教案包括教学目标、教学内容、教学方法、教学步骤等内容,是教师教学的依据。在编写教案时,需要考虑学生的认知水平和学习能力,合理激发学生的学习兴趣。下面是一些优秀教案的范文,供教师们参考和借鉴。
反比例数学教案篇一
《反比例的意义》是新课标人教版小学数学六年级下册第42页例3的内容。本节课的内容是在教学了成正比例的量的基础上进行教学的,是前面“比例”知识的深化,是后面学习“用它解决一些简单正、反比例的实际问题”的基础,它起着承前启后的作用,是小学阶段比例初步知识教学中的一项重要内容。为此,教学时先复习一些基本的数量关系,使知识间发生迁移,在此基础上探求新知,最后深化新知。
(二)说教学目标。
以《新课程标准》为依据,结合小学数学教材编排意图,基于此,我确立以下教学目标:
知识与技能目标:使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
能力目标:提高学生归纳、总结和概括的能力。
情感与态度目标:在教学中渗透事物之间是相互联系和相互转化的辨证唯物主义的观点。
(三)说教学重、难点。
本节课的教学重点:正确理解反比例的意义。
教学难点:掌握反比例的特征,能够正确判断反比例关系。
(四)说教学理念。
在教学过程的设计上,首先通过对正比例的复习,直接导入新课教学,揭示课题(成反比例的量),例3的学习,引导学生观察表中的三种量中的变化规律,通过学生讨论交流、自主探究在教师的引导概括出反比例的意义,然后进一步抽象概括反比例关系式:xy=k(一定),接着运用反比例的知识,判断两种量是不是成反比例的量,然后让学生自己举例说说生活中的反比例,进一步加深对反比例关系的认识。
(五)说教学具准备:课件。
二、说教法、学法。
教学时充分相信学生、尊重学生,改变传统的填压式教学模式,把学生由被动听转化为主动学,放手让他们主动去探索出新知识,最大限度地充分发挥学生的主观主动性。从而使学生学到探究新知的方法,体验到成功的喜悦,激起学生学习的兴趣。同时采用引探法,引导学生自主探究,培养他们利用已有知识解决新问题的能力。
三、教学过程。
(一)复习引入。
2、在生活中两个相关联的量不仅能形成正比例关系,而且还能形成另外一种特征,今天这节课我们就来学习数量关系的另一种特征,成反比例的量。
(二)探究新知。
1、我们先来看一个实验,出示课件。
高度(厘米)302015105。
底面积(平方厘米)1015203060。
体积(立方厘米)。
提问:从中你发现了什么?本题与教材第39页例1有什么不同?
(2)学生讨论交流。
(3)引导学生回答:表中的两个量是高度和底面积。
高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。
每两个相对应的数的乘积都是300.
(4)计算后你又发现了什么?
每两个相对应的数的乘积都是300,乘积一定。
小结:那我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。
教师提问:高底面积和体积,怎样用式子表示他们的关系?(板书:高×底面积=体积)。
(5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?(板书:x×y=k)。
小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?
(6)、比较归纳正反比例的异同点。
课件出示成反比例的量改变规律的图像与成正比例的量改变规律的图像。
设计意图:比较思想是在小学数学教学中应用十分普遍的数学思想方法,比较是把事物的个别属性加以分析,综合而后肯定它们之间的同异,从而得出必定规律的数学思想方法。《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,比较合实用比较法。在学习本课的过程中,学生对于相似的内容,可以从知识的差别中找到同一,也可以从同一中找出差别。帮忙学生把新知识深化拓展。
(三)巩固练习。
1、生活中,哪些相关联的量成反比例关系,举例说一说。
2、判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
3、完成第43页做一做。
(四)、总结:
(设计意图:培养学生敢于质疑,勇于创新的精神)。
反比例数学教案篇二
2.通过观察、比较、归纳,提高学生综合概括推理的能力.。
3.渗透辩证唯物主义的观点,进行“运用变化观点”的启蒙教育.。
教学重点。
理解正反比例的意义,掌握正反比例的变化的规律.。
教学难点。
理解正反比例的意义,掌握正反比例的变化的规律.。
教学过程。
一、导入新课。
(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?
(二)教师提问。
1.你为什么马上能想到还剩多少呢?
2.是不是因为吃了的和剩下的是两种相关联的量?
教师板书:两种相关联的量。
(三)教师谈话。
在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和。
数量也是两种相关联的量.你还能举出一些例子吗?
二、新授教学。
(一)成正比例的量。
例1.一列火车行驶的时间和所行的路程如下表:
时间(时)。
1
2
3
4
5
6
7
8
……。
路程(千米)。
90。
180。
270。
360。
450。
540。
630。
720。
……。
1.写出路程和时间的比并计算比值.。
(1)。
(2)2表示什么?180呢?比值呢?
(3)这个比值表示什么意义?
(4)360比5可以吗?为什么?
2.思考。
(1)180千米对应的时间是多少?4小时对应的路程又是多少?
(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?
教师板书:时间、路程、速度。
(3)速度是怎样得到的?
教师板书:
(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?
(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.。
3.小结:有什么规律?
教师板书:商不变。
(二)成反比例的量。
1.华丰机械厂加工一批机器零件,每小时加工的数量和所需的加工时间如下表.。
工效(个)。
10。
20。
30。
40。
50。
60。
……。
时间(时)。
60。
30。
20。
15。
12。
10。
……。
2.教师提问。
(1)计算工效和时间的乘积.。
(2)这一组题中涉及了几种量?谁与谁是相关联的量?
(3)请你举例说明谁与谁是相对应的两个数?
(4)在这一组题中两种相关联的量是如何变化的?(举例说明)。
3.小结:有什么规律?(板书:积不变)。
(三)不成比例的量。
1.出示表格。
运走的吨数。
10。
20。
30。
40。
剩下的吨数。
90。
80。
70。
60。
总吨数(和不变)。
100。
100。
100。
100。
2.教师提问。
(1)总吨数是怎样得到的?
(2)谁与谁是两种相关联的量?
(3)它们又是怎样变化的?变化的规律是什么?
运走的吨数少,剩下的吨数多;运走的吨数多,剩下的吨数少;总和不变。
(四)结合三组题观察、讨论、总结变化规律.。
讨论题:
1.这三组题每组题中谁与谁是两种相关联的量?
