高中数学幂函数教学教案范文(15篇)

格式:DOC 上传日期:2023-11-27 17:03:03
高中数学幂函数教学教案范文(15篇)
时间:2023-11-27 17:03:03     小编:念青松

教案包括教学目标、教学内容、教学过程、教学方法、教学评价等要素,是教师教学的重要准备工作。教案应该合理运用多种教学方法,提高教学效果。在阅读这些教案范例时,可以思考教师为何选择了特定的教学步骤和资源。

高中数学幂函数教学教案篇一

函数,作为高中数学的一个重要组成部分,是学生学习的重点和难点。在经过集体备课,小组讨论,心中还是没有想好教学过程。在听过卢老师的课后,心中有了一点点儿底气。从而,我设计了这样的教学计划。首先,师生共同阅读教材上的三个实例。

这三个例子刚好对应了他们初中所学函数的三种表示方法(解析式法、图像法、表格),学生熟悉更容易接受,再把每个例子中的自变量和因变量的取值分别组成两个数集a和b,共同探讨总结出三个例子的共同点,从而引出函数的概念。强调构成函数的四个条件,重点是对这个符号的理解,说明它只是一个数。其次,根据函数的概念,给出六个小例子,让学生根据函数的概念判断所给例子是否能构成函数。

有四个分别是违反函数概念中的四个条件,让学生知道函数的条件缺一不可。另外两个例子说明函数可以一对一,可以多对一,但绝不允许多对一。讲完之后,发现学生的问题出现在两个集合的先后顺序,这就说明必须结合实际例子强调知识点。最后,给出函数定义域和值域的概念,并明确定义域和值域都是集合。之后让学生说出常见的三种函数:一次函数,一元二次函数,以及反比例函数的定义域以及值域。(在此之前,已经让学生在练习本上划过几个具体的一次函数,一元二次函数以及反比例函数的图像。)。

高中数学幂函数教学教案篇二

集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学的一些内容.本章中只将集合作为一种语言来学习,学生将学会使用最基本的集合语言去表示有关的数学对象,发展运用数学语言进行交流的能力.

函数的学习促使学生的数学思维方式发生了重大的转变:思维从静止走向了运动、从运算转向了关系.函数是高中数学的核心内容,是高中数学课程的一个基本主线,有了这条主线就可以把数学知识编织在一起,这样可以使我们对知识的掌握更牢固一些.函数与不等式、数列、导数、立体、解析、算法、概率、选修中的很多专题内容有着密切的联系.用函数的思想去理解这些内容,是非常重要的出发点.反过来,通过这些内容的学习,加深了对函数思想的认识.函数的思想方法贯穿于高中数学课程的始终.高中数学课程中,函数有许多下位知识,如必修1第二章的幂、指、对函数数,在必修四将学习三角函数.函数是描述客观世界变化规律的重要数学模型.

二、学情分析。

1.学生的作业与试卷部分缺失,导致易错问题分析不全面.通过布置易错点分析的任务,让学生意识到保留资料的重要性.

2.学生学基本功较扎实,学习态度较端正,有一定的自主学习能力.但是没有养成及时复习的习惯,有些内容已经淡忘.通过自主梳理知识,让学生感受复习的必要性,培养学生良好的复习习惯.

3.在研究例4时,对分类的情况研究的不全面.为了突破这个难点,应用几何画板制作了课件,给学生形象、直观的感知,体会二次函数对称轴与所给的区间的位置关系是解决这类问题的关键.

三、设计思路。

本节课新课中渗透的理念是:“强调过程教学,启发思维,调动学生学习数学的积极性”.在本节课的学习过程中,教师没有把梳理好的知识展示给学生,而是让学生自己进行知识的梳理.一方让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生在“最近发展区”发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想、函数与方程思想.在教学过程中通过恰当的应用信息技术,从而突破难点.

四、教学目标分析。

(一)知识与技能。

1.了解集合的含义与表示,理解集合间的基本关系,集合的基本运算.

a:能从集合间的运算分析出集合的基本关系.b:对于分类讨论问题,能区分取交还是取并.

2.理解函数的定义,掌握函数的基本性质,会运用函数的图象理解和研究函数的性质.

a:会用定义证明函数的单调性、奇偶性.b:会分析函数的单调性、奇偶性、对称性的关系.

(二)过程与方法。

1.通过学生自主知识梳理,了解自己学习的不足,明确知识的来龙去脉,把学习的内容网络化、系统化.

