时间总是不经意间流逝,总结让我们记住成长的足迹。在写总结的过程中,我们可以采用归纳、提炼和概括的方法。如果你正在写总结,不妨看看以下小编为大家搜集的一些范文,或许可以解决你的困惑。
平行四边形的判定教学设计篇一
【原创】没有最好,力求更好――《平行四边形判定》课后反思。
昨天下午,我上了一节数学电教课《平行四边形的判定》第一课时,本节课在引入的环节上,我采用复习引入的方式。首先复习了平行四边形的定义和性质,唤起学生对已有知识的回忆,接着通过探究逆命题的真假直接引出本节课的学习内容和任务。同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。
一、本节课对教材内容进行了重组和编排。
教材中平行四边形的判定的第一课时学习的判定定理是:两组对边分别相等的四边形是平行四边形,对角线互相平分的四边形是平行四边形。因为平行四边形的性质是从边、角、对角线三个方面研究的,所以,我将判定方法也从这三个方面入手,将教材内容进行调整,本节课从边进行研究判定方法。
二、充分利用小组合作学习。
在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的`,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上。学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。
三、本节课题量不算太大,但做到了几点:
(1)一题多变。
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西---核心问题。本课的核心问题就是,平行四边形的判定方法的选择。自认为从课前小练变到典型例题,还是比较合理的。因为,前面的练习其实就是为例题做了一定铺垫,学生可以建立起知识联系,寻求解题突破口。但从典型例题变到能力训练题,并不理想,没有紧扣“平行四边形的判定”而变。
(2)一题多解。
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。本课中,典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
(3)多题一法。
本课从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
四、在对课案的反复打磨期间,自己也收获颇丰。
尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有意识地进一步尝试和运用,真正使学生能力得以培养,技能逐步形成,数学素质得到提高。
教学永远是一门遗憾的艺术,吹尽黄沙始现金。让我们以“没有最好,力求更好”来不断改进我们的教学,实现真正意义上的与时俱进。
平行四边形的判定教学设计篇二
本节课是平行四边形判定的第二节课,上一节课已经学习了判定方法1和判定方法2,再结合平行四边形的定义,同学们已经掌握了3种平行四边形的判定方法。本节课在上节课的基础上,学习平行四边形的判定方法3,使同学们会运用这些方法进行几何的推理证明,并且通过本节课的`学习,继续培养学生的分析问题、寻找最佳解题途径的能力。
本节课的知识点不难,教材内容也较少,但学生灵活运用判定定理去解决相关问题并不容易,基于此,在本设计中加强了一题多解和寻找最佳解题方法的训练教学,丰富了课堂活动。
平行四边形的判定教学设计篇三
1、一个四边形是平行四边形,这个四边形的两组对边分别相等。
2、一个四边形是平行四边形,这个四边形的两组对角分别相等。
3、夹在两条平行线间的平行的高相等。
4、连接任意四边形各边的中点所得图形是平行四边形。
5、过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
6、平行四边形abcd中,ac、bd是平行四边形abcd的`对角线,则各四边的平方和等于对角线的平方和。
平行四边形的判定教学设计篇四
根据平行四边形的定义:在同一个二维平面内,由两组互相平行的对边组成的闭合图形叫平行四边形。
长方形和正方形都具有平行四边形的特征,长方形是四个角都是直角的特殊平行四边形,正方形是四个角都是直角,四条边长相等的特殊平行四边形。