2.在变化过程当中,它们的异同点是什么?
共同点:都有两种相关联的量,一种量变化,另一量也随着变化。
不同点:第一组商不变,第二组积不变,第三组和不变.。
总结:
3.分别概括。
4.强调第三组题中两种相关联的量叫做不成比例。
5.教师提问。
(1)两种量成正比例必须具备什么条件?
(2)两种量成反比例必须具备什么条件?
(五)字母关系式。
三、巩固练习。
判断下面各题是否成比例?成什么比例?
1.一种圆珠笔。
总价(元)。
1。2。
2。4。
3。6。
4。8。
6
7。2。
支数。
1
2
3
4
5
6
单价(元)。
1
2
4
5
10。
支数。
100。
50。
25。
20。
10。
(1)表中有哪两种相关联的量?
(2)说出几组这两种量中相对应的两个数的比。
(3)每组等式说明了什么?
(4)两种相关的量是否成比例?成什么比例?
2.当速度一定,时间路程成什么比例?
当时间一定,路程和速度成什么比例?
当路程一定,速度和时间成什么比例?
3.长方形的面一定,长和宽。
4.修一条路,已修的米数和剩下的米数.。
四、课堂总结。
五、课后作业。
(一)判断下面每题中的两种量是不是成正比例,并说明理由.。
1.苹果的单价一定,购买苹果的数量和总价.。
2.轮船行驶的速度一定,行驶的路程和时间.。
3.每小时织布米数一定,织布总米数和时间.。
4.长方形的宽一定,它的面积和长.。
(二)判断下面每题中的两种量是不是成反比例,并说明理由.。
1.煤的总量一定,每天的烧煤量和能够烧的天数.。
2.种子的总量一定,每公顷的播种量和播种的公顷数.。
3.李叔叔从家到工厂,骑自行车的速度和所需时间.。
4.华容做12道数学题,做完的题和没有做的题.。
六、板书设计。
反比例数学教案篇三
1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。
2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系。
3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用。
【学习难点】反比例函数的解析式的确定。
【学法指导】自主、合作、探究。
教学互动设计。
【自主学习,基础过关】。
一、自主学习:
(一)复习巩固。
1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时,y,则称x为,y叫x的.
2.一次函数的解析式是:;当时,称为正比例函数.
3.一条直线经过点(2,3)、(4,7),求该直线的解析式.
以上这种求函数解析式的方法叫:
(二)自主探究。
提出问题:下列问题中,变量间的对应关?可用怎样的函数关系式表示?
(2)某住宅小区要。
反比例数学教案篇四
1.经历探索两种相关联的量的变化情况过程,发现规律,理解反比例的意义。
2.根据反比例的意义,正确判断两种量是否成反比例。
教学重点:反比例的意义。
教学难点:正确判断两种量是否成反比例。
一导入新课。
1.让学生说一说成正比例的两种量的变化规律。
回答要点:
(1)两种相关联的量;
(2)一个量增加,另一个量也相应增加;一个量减少,另一个量也相应减少;
(3)两个量的比值一定。
2.举例说明。
如:每袋大米质量相同,大米的袋数与总质量成正比例。
理由:
(1)每袋大米质量一定,大米的.总质量随着袋数的变化而变化;
(2)大米的袋数增加,大米的总质量也相应增加,大米的袋数。
减少,大米的总质量也相应减少;
(3)总质量与袋数的比值一定。
所以,大米的袋数与总质量成正比例。
板书:
3.揭示课题。
今天,我们一起来学习反比例。两种量是什么样的关系时,这两种量成反比例呢?
板书课题:成反比例的量。
反比例数学教案篇五
反比例的内容是前面学习“变化的量”、“正比例”等比例知识的深化,是以后学习函数的基础,有着承前启后的作用,是小学阶段比例初步知识教学中的一个重要内容。
二、教学目标。
以《新课改标准》为依据,综合小学数学教材编排意图,我确定了以下教学目标:
1、认知目标:通过感知生活中的事例,认识理解并掌握反比例的意义,能够初步的判断两种相关联的量是否成反比例。
2、能力目标:学生在互动、探究的合作交流活动中,培养观察、思考、比较、归纳概括的能力。
3、情感目标:让学生在自主探究、合作交流的过程中感受反比例关系在生活中的广泛应用。
三、教学重难点。
教学难点:掌握判断两种量是否成反比例的方法。
四、教学过程:
基于以上的各种分析和设想,我将按照以下环节进行课堂教学:
(一)故事导入,导课揭题:
讲《财主和帽子的故事》,引出新课。
如果总布量一定,每顶帽子用布量和帽子的数量之间会怎样变化呢,变化又有什么规律呢?这两种量又成什么关系呢?(板书课题:反比例)。
(设计目的:以故事导入课题,让学生通过故事初步感受反比例的`意义,激发了学生的学习兴趣。)。
(二)教师引导,自主探究:
1、课件出示“加法表”和“乘法表”,认识加法表中和是12的直线及乘法表中积是12的曲线。初步感知理解两个量的变化关系的不同。
设疑:这两种量是不是今天我们所学的反比例呢?这个问题放在后面再解答,同学们先看下面的题目。
2.王叔叔要去游长城。不同的交通工具所需时间如下,请把下表填完整。
[提示]。
a.说一说你的结果是根据什么来填的?
b.观察速度与时间这两种量,是怎样变化的?
c.你还发现了什么?
先让学生同桌之间交流,再指名学生口答讨论的结果。板书速度×时间=路程(一定)。
3、出示“分果汁”的情境。
板书:每杯的果汁量×分的杯数=果汁总量(一定)。
4、小组交流讨论概括反比例的意义。
(1)综合例2、例3的共同点。
提问:请你比较一下例2和例3,说一说,这两个例题有什么共同的地方?
