飘过,什么都没留下。
丙:对,一死万事休嘛!那是天大的事,人一死,就全都没有了,都痛快!
甲:可是,如果我们真的自杀,死了。多可怕!
乙:你真是个胆小鬼,这么怕死。我可不怕!
丙:其实,人迟早是要死的,每个人结局都一样。
甲:怪不得我小学的一个同学上学期死了,听说是他爸爸不让他打游戏,他一气之下干脆不活了。
乙:哎,反正都要死,死了都一样,如果我跟谁过不去,我也死给他看!
丙:是啊,人死了就没有区别了,不如死了好。
引出死真的好吗?观看flash。
《我从11楼跳下去》人生选择的机会只有一次,要珍惜生命!
3、生命的重要,看图片。
烈士之死,重于泰山,轻于鸿毛。了解,死不可怕,关键是为什么而死?
4、生命有多长。
游戏,要求:一张画有如下刻度的纸。
假如这张纸条的长度代表我们各人的生命从0~100岁,我们来玩个。
教师小结:人生留给你真正的奋斗时间已经不多了,目标的选择是人精神的粮食,他是人在航海中的方向。
5、故事欣赏:生命的价值。
在一次讨论会上,一位著名的演说家没讲一句开场白,手里却高举着一张20美元的钞票。
面对会议室里的200人,他问,“谁要这20美元?”一只只手举了起来。
他接着说,“我打算把这20美元送给你们其中的一位,但在这之前,请允许我做一件事。”
他说着将钞票揉成一团,然后问,“谁还要?”仍有人举起手来。他又说,“那么,假如我这样做又会怎么样呐?”
他把钞票扔到地上,又踏上一只脚碾它,而后拾起变得又脏又破的钞票。
“现在谁还要?”
还是有人举手。
“朋友们,你们已经上了一堂很有意义的课。无论我如何对待那张钞票,你们还是想要它,因为它并没有贬值。”
“人生路上,我们会无数次被自己的决定或碰到的逆境击倒,甚至被碾得粉身碎骨,我们觉得自己似乎一文不值。”
“但无论已发生或将要发生什么,其实,你们并没有丧失价值。”
“无论你们的地位是高是低,整洁或不整洁,你们依旧是无价之宝!”“生命的价值不依赖我们拥有多少金钱,也不仰仗我们结交的人物,而是取决于我们自身,取决于我们是否发挥了存在的积极作用,给他人和社会带来温暖、希望、创新。”
“要永远记住——我们每个人都是独特的,我们的价值体现也必然各不相同。
钱学森、华罗庚、李时珍、伽利略、钱三强、达尔文、居里夫人等,他们的人生为中国、为社会带来了重要的意义。
a:学生分组讨论:
1.我的存在有哪些意义?
2.我可以为身边哪些人带来怎样的快乐?
3.我的存在将为社会带来什么意义?
4.我希望我的人生将会在世上留下怎样的痕迹?
b:轮流发表意见并把思考结果写在便条纸上。
c:鼓励一部分学生分享自己的思考结果,并在教室做成“生命的意义”专题园地。
8、欣赏《生命的价值》。
《生命的价值》。
生命的价值是什么。
我问春天的小草。
小草轻轻的告诉我。
虽然它很渺小。
但却为大地增添了勃勃生机。
这就是生命的价值。
我问夏天的小河。
小河快乐的告诉我。
它虽然有时奔流不息。
有时风平浪静。
但却能为炎热的夏天。
送来丝丝清凉。
这就是生命的价值。
我问秋天的果实。
果实微笑着告诉我。
虽然它的生命即将结束。
但却能带给人们收获的喜悦。
这就是生命的价值。
我问冬天的雪花。
雪花骄傲的告诉我。
它的生命虽然短暂。
但却在寒冷冬天。
看到了孩子们的笑脸。
也为明年的春天蕴酿了新绿。
这就是生命的价值。
我问时间老人生命是什么。
时间老人和蔼的告诉我。
生命是什么并不重要。
重要的是生命的力量。
品质与价值。
生命,不仅属于自己,它应当属于——所有爱你的人!