2.在解决问题的过程中,学生通过自主探究、合作交流,领悟知识的横、纵向联系,体会集合与函数的本质.

(三)情感态度与价值观。

在学生自主整理知识结构的过程中,认识到材料整理的必要性,从而形成及时反思的学习习惯,独立获取数学知识的能力.在解决问题的过程中,学生感受到成功的喜悦,树立学好数学的信心.在例4的解答过程中,渗透动静结合的思想,让学生养成理性思维的品质.

五、重难点分析。

重点:掌握知识之间的联系,洞悉问题的考察点,能选择合适的知识与方法解决问题.

难点:含参问题的讨论,函数性质之间的关系.

六.知识梳理(约10分钟)。

高中数学幂函数教学教案篇三

对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

指数函数。

如图所示为a的不同大小影响函数图形的情况。

可以看到:

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于x轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

高中数学幂函数教学教案篇四

3.能够综合运用各种法则求函数的导数.。

函数的和、差、积、商的求导法则的推导与应用.。

1.问题情境.。

(1)常见函数的导数公式:(默写)。

(2)求下列函数的`导数:;;.。

(3)由定义求导数的基本步骤(三步法).。

2.探究活动.。

例1求的导数.。

思考已知,怎样求呢?

函数的和差积商的导数求导法则:

练习课本p22练习1~5题.。

点评:正确运用函数的四则运算的求导法则.。

函数的和差积商的导数求导法则.。

1.见课本p26习题1.2第1,2,5~7题.。

高中数学幂函数教学教案篇五

教学目标:

通过实例,理解幂函数的概念;能区分指数函数与幂函数;会用待定系数法求幂函数的解析式。

教学重难点:

重点从五个具体幂函数中认识幂函数的一些特征。

难点指数函数与幂函数的区别和幂函数解析式的求解。

教学方法与手段:

1、采用师生互动的方式,在教师的引导下,学生通过思考、交流、讨论,理解幂函数的定义,体验自主探索、合作交流的学习方式,充分发挥学生的积极性与主动性。

2、利用投影仪及计算机辅助教学。

教学过程:

函数的完美追求:对于式子,

如果一定,n随的变化而变化,我们建立了指数函数;

如果一定,随n的变化而变化,我们建立了对数函数。

设想:如果一定,n随的变化而变化,是不是也应该确定一个函数呢?

创设情境。

请大家看以下问题:

思考:以上问题中的函数有什么共同特征?

引导学生分析归纳概括得出:(1)都是以自变量x为底数;(2)指数为常数;(3)自变量x前的系数为1;(4)只有一项。上述问题中涉及的函数,都是形如的函数。

探究新知。

一、幂函数的定义。

一般地,形如的函数称为幂函数,其中是自变量,是常数。

中前面的系数是1,后面没有其它项。

小试牛刀。

(1),

思考:幂函数与指数函数有什么区别?

高中数学幂函数教学教案篇六

在高中数学教学中,数学思想的培养在倡导新课程教育的大环境下显得尤为重要,这不仅关系到教学效率的提高,对增强学生的文化素养也大有裨益。经过多年的教育教学总结了几点高中数学函数教学的有效对策:

一、在概念中渗透。

高中学生要掌握数学知识,就必须经历一个阶段,即学生“吸收”数学知识的过程,特别是在形成概念的阶段,数学教师应给予学生更多的解释和正确的引导。如,以偶函数与自变量的关系来说,在一定定义域中的自变量互为相反时,经相应函数关系式的对应后,即能够在某解析公式中得到相应的证明,进而在这个基础之上概括出包括偶、奇函数的部分函数定义,从这个例子中能够使从具体到抽象的函数充分体现出来。

二、在教学中强化。

在实际的高中数学教学时,教师可在学生初步认识数学时就加入一定的实例,从而使学生理解的数学概念得到强化。比如,在对数函数教学中加入图形案例,就能够使学生更为清楚、直观地对函数发生以及后续变化过程进行了解。

三、方程教学的应用。

要使高中生对数学思想方法进行充分掌握,函数与方程是必不可少的,同时在实际运用中,函数与方程经常需要互相转化,因此对其加以合理利用,就能够实现复杂问题的简单化,并互相作用。

四、函数图象的应用。

函数图象能够将函数性质直观地反映出来,并能够通过研究图像与图形,有效解决函数问题,是数形结合应用的.重要组成部分。另外在函数图象问题的解决过程中,必须具备函数意识与分析意识,才能找到最为合理的解决方式。