(2)概括反比例意义及判断反比例的方法。
5、讨论“加法表”和“乘法表”是否成反比例。
6、运用所学知识判断《财主和帽子的故事》是否成反比例。
(设计意图:通过观察具体的情境,让学生在思考交流合作、比较的基础上,归纳反比例的概念,总结判断两个量是不是成反比例的方法。最后对加法表和乘法表两种关系进行分析讨论,解决了一开始提出的问题,巩固了本节课的教学内容。)。
(三)巩固练习。
1、判断下面每题中的两个量是否成反比例,并说明理由:(指名回答)。
(1)跳高的高度和她的身高。
(2)苹果的单价一定,购买苹果的数量和总价。
(3)张伯伯骑自行车从家里到县城,骑自行车的速度。
和所需时间。
(4)煤的总量一定,每天的烧煤量和能够烧的天数。
(5)生产电视机的总台数一定,每天生产的台数和所需天数。
2、找一找生活中还有哪些反比例的例子。
(设计意图:通过练习题,运用正反比例的知识判断。
两个量是不是成发比例,进一步加深了学生对反比例的认识,又巩固了正比例的相关知识。最后,通过找一找的环节,让学生感受反比例在生活中的广泛应用。)。
(四)课堂小结。
这节课你有什么收获?把你的收获告诉大家。在生活。
中还有很多反比例的例子,请同学们在生活中细心观察。
(设计意图:让学生反思本节课所学,把自己的收获告诉同学,这一过程,是知识的再现的过程,又是再次学习和巩固的过程。)。
五、板书设计:
反比例。
速度×时间=路程(一定)。
每杯的果汁量×分的杯数=果汁总量(一定)。
反比例数学教案篇六
2、渗透数形结合思想,提高学生用函数观点解决问题的能力。
利用反比例函数的知识分析、解决实际问题。
分析实际问题中的数量关系,正确写出函数解析式。
教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。
例1、见教材第57页。
例2、见教材第58页。
例1、(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(千帕)是气体体积v(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)。
(1)写出这个函数的解析式;。
(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?
答案:=,当v=2时,=7.15。
反比例数学教案篇七
教学内容:教材第78页的例3,练习十九第1、2题。
教学目标:
知识与技能。
(1)使学生能根据乘法和所学的乘法口诀解决生活中简单的实际问题。
(2)初步学会口述应用题的条件和问题。
过程与方法。
通过学生观察、讨论、汇报交流等活动,使学生初步学会根据乘法的含意解答求相同加数的和的乘法应用题。
情感态度与价值观。
在学习过程中,培养学生的.分析能力,让学生体验成功的喜悦,增强学习数学的兴趣。
教学重、难点:
重点:用乘法和所学乘法口诀解决实际问题。
教法与学法:。
教法:谈话、讨论法。
学法:小组探究法。
教学准备:
多媒体课件。
教学过程:
一、创设情境,复习引入。
(1)常规练习,齐背8的乘法口诀。
(2)听算:
第一组:2×8,3×8,8×2,4×8,5×7。
第二组:8×4,4×7,7×4,6×8,8×5。
(3)课件演示:教材例3。
(小军和小红一起逛超市,在超市的文具专柜有许多的文具:文具盒每个8元,铅笔每枝3元,橡皮每块2元,日记本每个4元……)。
(1)看一看,说一说。
请同学们仔细看图,把看到的情景讲给大家听,同桌互相说一说。
全班汇报,交流。
(2)提出问题。
你能根据这幅图说出解决的数学问题吗?
文具盒每个8元,买3个文具盒,一共多少元钱?
橡皮每块2元,买7块橡皮,一共多少钱?
铅笔3元一枝,要买5枝一共多少钱?
日记本每个4元,买6本,一共多少钱?
……。
(3)解决问题。
汇报学习过程。
三、练习巩固。
(1)比一比,算一算。
出示练习十九的第2题:让谁算得又对又快。
(2)看图列算式。
出示练习十九第1题图,请同学们仔细观察,列出算式,再集体交流。
(3)每横排有6颗星,4排有几颗星?
每列有4颗星,6列有几颗星?
(3)第横排有7个圆,3排有几个圆?
每列有3个圆,7列有几个圆?
四、拓展学习。
(1)找一找,生活中还有哪些问题可以用乘法解决,与同学们说一说。
分析:这是一道先乘后减的应用题,首先利用乘法口诀算出小兰花钱总数,再用妈妈给的钱数减花掉钱数求剩余。
五:总结。
通过今天的学习,你们有什么收获?还有哪些问题没有解决?
板书设计。
反比例数学教案篇八
使学生理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
经历反比例意义的构建过程,培养发现的能力和归纳概括的能力。
体会反比例与生活之间的联系,感悟到事物之间相互联系和相互转化的辨证唯物主义的观点。
理解反比例关系的意义,能根据反比例的意义正确判断两种量是否成反比例。
掌握反比例的特征,能够正确判断反比例关系。
1、成正比例的量有什么特征?什么叫正比例关系?
2、在生活中两个相关联的量有的成正比例关系,还可能成什么关系?学生很自然想到反比例,激发学生的学习欲望,问学生想学反比例的哪些知识,学生大胆猜测,对反比例的意义展开合理的猜想。由此导入新课。
达成目标:猜想导课,激发探究愿望。
1、明确这节课的学习目标:
(1)理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
(2)经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
2、情境导入,学习探究。
(1)我们先来看一个实验。
高度(厘米)302015105。
底面积(平方厘米)1015203060。
体积(立方厘米)。
提问:根据列表,你从中你发现了什么?
(2)学生讨论交流。
(3)引导学生回答:表中的两个量是高度和底面积。
高度扩大,底面积反而缩小;高度缩小,底面积反而扩大。
每两个相对应的数的乘积都是300.
(4)计算后你又发现了什么?
每两个相对应的数的乘积都是300,乘积一定。
教师小结:我们就说水的高度和体积成反比例关系,水的高度和体积是成反比例的量。
教师提问:高底面积和体积,怎样用式子表示他们的关系?板书:高×底面积=水的体积(一定)。
(5)如果用字母x和y表示两种相关联的量,用k表示他们的积一定,反比例关系可以用一个什么样的式子表示?板书:x×y=k(一定)。
小结:通过上面的学习,你认为判断两种相关联的量是否成反比例,关键是什么?
(6)归纳总结反比例的意义。
(7)比较归纳正反比例的异同点。
达成目标:比较思想是在小学数学教学中应用十分普遍的数学思想方法,《成反比例的量》是继《成正比例的量》一课后学习的内容,两节课的学习内容和学习方法有相似之处,学生从知识的差别中找到同一,也可以从同一中找出差别,学生学习新知识,进行深化拓展,归纳总结。
1、生活中,哪些相关联的量成反比例关系,举例说一说。
2、课后做一做每天运的吨数和运货的天数成反比例关系吗?为什么?