生命,属于你有责任为之付出努力的事业;生命,承载着沉重的使命,你有义务,为生养你的父母尽起码的孝心;你有责任为你成长的世界尽绵薄之力;生命于你,意味着体验所有的酸甜苦辣;学会承担懂得放弃,知道珍惜!
四、课堂小结。
每一个生命都是美丽的,所以每一朵花都不应该拒绝开放。一个人活着,你的"生命就不再是你的一个人的所有。我们的生命是父母给予的。保护好自己的生命,以便让其他的生命更好的活着。
也许我们生活的真的很累!累我们也要活着,活着我们就有希望,即使今天没有,明天没有,只要我们这颗追求理想,追求美好未来的心永远不死,总有一天我们会有的!面包会有的,工作会有的,汽车会有的,房子会有的。总有一天我们会感到活者就是一种幸福!
人的一生会有很多起跑线,生命的每一次放下,都是另一段生活的起跑线。过去只能代表过去,而示来,是属于自己的。我们其实已经拥有很多很多了,只是拥有的同时,没有发现拥有的美丽不知道好好珍惜罢了!
好好珍爱生命,美好的未来掌握在自己手中,年轻是我们的酱,坚强是我们的动力,乐观是我们的支柱,勇敢是我们的心态,我们一定会赢在生命的起跑线上的。我们的生命一定会绽放出与众不同的异彩纷呈的色彩的!
比的意义教案教学设计篇九
1 .使学生进一步理解并掌握分数的意义。
2 .知道一个物体、一个计量单位、一个整体都可以用单位“1 ”表示。
3 .引导学生学会抽象概括,培养初步的逻辑思维能力。
1 .理解和掌握分数的意义。
2 .理解单位“1 ”。
3 .突破一个整体的教学。
正方形纸片
一、创设情境。
1 .测量。
师生合作测量黑板的长是多少米?观察用米尺量了几次后还剩下一段,不够一米,还能否用整数表示?(不能)
2.计算。
教师让学生把一个苹果平均分给两个同学,每人分得饼的个数怎样来表示? 它结果不能用整数来表示,这样就产生了分数。
3 .讲述。
在人们实际生产和生活中,人类在进行测量、分物和计算时,往往不能得到整数的结果,这就需要用一种新的'数――分数来表示,这样就产生了新的数―分数。今天,我们就来学习“分数的意义”。
二、教学实施
1、出示课件
说说每个图下面的分数是:
(1)把什么看做一个整体?
(2)平均分成了几份?
(3)表示这样的几份?
2、小组共同合作交流
1.出示4个苹果,6只熊猫能否平均分成若干份,要平均分,把什么看作一个整体?
2.结合小组汇报出示课件,展示结果
3、概括总结。
老师:刚才同学们在表示 的过程中,有什么发现吗?
学生甲:都是把物体平均分成几 份,表示这样的一份。
学生乙:我发现有的是把1 个图形平均分,有的是把4 个苹果、6 只熊猫平均分,还有的是把1 米平均分。
老师:一个图形比较好理解,我们把它称为一个物体,那么4根香蕉8个面包是由许多单个物体组成的,我们称作一些物体。一个物体,一些物体都可以看作一个整体,一个整体可以用自然数1 来表示,通常把它叫做单位“1”。
(3)举例。
老师:对于这个整体,你还能想出其他的例子吗?
学生:这个整体还可以是一个苹果、一盒粉笔、一个班级的学生人数、全校学生数、全中国人口、全世界人口等。
3、(1) 概括意义。
学生试说,教师板书。
板书:把单位“ 1 ”平均分成若干份,表示这样一份或几份的数,叫分数。 强调必须是平均分。
揭示课题:分数的意义。
4、巩固练习
课本62页做一做,填在书上,学生汇报
5.学习分数单位。
(1)提出问题:“我们学过的整数和小数,它们都有计数单位,分数有没有计数单位呢?”让学生自学课本,找出分数单位的定义,并能举出例子。
(2)说一说课本62页做一做各分数的分数单位,它们分别有几个这样的分数单位。
(3)分数单位与哪个数有关?