五、函数分类的应用。

在高中函数教学中,分类不同函数是具体应用之一。可通过例题在教学中对解题思想进行展示,从而使学生分类不同函数的能力得到训练与培养。大多数数学思想的解决方法只有在实际的数学题中通过实际解析,才能实现深化理解,进而使应用的灵活性与准确性得到提升。

在高中数学函数教学过程中,教师应根据实际情况,将高中函数中的知识点理清,从高中函数的形式与概念入手,引导学生深刻认识函数的本质,随后拓展学生的眼界,找出与函数关联的若干知识点,让学生掌握利用函数思想对其他问题进行解决的方法,同时在这个阶段中,强化学生理解函数的程度,真正实现高中函数相关知识点的全面掌握。

参考文献:

高中数学幂函数教学教案篇七

我们做函数题目的时候,要把握输出函数解析式的方法,这点需要我们细细的去总结。课后一定要记得去看,反复练习,不然过一阵子就会忘记,一定要经常去翻看课本教材。

做函数题目要有信心,对自己要相信的态度,不要被难题吓倒,给自己积极的心理暗示,对做题也会有帮助。

函数未知数的求法会比较难求,所以要总结自己的做题顺序,寻求老师的帮助会更好。课后一定要记得去看,反复练习,不然过一阵子就会忘记,一定要经常去翻看课本教材。

高中数学函数方法:理解函数三要素:定义域,对应法则,值域。题目类型:求定义域,值域,相等函数概念.值域求法:换元法,单调性法,分离系数法,数形结合法,配方法等。求函数解析式:a待定系数法;b配凑法;c换元法;d代入法;e构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。f赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。g递推法。

函数的性质和图像:性质:单调性,奇偶性,周期性。函数的性质和图像要相互结合起来思考,把每一个条件都要分析处理,从中寻找解题思路。

导数与函数的单调性:复杂的函数要求函数的单调性,可以用导数的方法,可以使问题大大简化。函数模型与综合应用:对于一些常见的问题,可以构建我们熟悉的函数模型进行求解。注意函数的定义域问题。

首先就是熟悉坐标系:在除以学习过坐标轴以后,我们在初二阶段开始学习坐标系,坐标系是所有函数的容器,在所有的函数里面需要坐标系来体现的。

理解函数概念:理解自变量和应变量的概念进而理解函数的概念,函数的概念理解了,理解了函数的概念才可以进行函数题的计算。

学习简单的函数:学习简单的函数,完全掌握简单的函数,一次函数和二次函数。将一次函数和一元一次方程对应,将二次函数和一元二次方程对应,学会求点求数值。学会表示点:另外需要学会表示点,学会利用横纵坐标来表示点的位置和特点。学会表示点的位置,点的移动和点的特性。

读懂函数图像:根据函数的图像能想够读懂函数图像上的点的意义和函数图像的意义。在实际的生活中能够看懂图像,看懂图像的意义。学习简单的函数建立:在学习计算的过程中,试着可以将遇到的问题转化为我们的函数问题,培养动态思维能力。

函数其实在初中的时候就已经讲过了,当然那时候是最简单的一次和二次,而整个高中函数最富有戏剧性的函数实际上也就是二次函数,学好函数总的策略是掌握每一种函数的性质,这样就可以运用自如,有备无患了。

函数的性质一般有单调性、奇偶性、有界性及周期性。能够完美体现上述性质的函数在中学阶段只有三角函数中的正弦函数和余弦函数。以上是函数的基本性质,通过奇偶性可以衍生出对称性,这样就和二次函数联系起来了,事实上,二次函数可以和以上所有性质联系起来,任何函数都可以,因为这些性质就是在大量的基本函数中抽象出来为了更加形象地描述它们的。我相信这点你定是深有体会。剩下的幂函数、指数函数对数函数等等本身并不复杂,只要抓住起性质,例如对数函数的定义域,指数函数的值域等等,出题人可以大做文章,答题人可以纵横捭阖畅游其中。性质是函数最本质的东西,世界的本质就是简单,复杂只是起外在的表现形式,函数能够很好到体现这点。另外,高三还要学导数,学好了可以帮助理解以前的东西,学不好还会扰乱人的思路,所以,我建议你去预习,因为预习绝对不会使你落后,我最核心的学习经验就是预习,这种方法使我的数学远远领先其它同学而立于不败之地。