3、出示反比例图像,与正比例图像进行比较学习。
达成目标:学生利用对反比例概念的理解,判断相关联的量是否成反比例,学会分析并进行判断。
判断下面每题中的两个量是不是成反比例,并说明理由。
(1)路程一定,速度和时间。
(2)小明从家到学校,每分走的速度和所需时间。
(3)平行四边形面积一定,底和高。
(4)小林做10道数学题,已做的题和没有做的题。
(5)小明拿一些钱买铅笔,单价和购买的数量。
达成目标:使学生体会到数学来源于现实生活,又服务于现实生活的特点,体现数学的应用性。
反比例数学教案篇九
反比例。(教材第47页例2)。
1.使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2.让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。利用反比例的意义,正确判断两个量是否成反比例。
投影仪。
复习导入
1.让学生说说什么是正比例,然后用投影出示下面的题。
下面各题中哪两种量成正比例?为什么?
(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
1.教学例2。
创设情境。
教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?
出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:
(1)水的高度和底面积变化有关系吗?
(2)水的高度是怎样随着底面积变化的?
(3)水的高度和底面积的变化有什么规律?
学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:
30×10=20×15=15×20=……=300
教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
2.归纳反比例的意义。
组织学生小组内讨论:反比例的意义是什么?
学生小组内交流,指名汇报。
教师总结:像这样,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
3.用字母表示。
学生探讨后得出结果。
x×y=k(一定)
4.师:生活中还有哪些成反比例的量?
在教师的引导下,学生举例说明。如:
(1)大米的质量一定,每袋质量和袋数成反比例。
(2)教室地板面积一定,每块地砖的面积和块数成反比例。
(3)长方形的面积一定,长和宽成反比例。
5.组织学生将例1与例2进行比较,小组内讨论:
正比例与反比例的相同点和不同点有哪些?
学生交流、汇报后,引导学生归纳:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
6.你还有什么疑问
?如果学生提出表示反比例关系的图像有什么特征,教师应该引导学生观察教材第48页“你知道吗?”中的图像。
反比例关系也可以用图像来表示,表示两个量的点不在同一条直线上,点所连接起来的图像是一条曲线,图像特征不要求掌握。
课堂作业
1.教材第48页的“做一做”。
2.教材第51页第9、10题。
答案:1.(1)每天运的吨数和所需的天数两种量,它们是相关联的量。
(2)300×1=150×2=100×3=300(答案不唯一),积都是300。积表示货物的总量。
(3)成反比例,因为每天运的吨数变化,需要的天数也随着变化,且它们的积一定。
2.第9题:成反比例,因为每瓶的容量与瓶数的乘积一定。
第10题:5010012
说一说成反比例关系的量的变化特征。
课后作业
1.完成练习册中本课时的练习。
2.教材51~52页第8、14题。
答案:
2.第8题:成反比例,因为教室的面积一定,而每块地砖的面积与所需数量的乘积都等于教室的面积54m2。
第14题:(1)斑马和长颈鹿的奔跑路程和奔跑时间成正比例。
(2)分析:可以通过图像直接估计,先在横轴上找到18分的位置,然后在两个图像中找到相应的点,再分别在竖轴上找到与这个点对应的数值;也可以通过计算找到。
解答:从图像中可以知道斑马10min跑12km,那么1min跑1.2km,18min跑1.2×18=21.6(km)。
从图像中可以知道长颈鹿5min跑4km,1min跑0.8km,18min跑0.8×18=14.4(km)。
(3)斑马跑得快。
第3课时反比例
两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
用x和y表示两种相关联的量,x和y成反比例关系用字母表示为×y=k(一定)
正比例与反比例的相同点和不同点:
相同点:都表示两种相关联的量,且一种量变化,另一种量也随着变化。
不同点:正比例关系中比值一定,反比例关系中乘积一定。
反比例数学教案篇十
1. 本节 课讲述内容为北师大版教材九年级下册第五章《反比例函数》 的第二节,也这一章的重点。本节课是在理解反比例 函数的意义和概念的基础上,进一步熟悉其图象和性质的过程。
2. 对教材的分析
(1) 教学目标:进 一步熟悉作函数图象的主要步骤,会作反比例函数的图象;体会函数三种方式的相互转换,对 函数进行认识上的整和;逐步提高从函数图象中获取知识的能力,探索并掌握反比例函数的主要性质。
(2) 重点:会作反比例函数的图象;探索并掌握反比例函数的主要性质。
(3) 难点:探索并掌握反比例函数的主要性质。
1、提问:
(1)=4/x 是什么函数?你会作反比例函数的图象吗?
(2)作图的步骤是 怎样的(3)填写电脑上的表格,开始在坐标纸上描点连线。
2、按照上述方法作 =―4/x 的图象3、 对照你所作的两个函数图象,找一下它们的相同点和不同点。
1、让学生观察函 数 =/x 的图象 ,按下动画按钮,在运动中观察值的变化与函数图象变化之间的关系,并与同学充分讨论有何规律。
2、演示反比例函数中心 对称的性质以及轴对称性质,显示反比例函数的两条对称轴。
3、让学生观察函数 =/x 的图象,观察过反比例函数上任意一 点作x轴和轴的垂线,观察其围成矩形的面积变化情况。
(1) 拖动,使变化,观察不断变化过程中,矩形面积的变化情况,讨论得出 结论。
(2) 拖动函数上的点,观察矩形面积的变化情况,讨论得出结论。
1、给出两个反比例函数的图象,判断哪一个是 =2/x 和 =―2/x 的图象。
2、判断一位同学画的反比例函数的图象是否正确。
3、下列函数中,其图象位于第一、三象限
的有哪几个?在其图象所在象限内,的值随x的增大而增
大的有哪几个?
:课本137页第1题、141页第2题
反比例数学教案篇十一
解决问题
情感态度
重点
运用反比例函数解释生活中的一些规律、解决一些实际问题
难点
把实际问题利用反比例函数转化为数学问题加以解决
活动流程图
活动内容和目的
活动1创设情境,引出问题
活动2分析解决问题
活动3从函数的观点进一步分析规律
活动4巩固练习
活动5课堂小结、布置作业
教师提出生活中遇到的难题,请学生帮助解决,激发学生的兴趣
与学生共同分析实际问题中的变量关系,引导学生利用反比例函数解决问题
引导学生追寻杠杆原理中蕴涵的规律,从反比例函数的图象、性质等角度挖掘
通过课堂练习,提高学生运用反比例函数解决实际问题的能力
归纳、总结所学,体会利用函数的观点解决实际问题
问题与情境
师生行为
设计意图
如何打开这个未开封的奶粉桶呢?―
教师提出实际生活中的问题,学生提出解决办法,教师引出利用杠杆原理解决问题。
能否从数学角度探索杠杆原理中蕴涵的变量关系呢?