让学生观察分数单位,从中发现“分母是几,分数单位就是几分之一”。
三、巩固练习
出示课件
四、、总结
1、想一想,这堂课上你学到了什么?
板书设计
分数的意义
一个物体
一个整体单位“1” 平均分 若干份(一份)
一些物体分数单位
比的意义教案教学设计篇十
四年级数学下册《乘法和除法的意义及各部分间的关系》教学设计教学目标:
1、借助解决问题概括乘除法的意义,理解除法是乘法的逆运算,并会在实际中应用。
2、总结乘、除法各部分间的关系,并会应用这些关系进行乘、除法的验算。
3、在分析过程中,培养学生的推理、概括能力。
教学重点:总结乘、除法各部分间的关系,并会应用这些关系进行乘、除法的验算。
教学难点:理解除法的意义及乘除法的互逆关系。
教学过程:
1、谈话。师生相互交流兴趣爱好。
(1)生谈爱好。
(2)师:老师的爱好是插花,昨天下午老师老师就在花瓶里插了几瓶花,来看看吧。
(3)投影展示课本插图。
1、从图中,你能获得哪些数学信息?
2、根据获得的信息,你能提出一个数学问题吗?学生口答教师课件出示(1)。
3、会解决这个问题吗?请大家快速列式计算。
4、学生汇报算式:用加法算:3+3+3+3=12;用乘法算:
5、哪个算式简单?比较这两个算式,你能说说怎样的运算叫做乘法?
6、学生汇报后小结:求几个相同加数的.和的简便运算,叫做乘法。
7、师说明乘法各部分名称并板书在下边。
1、能不能试着把这道乘法应用题改编成除法应用题呢?
2、学生回答后教师出示例2(2)(3)。
4、小组交流后汇报,教师板书算式。
6、根据回答板书:已知两个因数的积与其中一个因数,求另一个因数的运算,叫做除法。并说明除法各部分名称。
7、我们来简单回顾一下,第1题是求4个3的和,用乘法计算,第2、3题正好相反,是已知4和3的积是12,还知道其中一个因数是34或者4,求另一个因数,用除法计算,从这三道题的计算和除法的意义可以看出,除法运算和乘法运算实际上是相反的运算,所以,我们说除法是乘法的逆运算(板书)。
2、会用等式表示各部分之间的关系吗?
2.通过今天的学习,对乘除法是否有了新的认识呢?谁来说说你的收获?
比的意义教案教学设计篇十一
2.过程与方法:通过加强操作、直观沟通概念间的联系和区别,增加练习来突破难点。
3、情感与态度:培养学生有条理,有根据的思考能力,发展抽象思维。
理解整数、约数和倍数的概念。
整数、约数和倍数的联系。
一、复习
1、师:谁能说说整数的含义?
出示:23÷7=3...26÷5=1.15÷3=524÷2=12
让学生观察算式,说说式中被除数、除数和商各有什么特点?
教师:如果用a、b表示两个整数,谁能说说在什么情况下才可以说“a能被b整除”?
教师:a的约数还可以叫做什么?
让学生用两种说法说说:15÷3=5和24÷2=12
教师:我们在说一个数能被另一个数整除时,必须具备哪几个条件?
(1)被除数和除数必须是整数,而且除数不等于0。
(2)商必须是整数。
(3)商的后面没有余数。
师:以上三个条件,缺一不可。
2、区别“除尽”与“整除”
师:像6÷5=1.2这样的除法,一般说6能被5除尽。
被除数和除数
商
整除
都是整数,除数不等于0
商是整数,而且没有余数
除尽
不一定是整数,除数不等于0
商是有限小数,没有余数
二、新课
1、教学约数和倍数的意义。
在一个数能被另一个数整除时,这两个数还有另一种关系(板书:约数和倍数)
让学生看50页关于约数和倍数。
教师:两个数在什么情况下才能说有约数和倍数关系?(整除)
能单独说一个数是约数或一个数是倍数吗?
“倍数和约数是相互依存的.”是什么意思?
:在说倍数(或约数0时,必须说某数是某数的倍数(或约数),不能单独说某数是倍数(或约数)。
2、教学例1
(1)教师说明:根据倍数和约数的意义,说出15和3中,哪个是哪个数的倍数,哪个是哪个数的约数。
教师:15能被3整除吗?