长方形:长方形也叫矩形,是有一个角是直角的平行四边形,也可以定义为四个角都是直角的平行四边形。
判定方法。
1、对角线相等的菱形是正方形。
2、有一个角为直角的菱形是正方形。
3、对角线互相垂直的矩形是正方形。
4、一组邻边相等的矩形是正方形。
5、一组邻边相等且有一个角是直角的`平行四边形是正方形。
6、对角线互相垂直且相等的平行四边形是正方形。
7、对角线相等且互相垂直平分的四边形是正方形。
8、一组邻边相等,有三个角是直角的四边形是正方形。
9、既是菱形又是矩形的四边形是正方形。
平行四边形的判定教学设计篇五
1。要判定我们刚才画出的四边形是不是平行四边形,应当加以证明。第一种画法,由平行四边形的定义可知,它是平行四边形(定义可作性质也可作判定)。
2。现在我们来看看第二种画法,这就是平行四边形判定定理一(翻开课本看它的文字叙述)。请想想,一组对边平行且相等的四边形究竟是不是平行四边形呢?这里已知是什么?求证是什么?请写出。
自学课本上的证明过程,看后提问:这个证明题不作辅助线行不行?为什么?(因为要证平行线,一般要证两角相等,或互补,要证两角相等,一般要证全等三角形,而这里没有三角形,要连一对角线才有三角形)。
3。再看第三种画法,在两组对边分别相等的情况下是不是平行四边形?教师写出已知、求证,请两位学生上台证明,其余在课堂练习本上做。(注意考虑要不要添辅助线)。
完成证明后提问哪些学生是用判定定理一落千丈证明的?哪些是用定义证明的?(解题后思考)。
平行四边形的判定教学设计篇六
《平行四边形的判定》是学生学习平行四边形的重要知识。一共分为4个课时。在学习平行四边形的判定,同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。在设计教学的.亮点是充分利用小组合作学习、一题多变、一题多解、多题一法。
充分利用小组合作学习,在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西为核心问题。从课前小练变到典型例题,还是比较合理的。
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。用典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
多题一法,从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
总之,尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有自己的思想和独创。
平行四边形的判定教学设计篇七
平行四边形在实际生活和工作中具有广泛的应用,因此它的判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。平行四边形的判定一节按照课本分为两个课时,前三个判定和定义判定为第一课时,第一课时主要探讨平行四边形的判定的四种方法,在探讨时由一个实际问题——玻璃片的问题引出四个判定方法的猜想,然后引导学生进行推理证明验证,从边、角、平分线三点来分别探讨,在课堂上我要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养。在教学过程中,引导学生通过动手实践、猜想、论证的过程得出结论和方法,同时安排同学上台进行讲解、板书等方法,有利于锻炼学生的综合能力。
收获:通过玻璃片的实例引导同学探索、研究得出平行四边形的判定方法,学生对四个判定的掌握比较好,通过练习巩固,学生对判定方法的运用也比较熟练,而且由于要求学生对每一个判定都进行了口头表达过程和符号语言的书写练习,因此提高了学生的推理论证的能力和书写能力,在训练过程中大部分的学生都能说出或写出比较完整的证明过程。
不足:首先,由于学生不熟悉,课件不充分等原因,造成在教学过程中时间过于紧张,使得在教学中的部分环节没能得以体现,比如:学生的板演等,这对课堂教学的效果造成了一定的影响。另外几何证明题一直是学生的一个弱点,这在今后的学习中是一个需要改变和提高部分。在今后的教学中一定会努力学习,积极探索,完善自己的教学模式和方法,争取更好的成绩。