让学生了解到日常生活中存在着许多两个量之间具有反比例关系的例子,自然引入课题
展示问题1:
几位同学玩撬石头的游戏,已知阻力和阻力臂不变,分别是1200牛顿和0.5米,设动力为f,动力臂为。回答下列问题:
(1)动力f与动力臂有怎样的函数关系?
不妨列表描点画出图象
(图象在第三象限会有吗?)
分析问题中变量间的关系
教师按照学生的认知规律有层次、有步骤地引导学生分析解决问题
从函数的观点进一步分析规律
(5)地球重量的近似值为(即为阻力),假设阿基米德有500牛顿的力量,阻力臂为20xx千米,请你帮助阿基米德设计该用动力臂为多长的杠杆才能把地球撬动?利用反比例函数的变化规律解释实际生活中一些问题深入挖掘动力臂与动力f又有怎样的函数关系呢?待定系数法解决函数问题公元前3世纪,古希腊科学家阿基米德发现了著名的“杠杆定律”:
阻力阻力臂=动力动力臂,他形象地说,“给我一个支点我可以把地球撬动”
展示练习
市政府计划建设一项水利工程,工程需要运送的土石方总量为米,某运输公司承办了该项工程运送土方的任务。
归纳、总结
作业:教科书习题17.2第6题
教师引导学生回忆、总结,教师予以补充
通过小结,使学生把所学知识进一步内化、系统化
反比例数学教案篇十二
1、借助正比例的意义理解反比例的意义,能根据反比例的意义正确判断两种量是否成反比例。
2、在小组合作学习过程中,掌握合作学习技能,体验合作学习的快乐。
一、创设情境,明确问题
同学们,昨天老师去幼儿园接小朋友,看见幼儿园的老师正在给小朋友们分饼干,想知道他们是怎么分的吗?我们一起去看一看:
人数(人)
1
2
3
4
5
块数(块)
3
6
9
12
15
每人分的块数(块)
3
3
3
3
3
仔细观察,从这个表中,你知道了什么?你知道表中的哪两种量成正比例吗?(说明理由)
说一说成正比例的两个量的变化规律。
师小明的妈妈要去银行换一些零钱,请你帮忙算一算,各换多少张:
面值(元)
1
2
5
10
20
张数(张)
20
总钱数(元)
1、独立思考:出示表格,让学生自己观察,提出问题并解决问题。
2、小组合作,交流探讨问题。
要求:认真听取别人的意见,详细说明自己的'观点,如果有不懂的地方要虚心求助,最重要的是要控制好自己的言行,小组长要协调好本组的合作过程。
3、汇报交流,发现规律。
4、教师小结,明确概念,呈现课题。
5、在理解概念的基础上增加记忆。
1、给车棚的地面铺上水泥砖,每块水泥砖的面积与所需数量如下:
没块水泥砖的面积(平方厘米)
500
400
300
数量(块)
600
750
1000
每块水泥砖的面积与所需数量是否成反比例?为什么?
2、下表中x和y两个量成反比例,请把表格填写完整。
x
2
40
y
5
0.1
3、判断下面每题中的两种量是否成反比例,并说明理由。
(1)全班的人数一定,每组的人数和组数。
(2)圆柱的体积一定,圆柱的底面积和高。
(3)书的总页数一定,已经看的页数和未看的页数。
(4)圆柱的侧面积一定,它的底面周长和高。
(5)、六(1)班学生的出席人数与缺席人数。
4、下面各题中的两种量是不是成比例?如果成比 例,成什么比例?
(1)、订阅《小学生天地》的份数和总钱数。
(2)、小新跳高的高度与他的身高。
(3)、平行四边形的面积一定,底和高。
(4)、正方行的边长与它的周长。
(5)、三角形的面积一定,底和高。
5、生活中还有哪些成反比例关系的量?
1、这节课学会了什么知识?反比例的意义是什么?
2、这节课你与小组同学合作的怎么样?以后应该怎么做?
反比例数学教案篇十三
知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力.
情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学难点 1) 重点:画反比例函数图象并认识图象的特点.
2)难点:画反比例函数图象.
教学关键 教师画图中要规范,为学生树立一个可以学习的模板
教学方法 激发诱导,探索交流,讲练结合三位一体的教学方式
教学手段 教师画图,学生模仿
教具 三角板,小黑板
学法 学生动手,动眼,动耳,采用自主,合作,探究的学习方法
(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)
内 容 设计意图
1.什么叫做反比例函数;
(一般地,如果两个变量x、y之间的关系可以表示成y= (k为常数,k0)的形式,那么称y是x的反比例函数。)
2.反比例函数的定义中需要注意什么?
(1)k为常数,k0
(2)从y= 中可知x作为分母,所以x不能为零.
y=kx+b y=kx
k0 一、二、三 一、三
b0 一、三、四
k0 一、二、四 二、四
b0 二、三、四
可以
问题3:画图象的步骤有哪些呢?
(1)列表
(2)描点
(3)连线
(教学片断:
师:上一节课我们研究了反比例函数,今天我们继续研究反比例函数,下面哪位同学说一下自己对反比例函数的了解。
生:我知道反比例函数来源于生活,生活中的许多问题都属于反比例函数问题,例如,在匀速运动中当路程一定时,且路程不等于零,则速度与时间成反比例函数关系。
生:我知道反比例函数的解析式为 且k不等于0
生:我知道反比例函数的图象是曲线。
生:该研究反比例函数图象和性质了。
师:现在给大家几分钟的时间探讨一下反比例函数图象该怎么画?
学生思考、交流、回答。
提问:你能画出 的图象吗?
学生动手画图,相互观摩。
(1) 列表(取值的特殊与有效性)
x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
(2)描点(描点的准确)
(3)连线(注意光滑曲线)
议一议
(1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。
(2)如果在列表时所选取的数值不同,那么图象的形状是否相同?
(3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?
(4)曲线的发展趋势如何?