高中数学幂函数教学教案篇八

会运用图象判断单调性;理解函数的单调性,能判断或证明一些简单函数单调性;注意必须在定义域内或其子集内讨论函数的单调性。

重点。

难点。

一、复习引入。

1、函数的定义域、值域、图象、表示方法。

(1)单调增函数。

(2)单调减函数。

(3)单调区间。

二、例题分析。

1、画出下列函数图象,并写出单调区间:

(1)(2)(2)。

2、求证:函数在区间上是单调增函数。

3、讨论函数的单调性,并证明你的结论。

变(1)讨论函数的单调性,并证明你的结论。

变(2)讨论函数的单调性,并证明你的结论。

三、随堂练习。

1、判断下列说法正确的是。

(1)若定义在上的函数满足,则函数是上的单调增函数;。

(2)若定义在上的函数满足,则函数在上不是单调减函数;。

(4)若定义在上的函数在区间上是单调增函数,在区间上也是单调增函数,则函数是上的单调增函数。

2、若一次函数在上是单调减函数,则点在直角坐标平面的()。

a.上半平面b.下半平面c.左半平面d.右半平面。

3、函数在上是______;函数在上是_______。

3.下图分别为函数和的图象,求函数和的单调增区间。

4、求证:函数是定义域上的单调减函数。

四、回顾小结。

课后作业。

一、基础题。

(1)(2)。

2、画函数的图象,并写出单调区间。

二、提高题。

3、求证:函数在上是单调增函数。

4、若函数,求函数的单调区间。

5、若函数在上是增函数,在上是减函数,试比较与的大小。

三、能力题。

6、已知函数,试讨论函数f(x)在区间上的单调性。

变(1)已知函数,试讨论函数f(x)在区间上的单调性。

高中数学幂函数教学教案篇九

1.使学生掌握的概念,图象和性质.

(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.

(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.

(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.

2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.

3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.

高中数学幂函数教学教案篇十

一、教材分析:

《34.4二次函数的应用》选自义务教育课程标准试验教科书《数学》(冀教版)九年级上册第三十四章第四节,这节课是在学生学习了二次函数的概念、图象及性质的基础上,让学生继续探索二次函数与一元二次方程的关系,教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法。这也突出了课标的要求:注重知识与实际问题的联系。

本节教学时间安排1课时。

二、教学目标:

知识技能:

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

3.能够利用二次函数的图象求一元二次方程的近似根。

数学思考:

1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.

2.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验.

3.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

解决问题:

1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2.通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。

情感态度:

1.从学生感兴趣的问题入手,让学生亲自体会学习数学的价值,从而提高学生学习数学的好奇心和求知欲。

2.通过学生共同观察和讨论,培养大家的合作交流意识。

三、教学重点、难点:

教学重点:

1.体会方程与函数之间的联系。

2.能够利用二次函数的图象求一元二次方程的近似根。

教学难点:

1.探索方程与函数之间关系的过程。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

四、教学方法:启发引导合作交流。

五:教具、学具:课件。

六、教学过程:

[活动1]检查预习引出课题。

预习作业:

1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.

2.回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.

师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

[活动2]创设情境探究新知。

问题。

1.课本p94问题.

3.结合预习题1,完成课本p94观察中的题目。

师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

教师重点关注:

1.学生能否把实际问题准确地转化为数学问题;。

2.学生在思考问题时能否注重数形结合思想的应用;。

3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。

[活动3]例题学习巩固提高。

问题。

例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).

师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

[活动4]练习反馈巩固新知。

高中数学幂函数教学教案篇十一

老师讲课认真听讲,不会的问题及时标记。在课堂上,做一个好学生,认真听讲,对于老师讲的问题及时记录,进行相应的标记,在下课的时候,及时询问老师,早日解决问题。

一定要课前预习一下知识点。在上课前或平时闲暇时间,一定要注意课下多多预习,预习比复习更加重要,真的很重要,关乎到课堂的思维能力的转变,多多看看,对自己的理解有帮助。

课上要学会学习,记笔记,也要记住老师讲的知识点。课堂上,自己要活跃一点,带给老师感觉,让老师对你有印象,便于日后学习高中数学,与老师探讨学习方法,记笔记,记住讲的重点。

多做一些比较普通而又常出的问题,来熟悉自己学的知识。在课下的时候,自己找出适合自己做的题,在做题中找出适合自己的题目,来进行做和学,总有一份题目适合自己做,便会更熟悉自己学的知识。