平行四边形的判定教学设计篇八
尊敬的各位评委,老师们:
大家好!我是来自实验学校的杨小君,我今天说课的内容是人教版义务教育课程标准实验教科书八年级下册19、1、2平行四边形的判定第一课时。我将由教材分析,教学目标、教法、学法、教学过程、课堂评价这6个方面向大家介绍我的设计构思。
一、教材分析。
四边形是我们生活与生产实践中应用广泛的图形,平行四边形作为四边形的重要研对象,对以后特殊四边形的学习有重大作用。本堂课是在学习了平行四边形的定义和性质定理的基础上,进一步探究平行四边形的判定定理。因此它的作用与地位体现在以下三个方面:
1、是平行线与全等三角形知识的应用与延伸。
2、对以后矩形、菱形、正方形、梯形等特殊四边形的判定学习奠定基础。
3、.对加强学生逻辑推理能力和思维的严密性有积极的意义。
本节课的重点在于探究平行四边形的两种判定定理。难点在于理解和灵活运用平行四边形的判定方法。为了更好的突出重点,突破难点,关键在于通过问题情境的`设计,课堂实验研讨,引导学生发现,分析并解决问题。
学情分析。
初二下半学期,学生已经学习了初中阶段包括全等三角形的性质判定在内的绝大多数几何概念及定理。抽象思维能力、逻辑推理能力已经逐步形成,学生对新鲜的知识也充满了好奇心和强烈的求知欲望,而平行四边形的判定条件中,又有许多颇有思考价值的问题。因此由教师组织教学,让学生全开放自主探索平行四边行的判定定理,让学生的综合能力得到一次检验和再提升。
二、教学目标分析。
《数学课程标准》中明确指出:义务教育阶段的数学课程,其基本出发点是促进学生全面、持续和谐的发展。学生在获得对数学理解的同时,在思维能力,情感态度与价值观等多方面得到进步与发展。基于此,我将这节课的教学目标制定如下:
1、知识与技能——掌握平行四边形判定定理,并会运用判定定理解决相关问题。
2、方法与过程——探索两种组成平行四边形的方法。由此发现平行四边形的判定,体验教学活动充满着探索性和挑战性。
3、情感态度价值观——经过自主探究与合作交流,敢于发表自己的观点,有团结协作和合作意识。
三、教法分析。
在本堂课的教学中,我将主要采用两种教学方法:
1、引导启发——在本节课的教学中,教师所起的作用不再是一味“传授”,而是巧妙地创设问题情境,启发学生发现、解决问题,在学生思维受阻时给予适当引导。
2、激趣教学——学习本应是件快乐的事,为了让学生“乐”学,我将通过实验,抢答等游戏极大的激发学生的学习兴趣,提高学习的效率。
四、学法分析。
在合理选择教法的同时,还应注重对学生学法的指导,本节课主要指导学生以下两种学法:
1、自主探究——本节课的两条判定定理都是通过学生的动手操作、观察、猜想、推理等活动得出的,使学生亲历了知识的发生、发展、形成的全过程,从而变被动接受为主动探究。
2、合作学习——教学中鼓励学生积极合作,充分交流,帮助学生在学习活动中获得最大的成功,促使学生学习方法的改变。
五、教学过程分析。
为了更好的完成教学目标,我设计了以下教学流程:
流程1:复习定义性质,引发思考。
首先给出一些平行四边形的图片和图形,让学生说出平行四边形的定义和性质定理,然后在纸上写出定义和性质的逆命题。
这样设计的目的在于复习前面的知识,为新课奠定基础,向学生说明定义既是平行四边形的性质也可以作为判定平行四边形的方法。提问:除了定义,同学们还想知道其他判定平行四边形的方法呢?这就是我们今天要学的“平行四边形的判定”
流程2:创设情境,引出新课。
让学生用课前准备好的学具,完成活动1。
活动1的设计,是为了让学生动手操作,经历将两两相等的木条,作为对边得到平行四边形的过程,体验“发现”知识的快乐。
流程3:命题论证,得到判定。
证明这一命题是个难点,首先指导学生根据命题画出几何图形,写出已知求证。证明过程采用学生先独立思考。小组合作,再由教师引导,把证明平行四边形的问题逐步转化为证明线平行——角相等——三角形全等的问题。突破难点,体现划归的思想。
流程4:引发猜想,得到命题。
让学生继续动手,完成活动2.。得出命题2:对角线互相平行的四边形是平行四边形。在此活动中,教师应重点关注学生操作的准确性。
流程5:命题证明,得出判定。
命题2的证明,鼓励学生用类比的思维方法仿照命题1的证明,独立思考,小组内交流意见,教师关注学生能否用不同的方法从理论上证明自己的猜想和发现,以及学生使用几何语言的规范性与严谨性。