曲线无限接近坐标轴但不与坐标轴相交
学生先分四人小组进行讨论,而后小组汇报
做一做
作反比例函数 的图象。
学生动手画图,相互观摩。
想一想
观察 和 的图象,它们有什么相同点和不同点?
学生小组讨论,弄清上述两个图象的异同点
相同点:(1)图象分别都是由两支曲线组成(2)都不与坐标轴相交(3)都是轴对称图形(y=x、y=-x)和中心对称图形(对称中心(0,0)即坐标原点)
不同点:第一个图象位于一、三象限;第二个图象位于二、四象限
反比例函数 y = 有下列性质:反比例函数的图象y = 是由两支曲线组成的。
(1) 当 k0 时,两支曲线分别位于第___、___象限,
(2) 当 k0 时,两支曲线分别位于第___、___象限.
(1)
(1)已知函数 的图象分布在第二、四象限内,则 的取值范围是_________
(2)若ab0,则函数 与 在同一坐标系内的图象大致可能是下图中的 ( )
(a) (b) (c) (d)
(3)画 和 的图象
在同一坐标系中作出函数y=2/x与函数y=x-1的图象,并利用图象求它们的交点坐标.
(1) 作反比例函数y=2/x,y=4/x,y=6/x的图象
(2) 习题5.2.1
(3)预习下一节 反比例函数的图象与性质ii
复习上节主要内容
(3分钟)
(5分钟)
运用类比研究一次函数性质的方法,来研究反比例函数图象与性质
由于初中学生属于义务教育阶段,没有经过入学选拔,所以两极分化比较严重,上面提出的问题带有一定的开放性,面向各层次的学生,使不同层次的学生都有一定的问题可答,从而激发起不同层次学生的学习积极性。
数学教学重要目的之一是使学生学会学习,利用这个问题可以使学生学会寻找研究的方向,会提出研究的课题,提高学习的能力。
数学学习活动是学生对自己头脑中已有知识的重新建构,所以利用学生头脑中已有的一次函数图象与性质,及研究一次函数图象与性质的方法,创设问题情境,可以激发学习研究的热情,点燃学生思维的火花,并使学生知道如何研究新问题,使学生在探究过程中实现知识的迁移,形成新的认知结构。
(12分钟)
引导学生正确画出反比例函数图象,并能归纳反比例函数图象的有关性质.
在画第一个图象时,教师要在黑板上用三角板一步一步的示范,在重要地方再重点强调,直到整个图象的完成。只有以身示范,同学学习才有样可依,有了正确标准的样板,学生学习也变得容易。这样可以培养学生严谨与严密的做题步骤以及做题的规范性。
注:(1)x取绝对值相等符号相反的数值
(2) x取值要尽可能多,而且有代表性
(3)连线时用光滑曲线从小到大依次连接
(4)图象不与坐标轴相交
在此学生若是回答图象是轴对称图象或者中心对称图象都要予以肯定,这些内容留给学生课下探讨,并鼓励提出问题的学生继续探索不要放弃。
(3分钟)
此时图象由学生仿照第一个在下边自己独立画出,并且监督学生,在有学生画的不对的地方及时指出,并使其改正后鼓励。最后在黑板上画出正确的图象,使学生自己画的图象与黑板对比。
(5分钟)
(4分钟)
培养学生归纳,语言表达能力
此中注意分类讨论思想的应用
巩固反比例函数图象性质
(2分钟)
与新课较接近的简化检测可以再次回顾所学内容,以及内容重点。这类题多为口算或口答,题目简单不过所学内容可以全部体现。
(5分钟)
这类练习要求动笔计算或者画图,有一定难度,可以深化所学内容。
(4分钟)
此题既是对函数图象画法的复习又是对方程求解的深化。其中蕴含了数形结合思想。
(1分钟)
巩固作反比例函数图象的步骤,预习下一节课内容
本节课通过学生自主探索,合作交流,自主画图,以认知规律为主线,以发展能力为目标,以从直观感受到分析归纳为手段,培养学生的合情推理能力和积极的情感态度,促进良好的数学观的形成。培养了学生的抽象思维能力,同时也向学生渗透了归纳类比,数形结合以及分类讨论的数学思想方法。
由于此节课是动手画图,限于器材以及教学设备,图象显示不能用几何画板和投影仪,不过一笔一笔的教学生一个范例,既可给学生思考也可有学习的空间。
在由图象获取性质的时候有一些不足,以后教课时要注意引导,使学生较快获得有效信息,从而归纳出要得到的性质和结论。在这节课要多强调光滑曲线以及画法。
(1)列表(取值的特殊与有效性)
x -8 -4 -2 -1 -1/2 1/2 1 2 4 8
(2)描点(描点的准确)
(3)连线(注意光滑曲线)
注:(1)x取绝对值相等符号相反的数值
(2)x取值要尽可能多,而且有代表性 三:练习
(3)连线时用光滑曲线从小到大依次连接
(4)图象不与坐标轴相交
(1) 当 k0 时,两支曲线分别位于第一、三象限,
(2) 当 k0 时,两支曲线分别位于第二、四象限.
反比例数学教案篇十四
2.利用反比例函数的图象解决有关问题.
1.经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;。
2.探索反比例函数的图象的性质,体会用数形结合思想解数学问题.
一、创设情境。
上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k0)的图象,探究它有什么性质.
二、探究归纳。
1.画出函数的图象.
分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x0.
解1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:
2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等.
3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.
上述图象,通常称为双曲线(hyperbola).
提问这两条曲线会与x轴、y轴相交吗?为什么?
学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).
学生讨论、交流以下问题,并将讨论、交流的结果回答问题.
1.这个函数的图象在哪两个象限?和函数的图象有什么不同?
2.反比例函数(k0)的图象在哪两个象限内?由什么确定?
(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.
注1.双曲线的两个分支与x轴和y轴没有交点;。
2.双曲线的两个分支关于原点成中心对称.
以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?
在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少.
在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小.
三、实践应用。
例1若反比例函数的图象在第二、四象限,求m的值.
分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+10,由这两个条件可解出m的值.
解由题意,得解得.
例2已知反比例函数(k0),当x0时,y随x的.增大而增大,求一次函数y=kx-k的图象经过的象限.
分析由于反比例函数(k0),当x0时,y随x的增大而增大,因此k0,而一次函数y=kx-k中,k0,可知,图象过二、四象限,又-k0,所以直线与y轴的交点在x轴的上方.