15是3的什么数?
3是15的什么数?
教师指出:这里所说的数一般是指自然数,不包括0。
(2)“倍数”与“倍”的区别
1、基本练习p51做一做
三、巩固练习
1、独立完成练习十一的1、2、3题。
2、第四题
教师:要判断哪些数是60的约数,只要看那哪些数能整除60。
要判断哪些数是6的倍数,就要看哪些数能被6整除。
比的意义教案教学设计篇十二
1、理解比的意义,掌握比的读、写及各部分的名称。
2、理解分数、除法和比三者之间的联系和区别。掌握求比值和比的未知项的方法。
理解比和分数、除法之间的关系。
1、播放“神舟”五号顺利升空课件。
播报:20xx年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。(出示两面国旗:两面国旗都是长15cm,宽10cm。)。
2、提问:我们可以怎样表示它们长和宽的关系呢?
(1)用比多比少的方法来表示:长比宽多5cm,宽比长少5cm。
(2)用倍数关系来表示:长是宽的3/2,宽是长的2/3。
3、导入新课:在描述两个量之间的关系时,我们除了可以用“多多少、少多少、几倍、几分之几”来描述外,还可以用“比”来描述两个量之间的关系,今天我们就来学习比的知识。(板书课题:比的意义)。
学习方式:独立自学、汇报交流。
1、同类量的比。
(2)自学课本第48页的内容。
(3)长和宽的比是15比10,宽和长的比10比15。
(4)指出:不论是长和宽的比,还是宽和长的比,都是两个长度的比,相比的两个量是同类的量,这样的两个比我们称为同类的比。
2、不同类量的比。
(1)出示数据,列式求飞船的速度:42252÷90。
(2)用比来表示路程和时间的关系。
提问:路程和时间的关系能不能用比来表示呢?应该怎样表示呢?(路程和时间的比是42252比90)。
(3)提问:路程和时间是不是同类的量?
(4)指出:两个同类量的比表示这两个量之间的倍数关系,两个不同类量的比可以表示一个新的量。如“路程比时间”又表示速度。
3、概括比的意义:通过两数相除来表示两个数量之间的关系,它们都可以用比来表示,所以“两个数相除又叫做两个数的比”。
学习方式:独立自学、汇报交流。
学习任务。
1、自学课本第49页,思考:几比几怎样写、怎样读?比的各部分名称是什么?
2、汇报交流:15:10=15÷10=3/2。
前项比号后项比值。
3、比值。
(1)什么是比值?怎么求比值?
(2)比值可以怎样表示?(分数、小数、整数)。
(3)讨论:比值和比有什么联系和区别?
学习方式:小组讨论、汇报交流。
学习任务。
1、提问:比的前项、后项和比值分别相当于除法算式和分数中的什么?
区别:除法是一种运算,分数是一种数,比表示两个数的关系。
2、提问:比的后项可以是0吗?为什么?(比的后项不能为0,0没有意义。)。
1、完成课本第49页的“做一做”,集体订正。
2、完成第52页练习十一的第1题。
这节课我们一起研究了比,回顾一下你有什么收获。
比的意义教案教学设计篇十三
1、使学生认识比的意义和各部分的名称,学会比的读写方法,理解和认识比与除法、分数之间的联系。
2、培养学生比较、分析和概括等思维能力。
教学重难点。
教学准备。
幻灯片。
教学内容。
师生活动。
备注。
一、引入新课。
三、
巩固联系。
四、作业。
1、口答(幻灯出示两道除法到分数,两道分数到除法的换算题)。
引入新课。
2、出示两道文字题。
(!)3千米是5千米的几分之几?
(2)8吨是4吨的几倍?
学生回答后,教师说明:在数学上我们把这两种类型同意为一个数与另一个数的比。今天我们就来学习比的意义。
1、学生用十分钟自习书本52到53页。
2、问:通过自习你知道了哪些知识?还有哪些疑问?