流程6:应用判定,小试牛刀。
这三个小题是对判定的直接应用,采用小组抢答的方式来完成,其他小组作出评价,既检验学生对新知识的掌握情况,又活跃了课堂气氛,同时让学生体验到成功的快乐。
流程7:例题讲解,练习巩固。
出示例题给予足够的时间让学生独立思考,小组合作,由不同的学生表述自己的思路,教师展示学生的不同方案,对于有创意的方案要大力表扬,然后引导学生从多种证明思路中,选择较为简洁的方法,规范板书。
然后出示练习题,1、2体学生独立思考口答完成填空,3小题小组合作探讨,整理思路,写出解题过程。
流程8:小结本课,布置作业。
引导学生多方面,多角度说出自己的收获,可以是知识方面的,也可以是数学思想方法,还可以是自己的感受,只要学生的收获,都应得到肯定。
六、课堂评价分析。
对于数学学习效果的评价,既要关注学生知识与技能的理解与掌握,更要关注他们情感与态度的形成与发展。在教学各环节中,我注重采用学生自我评价,学生互评,教师评价相结合,实现评价主体多元化;采用口试,课堂观摩,课后作业等多种形式,多层面了解学生,在学习过程中,从学生参与教学活动的程度,合作意识,思考习惯,发现能力几方面,及时调控教学进程。
总之,我这堂课的设计理念来自于建构主义思想,以学生为中心,强调学生对知识的主动探索,主动发现和对所学知识意义的主动建构,因此创设学习环境是主要任务,体现学生主动学习是这堂课的核心内容。
平行四边形的判定教学设计篇九
在欧几里德几何中,平行四边形是具有两对平行边的简单(非自相交)四边形。平行四边形的相对或相对的`侧面具有相同的长度,并且平行四边形的相反的角度是相等的。
相比之下,只有一对平行边的四边形是梯形。平行四边形的三维对应是平行六面体。
两组对边分别平行的四边形是平行四边形;
两组对边分别相等的四边形是平行四边形;
一组对边平行且相等的四边形是平行四边形;
两条对角线互相平分的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形。
平行四边形的判定教学设计篇十
(第一课时)。
一、素质教育目标。
(一)知识教学点。
1.掌握平行四边形的判定定理1、2、3、4,并能与性质定理、定义综合应用.。
2.使学生理解判定定理与性质定理的区别与联系.。
3.会根据简单的条件画出平行四边形,并说明画图的依据是哪几个定理.。
(二)能力训练点。
1.通过“探索式试明法”开拓学生思路,发展学生思维能力.。
(三)德育渗透点。
通过一题多解激发学生的学习兴趣.。
(四)美育渗透点。
通过学习,体会几何证明的方法美.。
二、学法引导。
构造逆命题,分析探索证明,启发讲解.。
三、重点・难点・疑点及解决办法。
2.教学难点:综合应用判定定理和性质定理.。
四、课时安排。
2课时。
五、教具学具准备。
投影仪,投影胶片,常用画图工具。
六、师生互动活动设计。
复习引入,构造逆命题,画图分析,讨论证法,巩固应用.。
七、教学步骤。
【复习提问】。
1.平行四边形有什么性质?学生回答教师板书。
2.将以上性质定理分别用命题的形式叙述出来.。
【引入新课】。
用投影仪打出上述命题的逆命题.。
那么其它逆命题是否正确呢?如果正确就可得到另外的判定方法(写出命题).。
【讲解新课】。
平行四边形的判定教学设计篇十一
每个学生准备一个平行四边形。
1.请同学翻书到86页,仔细观察,找一找图中有哪些学过的图形?
2.好,下面谁来说一说你找到了哪些学过的图形?
3.请观察这两个花坛,哪一个大呢?假如这块长方形花坛的长是3米,宽是2米,怎样计算它的面积呢?根据长方形的面积=长宽(板书),得出长方形花坛的面积是6平方米,平行四边形面积我们还没有学过,所以不能计算出平行四边形花坛的面积,这节课我们就学习的平行四边形面积计算。
(一)、数方格法。
用展示台出示方格图。
1.这是什么图形?(长方形)如果每个小方格代表1平方厘米,这个长方形的面积是多少?(18平方厘米)。
请同学认真观察一下,平行四边形在方格纸上出现了不满一格的,怎么数呢?可以都按半格计算。然后指名说出数得的结果,并说一说是怎样数的。
3.请同学看方格图填87页最下方的表,填完后请学生回答发现了什么?