解因为反比例函数(k0),当x0时,y随x的增大而增大,所以k0,所以一次函数y=kx-k的图象经过一、二、四象限.
例3已知反比例函数的图象过点(1,-2).
(1)求这个函数的解析式,并画出图象;。
(2)由点a在反比例函数的图象上,易求出m的值,再验证点a关于两坐标轴和原点的对称点是否在图象上.
解(1)设:反比例函数的解析式为:(k0).
而反比例函数的图象过点(1,-2),即当x=1时,y=-2.
所以,k=-2.
(2)点a(-5,m)在反比例函数图象上,所以,
点a的坐标为.
点a关于x轴的对称点不在这个图象上;。
点a关于y轴的对称点不在这个图象上;。
点a关于原点的对称点在这个图象上;。
(1)求m的值;。
(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?
(3)当-3时,求此函数的最大值和最小值.
解(1)由反比例函数的定义可知:解得,m=-2.
(2)因为-20,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大.
(3)因为在第个象限内,y随x的增大而增大,
所以当x=时,y最大值=;。
当x=-3时,y最小值=.
所以当-3时,此函数的最大值为8,最小值为.
例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.
(1)写出用高表示长的函数关系式;。
(2)写出自变量x的取值范围;。
(3)画出函数的图象.
解(1)因为100=5xy,所以.
(2)x0.
(3)图象如下:
说明由于自变量x0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.
四、交流反思。
本节课学习了画反比例函数的图象和探讨了反比例函数的性质.
1.反比例函数的图象是双曲线(hyperbola).
(2)当k0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.
五、检测反馈。
1.在同一直角坐标系中画出下列函数的图象:
(1);(2).
2.已知y是x的反比例函数,且当x=3时,y=8,求:
(1)y和x的函数关系式;。
(2)当时,y的值;。
(3)当x取何值时,?
3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值.
4.已知反比例函数经过点a(2,-m)和b(n,2n),求:
(1)m和n的值;。
(2)若图象上有两点p1(x1,y1)和p2(x2,y2),且x1x2,试比较y1和y2的大小.
反比例数学教案篇十五
p53~54、第4~13题,思考题,正、反比例应用题的练习。
进一步掌握正、反比例的意义,能正确应用比例知识解答基本的正、反比例应用题,并沟通不同解法之间的联系,进一步提高学生判断,分析和推理等思维能力。
一、基本训练。
p53第4题,口答并说明理由。
二、基本题练习。
1、做练习十第5题。
2提问:按过去的算术解法,第(1)题要先求什么数量?第(2)题呢?
用比例的知识怎样解答呢,请大家自己做一做。
评讲:说一说是怎样想的`?
(板书:速度×时间=路程(一定)=反比例。
提问:正、反比例应用题解题过程有什么相同的地方?解题方法有什么不同?为什么?
3、练习:(略)。
三、综合练习。
3、练习十第11题。
启发学生用几种方法解答。
4、做练习十第13题。
(1)提问:这是一道什么应用题?可以怎样列式解答?
(2)把树苗总数看做单位“1”,成活棵数是94%,你还能用比例知识解答吗?
四、讲解思考题。
引导:增加铅以后,铅与锡的比是5:3,有怎样的关系式?
五、课堂:
通过本课的练习,你进一步明确了哪些内容?
六、作业:
第8、9、10题。
七、课后作业:
第6、7、12题。
反比例数学教案篇十六
1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题。
2、能根据实际问题中的条件确定反比例函数的解析式。
3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。
重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题。
难点:根据实际问题中的条件确定反比例函数的解析式。
为了预防“非典”,某学校对教室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例.药物燃烧后,y与x成反比例(如图所示),现测得药物8min燃毕,此时室内空气中每立方米的含药量为6mg,请根据题中所提供的信息,解答下列问题:。
(1)药物燃烧时,y关于x的函数关系式为:________,自变量x的取值范围是:_______,药物燃烧后y关于x的函数关系式为_______。
(1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务?
(3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字?
例2某自来水公司计划新建一个容积为的长方形蓄水池。
(1)蓄水池的底部s与其深度有怎样的函数关系?
(2)如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?
(3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100m和60m,那么蓄水池的.深度至少达到多少才能满足要求?(保留两位小数)。
1、一定质量的氧气,它的密度(kg/m3)是它的体积v(m3)的反比例函数,当v=10m3时,=1.43kg/m3.(1)求与v的函数关系式;(2)求当v=2m3时求氧气的密度。
2、某地上年度电价为0.8元度,年用电量为1亿度.本年度计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本年度新增用电量y(亿度)与(x-0.4)(元)成反比例,当x=0.65时,y=-0.8。
(1)求y与x之间的函数关系式;
3、如图,矩形abcd中,ab=6,ad=8,点p在bc边上移动(不与点b、c重合),设pa=x,点d到pa的距离de=y.求y与x之间的函数关系式及自变量x的取值范围。
反比例数学教案篇十七
(二)对反比例函数的三种表示方法进行巩固和熟悉。
例题非常简单,在例题的处理上我注重了学生解题步骤的培养,同时通过两次变式进一步巩固解法,并拓宽了学生的思路。在变式训练之后,我又补充了一个综合性题目的例题,(在上学期曾有过类似问题的,由于时间的久远学生不是很熟悉)但在补充例题的处理上点拨不到位,导致这个问题的解决有点走弯路。
题组(三)在本节既是知识的巩固又是知识的检测,通过这组题目的处理,发现学生对本节知识的掌握还可以。从整体来看,时间有点紧张,小结很是仓促,而且是由老师代劳了,没有让学生来谈收获,在这点有些包办的趋势。
虽然在题目的设计和教学设计上我注重了由浅入深的梯度,但有些问题的处理方式不是恰到好处,有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性。总之,我会在以后的教学中注意细节问题的。
还希望数学组的老题多提宝贵的意见。谢谢了!