3、小组内互相说,解决问题。
4、教师请个别同学说,然后师生一起探讨、研究。
5、幻灯出示例1、例2,让学生解答,以便知识得到进一步巩固。
6、说明相关注意点。如:单位、比值、名称、写法、读法。
1、书本53页练一练。
2、练习十二1、2。
练习十二3、4、5。
比的意义教案教学设计篇十四
本节课主要教学比的意义,比的读写法及比各部分名称及求比值的方法。它是进一步学习比矛盾基本性质及比的应用的基础。
这部分内容是在学生学过分数与除法的联系,分数乘除法的意义和计算方法,以及分数乘除法应用题的基础上进行教学的,正确理解比的意义是教学重点,也是难点。用实物演示及投影仪进行辅助教学,学生还是不难掌握的。
1、理解比的意义,学会比的读写法,掌握比的各部分名称及求比值的方法。
2、弄清比同除法、分数的关。
1、通过实物及学过的联系式等概括出比的意义,用讲授法讲解说明两个数的比的表示法,引出比号以及比的读法。比中两项的名称和比值的概念。
2、举例说明比值的求法,以以及比和除法的联系。
;常分米,款分米的红旗一面,投影仪一、复习引入。
1、出示红旗。
讲解:它常分米,款分米。要对这面旗的长和宽进行比较,可以用什么方法?
引导学生回答:
要表示红旗的长和宽的联系,可以求长是宽的几倍,或者宽是长的几分之几。
板书;3÷2=3/2……长是宽地3/2。
2÷3=2/3……宽是长到2/3。
二、探究新知。
1、导入新课。
板书:比。
1、)红旗长和宽的联系,也可以这样说:
长和宽的比是2比3,
宽和长的比是2比3。
2、)出示投影片:
“一辆汽车2小时行使了100千米,这辆汽车的速度是每小时多少千米?”
求汽车路程和时间的比是:100比2。
4、)教师小结:两个数相除又叫做两个数的比。
3、教学比的读写法,各部分的名称及求比值的方法。
1、)比的写法:3比2记作3:2。
2比3记作2:3。
100比2记作100:2。
3、)比的各部分的名称:
3:2=3÷2=3/2。
||||。
前项比号后项比值。
4、)比值;。
比的前项除以后项所得的商,叫做比值。
说明:比值通常用分数表示,也可以用小时表示,有时也可以是整数。
比的后项不能0。
4、做教科书第62页上半部分的“做一做”的题目。
5、教学比与除法、分数的联系。
6、做教科书第61页下半部分的“做一做”的题目。
三、巩固练习:
1、做练习十七的第1题。
2、做练习十七的第2、3题。
四、课堂小结:
同学们,这节课我们学到了什么知识?如何求比值?
板书设计:
3、比。
比的各部分名称:3:2=3÷2=3/2。
||||。
前项比号后项比值。
比值:比的前项除以后项所得的商,叫做比值。
比的意义教案教学设计篇十五
(1)在日常的工作的生活中,常常把两个数量进行比较。(2)“:”是比号,读作“比”。比号前面的数叫做比的前项。比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。(3)同除法相比,比的前项相当于被除数,后项相当于除数,比值相当于商。(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。(5)根据分数与除法的.关系,可以知道:比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。比――比的意义作文200字。
小学生作文(中国大学网)。
比的意义教案教学设计篇十六
1、使学生经历从具体实例中认识成反比例的量的过程,初步理解反比例的意义,学会根据反比例的意义判断两种相关联的量是不是成反比例。
2、使学生在认识成反比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
3、使学生进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。
掌握成反比例量的变化规律及其特征。
课堂教学中注重从学生的已有的生活经验出发,引导学生观察、分析,从而发现成反比例量的规律,概括成反比例量的特征。努力为学生提供探究的时空,让学生自己发现、自己探究。通过数学活动,让学生把所学的数学知识应用到解决实际问题中去。
教学步骤教师活动学生活动。
一、复习铺垫1、怎样判断两种相关联的量是否成正比例?用字母怎样表示正比例关系?
2、判断下面两种量是否成正比例?为什么?
时间一定,行驶的路程和速度。
除数一定,被除数和商。
3、单价、数量和总价之间有怎样的关系?在什么条件下,两种量成正比例?