小结:如果长方形的长和宽分别等于平行四边形的底和高,则它们的面积相等。
(二)引入割补法。
以后我们遇到平行四边形的地、平行四边形的零件等等平行四边形的东西,都像这样数方格的方法来计算平行四边形的面积方不方便?那么我们就要找到一种方便、又有规律的计算平行四边形面积的方法。
(三)割补法。
平行四边形的判定教学设计篇十二
昨天下午,我上了一节数学电教课《平行四边形的判定》第一课时,本节课在引入的环节上,我采用复习引入的方式,平行四边形判定课后反思。首先复习了平行四边形的定义和性质,唤起学生对已有知识的回忆,接着通过探究逆命题的真假直接引出本节课的学习内容和任务。同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。
一、本节课对教材内容进行了重组和编排。
教材中平行四边形的判定的第一课时学习的判定定理是:两组对边分别相等的四边形是平行四边形,对角线互相平分的四边形是平行四边形。因为平行四边形的性质是从边、角、对角线三个方面研究的,所以,我将判定方法也从这三个方面入手,将教材内容进行调整,本节课从边进行研究判定方法。
二、充分利用小组合作学习。
在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,不把思路局限在某一判定方法上,教学反思《平行四边形判定课后反思》。学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。
三、本节课题量不算太大,但做到了几点:
(1)一题多变。
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西——核心问题。本课的核心问题就是,平行四边形的判定方法的选择。自认为从课前小练变到典型例题,还是比较合理的。因为,前面的练习其实就是为例题做了一定铺垫,学生可以建立起知识联系,寻求解题突破口。但从典型例题变到能力训练题,并不理想,没有紧扣“平行四边形的判定”而变。
(2)一题多解。
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。本课中,典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
(3)多题一法。
本课从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
四、在对课案的反复打磨期间,自己也收获颇丰。
尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有意识地进一步尝试和运用,真正使学生能力得以培养,技能逐步形成,数学素质得到提高。
教学永远是一门遗憾的艺术,吹尽黄沙始现金。让我们以“没有最好,力求更好”来不断改进我们的教学,实现真正意义上的与时俱进。
将本文的word文档下载到电脑,方便收藏和打印。
平行四边形的判定教学设计篇十三
《平行四边形的判定》是学生学习了平行四边形的重要知识。一共分为4个课时。在学习了平行四边形的判定,同时,让学生初步感受平行四边形的性质与判定的区别与联系,为平行四边形的性质和判定的综合运用作了铺垫。在设计教学的亮点是充分利用小组合作学习、一题多变、一题多解、多题一法。
充分利用小组合作学习,在整个教学过程中,以学生看、想、议、练为主体,教师在学生仔细观察、类比、想象的基础上加以引导点拨。判定方法是学生自己探讨发现的,因此,应用也就成了学生自发的需要,用起来更加得心应手。在证明命题的过程中,学生自然将判定方法进行对比和筛选,或对一题进行多解,便于思维发散,学生在不同题目的对比中,在一题不同证法的对比中,能力真正得到提高。
一题多变,有利于学生抓住问题的本质或者说是核心,从变化的题目中抓住不变的东西为核心问题。从课前小练变到典型例题,还是比较合理的。
一题多解,有利于培养学生思维的发散性,对学生提升解题能力颇有帮助,而且能够让学生顺利建立起知识结构,起到事半功倍的效果。用典型例题覆盖了几乎所有判定方法,使学生各种方法进行了合理分析,既可以牢固记住这些方法,又可以进行对比,理清他们的联系和区别,同时提升解题能力,避免了“题海战术”。
多题一法,从课前小练到例题再到练习题,虽然题目各不相同,但解法却都是相通的:即根据条件,选择一种判定方法进行判定。这有利于学生“悟”出解题的思路,找到数学的乐趣。
总之,尝试了生活数学、问题探究模式等教学方式和理念在自己课堂上的运用,并充分意识到多媒体教学的辅助手段对于增进学生学习兴趣、提高课堂效率起到的积极推进作用。在以后的日常教学中,要有自己的思想和独创。
平行四边形的判定教学设计篇十四
平行四边形在实际生活和工作中具有广泛的应用,因此它的性质和判定是本章的重点内容。性质和判定的学习是一个互逆的过程,性质是判定学习的基础。在设计《平行四边形的判定》一节内容时我在第一课时主要探讨平行四边形的判定的四种方法,在探讨时按照性质的探讨思路:从边、角、平分线三点来分别探讨,有了性质作为基础,因此对于判定的方法学生理解起来比较容易。在课堂上我要求学生将每种判定的数学语言和符号语言都按照格式书写出来,这样有利于他们数学习惯的培养。第二课时我主要是利用判定来证明平行四边形以及进行计算。
利用性质与判定的互逆,学生对四个判定的掌握比较好,而且由于要求学生对每一个判定都进行了数学语言和符号语言的书写练习,因此提高了学生的书写能力,在习题课上大部分的学生都能写出比较完整的证明过程。
几何证明题一直是学生的一个弱点。初二的学生按照课标不要求些规范的证明过程,但是考试却要求书写严格的过程,由于没有规范的例题示范以及有关习题,所以学生的几何证明题仍然是一个弱项,因此习题课上有部分学生仍然存在会分析,但是书写不规范的情况,这在今后的学习中是一个需要改变和提高部分。
【本文地址:http://www.xuefen.com.cn/zuowen/15761630.html】