反比例数学教案篇十八
教材第106、107页例1,例2。
1.使学生认识正、反比例应用题的特点,理解、掌握用比例知识解答应用题的解题思路和解题方法,学会正确地解答基本的正、反比例应用题。
2.进一步培养学生应用知识进行分析、推理的能力,发展学生思维。
认识正、反比例应用题的特点。
掌握用比例知识解答应用题的解题思路。
1.判断下面的量各成什么比例。
(1)工作效率一定,工作总量和工作时间。
(2)路程一定,行驶的速度和时间。
让学生先分别说出数量关系式,再判断。
2.根据条件说出数量关系式,再说出两种相关联的量成什么比例,并列出相应的等式。
(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。
(2)一列火车行驶360千米。每小时行90千米,要行4小时;每小时行80千米,要行x小时。
指名学生口答,老师板书。
3.引入新课。
从上面可以看出,生产、生活中的一些实际问题,应用比例的知识,也可以根据题意列一个等式。所以,我们以前学过的一些应用题,还可以应用比例的知识来解答。这节课,就学习正、反比例应用题。(板书课题)。
1.教学例1。
(1)出示例1,让学生读题。
(2)说明:这道题还可以用比例知识解答。
(3)小结:
提问:谁来说一说,用正比例知识解答这道应用题要怎样想?怎样做?指出:先按题意列关系式判断成正比例,再找出两种相关联量里相对应的数值,然后根据正比例关系里比值一定,也就是两次篮球个数与总价对应数值比的比值相等,列等式解答。
2.教学改编题。
出示改变的问题,让学生说一说题意。请同学们按照例1的方法自己在练习本上解答。同时指名一人板演,然后集体订正。指名说一说是怎样想的,列等式的依据是什么。
3.教学例2。
(1)出示例2,学生读题。
(2)谁能仿照例l的解题过程,用比例知识来解答例2?请同学们自己来试一试。指名板演,其余学生做在练习本上。学生练习后提问是怎样想的。效率和时间的对应关系怎样,检查列式解答过程,结合提问弄清为什么列成积相等的等式解答。
(3)提问:按过去的方法是先求什么再解答的?先求总量的应用题现在用什么比例关系解答的?谁来说一说,用反比例关系解答这道应用题是怎样想,怎样做的?指出;解答例2要先按题意列出关系式,判断成反比例,再找出两种相关联量里相对应的数值,然后根据反比例关系里积一定,也就是两次修地下管道相对应数值的乘积相等,列等式解答。
4.小结解题思路。
请同学们看一下黑板上例1、例2的解题过程,想一想,应用比例知识解答应用题,是怎样想怎样做的?同学们可以相互讨论一下,然后告诉大家。指名学生说解题思路。指出:应用比例知识解答应用题,先要判断两种相关联的量成什么比例关系,(板书:判断比例关系)再找出相关联量的对应数值,(板书:找出对应数值)再根据正、反比例的意义列出等式解答。(板书:列出等式解答)追问:你认为解题时关键是什么?(正确判断成什么比例)怎样来列出等式?(正比例比值相等,反比例乘积相等)。
1.做练一练。
指名两人板演,其余学生做在练习本上。集体订正,让学生说说为什么列出的等式不一样。指出:只有先正确判断成什么比例关系,才能根据正比例或反比例的意义正确列式。
2.做练习十三第1题。
先自己判断,小组交流,再集体订正。
这节课学习了什么内容?正、反比例应用题要怎样解答?你还认识了些什么?
完成练习十三第2~6题的解答。
反比例数学教案篇十九
教学目标:
知识与技能:
1.结合丰富的实例,认识反比例。
2.能根据反比例的意义,判断两个相关联的量是不是反比例。
过程与方法:
通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。
情感态度价值观:
培养学生自主、合作学习、探索新知的能力,激发学习数学的热情。感受反比例关系在生活中的广泛应用。初步渗透函数思想。
认识反比例,根据反比例意义判断两个相关联的量是否成反比例。
认识反比例,根据反比例意义判断两个相关联的量是否成反比例。
电脑课件。
一、复习引入。
1、计算。
2、判断下面各题中的两种量是否成正比例?为什么?
(1)文具盒的单价一定,买文具盒的个数和总价。
(2)一堆货物一定,运走的量和剩下的量。
(3)汽车行驶的速度一定,行驶的路程和时间。
3、说说什么是正比例。
师:大家对正比例知识理解掌握得非常好,接下来我们就该学习什么了?
二、出示学习目标。
1.能根据反比例的意义,判断两个相关联的量是不是反比例。
2.通过猜想、分析、对比、概括、举例、判断等活动,结合实例,理解反比例的意义,认识反比例。
3.培养学生探索研究的能力,感受反比例关系在生活中的广泛应用。
三、指导自学。
师:给你们讲个小故事:
过了几天,财主到了裁缝店取帽子,结果一看,顿时傻了眼:10顶的帽子小得只能戴在手指头上了!
学习提示:独立思考?
1、“为什么同一匹布,裁缝说做1顶帽子,2顶帽子,10顶都可以呢?”
合作学习小组讨论上述的问题。看书合作学习。
1、把25页例。
2、例3的表格补充完整。
4、你知道什么是反比例吗?
四、学生自学。
五、检查自学效果。
让学生说说自学要求中的内容。
师归纳:两种相关联的量,一种量随着另一种量的变化而变化,在变化过程中两种量的积一定,那么这两种量成反比例。
六、引导更正,指导运用。
你们还找出类似这样关系的量来吗?”
学生:要走一段路,速度越慢(快),用的时间就越多(少)运一堆货物,每次运的越多(少),运的次数就越小(多)百米赛跑,路程100米不变,速度和时间是反比例;排队做操,总人数不变,排队的行数和每行的人数是反比例;长方体的体积一定,底面积和高是反比例。
七、当堂训练基础练习。
1、填空。
两种_____的量,一种量随着另一种量变化,如果这两种量中相对应的两个数的______,这两种量叫做成反比例的量,它们的关系叫做_______关系。
2、判断下面每题中的两种量是不是成反比例,并说明理由。
(1)煤的总量一定,每天的烧煤量和能够烧的天数。
(2)张伯伯骑自行车从家到县城,骑自行车的速度和所需的时间。
(3)生产电视机的总台数一定,每天生产的台数和所用的天数。
(4)圆柱体的体积一定,底面积和高。
(5)小林做10道数学题,已做的题和没有做的题。
(6)长方形的长一定,面积和宽。
(7)平行四边形面积一定,底和高。提高练习。
四、小结。
通过这节课的学习,你有什么收获?
相关联,一个量变化,另一个量也随着变化积一定。
xy=k(一定)。
【本文地址:http://www.xuefen.com.cn/zuowen/15803604.html】