4、导入新课:
如果总价一定,单价和数量的变化有什么规律?这两种量又存在什么关系?今天,我们就来研究和认识这种变化规律。
学生口答,相互补充。
1、出示例3的表格(略)。
学生填表。
2、小组讨论:
(1)表中列出的是哪两种相关联的量?它们分别是怎样变化的?
(2)你能找出它们变化的规律吗?
(3)猜一猜,这两种量成什么关系?
3、全班交流。
学生初步概括反比例的意义(根据学生回答,板书)。
4、完成“试一试”
学生独立填表。
思考题中所提出的问题。
组织交流,再次感知成反比例的量。
根据学生的回答,板书:x×y=k(一定)。
揭示板书课题。
学生填表。
小组讨论、交流。
学生初步概括。
相互补充与完善。
独立填表。
交流汇报。
学生概括。
每袋糖果的粒数和装的袋数成反比例吗?为什么?
2、练习十三第6题。
先算一算、想一想,再组织讨论和交流。
要求学生完整地说出判断的思考过程。
3、练习十三第7题。
先独立思考作出判断,再有条理地说明判断的理由。
4、练习十三第8题。
先填表,根据表中数据进行判断,明确:长方形的面积一定,长和宽成反比例;长方形的周长一定,长和宽不成反比例。
5、思考:
100÷x=y,那么x和y成什么比例?为什么?
6、同桌学生相互出题,进行判断并说明理由。
讨论、交流。
独立完成,集体评讲。
说一说。
填一填,议一议。
讨论。
相互出题解答。
评价总结。
比的意义教案教学设计篇十七
教学目标:
1、根据除法中商不变的性质和分数的基本性质,利用知识的迁移,领悟并理解比的基本性质。
2、通过自主探究,掌握化简比的方法并会化简。
3、渗透事物是普遍联系的辨证唯物主义观点。
教学重难点:理解比的基本性质,推导化简比的方法正确化简比。
教法:引导探究。
教学过程:
一、导入:
1、谈话导入,在日常工作和生活中,常常要把两个量进行比较。举例说明,杨利伟在“神舟”五号飞船里向人们展示了联合国旗和中华人民共和国国旗。
2、提问:根据这些信息,你能提出什么数学问题?
板书课题:
二、探究新知:
1、学生按学习指南自学。
学习指南:根据题意可以怎样表示长和宽的关系?
2、汇报自学情况。
3、教师指导:
长是宽的3/2倍,我们又可以把他们之间的关系说成长和宽的比是3比2;宽是长的2/3,我们又可以说成宽和长的比是2比3。
4、苹果有4个,梨有5个。
提问:苹果和梨的关系可以怎样说?
尽量找学困生回答。
5、教师总结:刚刚我们比较了两个同类的量,不仅两个同类的量可以用比表示,而且不同的两个量也可以用比来表示。
6、学生举例。
请学生举出一个可以用比表示两个数量之间关系的例子,尽可能让学生多举例子。
学生互相讨论后,再指名回答。
7、指导学生自学教材后,说说比的含义。
3比23:2。
2比32:3。
100比2100:2。
两个数相除又叫两个数的比。
15:10=15÷10=3/2。
前项比号后项比值。
教师重点指导:
(2)比的后项为什么不能为0?
比分数除法的联系与区别。
三.课堂检测:
完成教材第44页“做一做”的第1、2题。
1.完成教材第47页练习十一的第1——3题。
四.小结:
谈一谈本节课的收获。
比的意义教案教学设计篇十八
教学重点。
教学难点。
沟通比和除法的关系。
教学准备。
教
学
过
程
一、复习导入:
2、一辆汽车3小时行驶180千米,每小时行多少千米?
导入:两个数进行比较,除了用除法算以外,在生产实践与生活中还有一种新的比较方法,这就是“比”,那么比的意义是什么?比的读法和写法怎样?比的'各部分名称叫什么?这就是本节课我们要学习研究的内容。(揭题)。
二、展开:
【本文地址:http://www.xuefen.com.cn/zuowen/15813937.html】