学会总结本节课的知识点,重点,做一个学会学习的人。及时总结所学的知识点,做一个学好习的人,让自己的心中有着大致的思路,能够解答出老师的,这便是可以了。

建立一个记错本,错误的题记录到本子上。将自己以前做过的错题,及时的整理出来,并且能够及时的回顾,便于日后在本子上学习到知识,能够复习到自己以前错过的题。

与老师经常交流学习方法,总有一个适合你。多多的与老师交流,给老师留下一个好印象,便于自己和老师更深入的交流学习,及时的询问一下高中数学的学习方法,总有一个适合自己。

高中数学幂函数教学教案篇十二

《考试说明》和《考纲》是每位考生必须熟悉的最权威最准确的高考信息,通过研究应明确“考什么”、“考多难”、“怎样考”这三个问题。

命题通常注意试题背景,强调数学思想,注重数学应用;试题强调问题性、启发性,突出基础性;重视通性通法,淡化特殊技巧,凸显数学的问题思考;强化主干知识;关注知识点的衔接,考察创新意识。

《考纲》明确指出“创新意识是理性思维的高层次表现”。因此试题都比较新颖活泼。所以复习中你就要加强对新题型的练习,揭示问题的本质,创造性地解决问题。

2.多维审视知识结构。

高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。你需要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。

3.把答案盖住看例题。

参考书上例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的与解答哪里不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。经过上面的`训练,自己的思维空间扩展了,看问题也全面了。如果把题目的来源搞清了,在题后加上几个批注,说明此题的“题眼”及巧妙之处,收益将更大。

4.研究每题都考什么。

数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,要通过一题联想到多题。你需要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。

与其一节课抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解;对具有共性的问题要努力摸索规律,即多题一解;不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。习题的价值不在于做对、做会,而在于你明白了这道题想考你什么。

5.答题少费时多办事。

解题上要抓好三个字:数,式,形;阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言)。要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。要不断积累解选择题的经验,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。在做解答题时,书写要简明、扼要、规范,不要“小题大做”,只要写出“得分点”即可。

6.错一次反思一次。

每次考试或多或少会发生一些错误,这并不可怕,要紧的是避免类似的错误在今后的考试中重现。

因此平时要注意把错题记下来,做错题笔记包括三个方面:

(1)记下错误是什么,最好用红笔划出。

(2)错误原因是什么,从审题、题目归类、重现知识和找出答案四个环节来分析。

(3)错误纠正方法及注意事项。根据错误原因的分析提出纠正方法并提醒自己下次碰到类似的情况应注意些什么。你若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么在高考时发生错误的概率就会大大减少。

7.分析试卷总结经验。

每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。

(1)遗憾之错。就是分明会做,反而做错了的题。

(2)似非之错。记忆不准确,理解不够透彻,应用不够自如;回答不严密不完整等等。

(3)无为之错。由于不会答错了或猜错了,或者根本没有作答,这是无思路、不理解,更谈不上应用的问题。原因找到后就尽早消除遗憾、弄懂似非、力争有为。切实解决“会而不对、对而不全”的老大难问题。

8.优秀是一种习惯。

柏拉图说:“优秀是一种习惯”。好的习惯终生受益,不好的习惯终生后悔、吃亏。如“审题之错”是否出在急于求成?可采取“一慢一快”战术,即审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。

高中数学幂函数教学教案篇十三

(陕西省汉台中学)。

摘要:众所周知,在我国的高中教育中,数学教学占据了重要的地位。高中数学有其教学的复杂性,因此,只有在教学中运用正确的教学方法才能取得事半功倍的效果。高中数学教学中函数的单调性问题让许多学生感到头疼,学生无法对这一知识点进行掌握和理解。但是,函数的单调性问题又在生活和生产中有着很多用途。因此,在高中数学教学中,老师应该根据学生学习的特性,采取合适的方法进行函数单调性的教学。

高中数学幂函数教学教案篇十四

本节内容是北师大版数学必修1第二章第3节函数的单调性,两课时内容,本节是第一课时。函数的单调性是函数的重要性质,学生在初中阶段,通过一次函数、二次函数、反比例函数的学习已经对函数的增减性有了一个初步的感性认识。

高中阶段,进一步用符号语言刻画图形语言,用定量分析解释定性结果,有利于培养学生的理性思维。从知识的结构上看,函数的单调性既是函数概念的延续和拓展,又为后续研究指数函数、对数函数、三角函数的单调性等内容的学习作准备,也为利用导数研究单调性的相关知识奠定了基础。

在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用。函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用。

二、学情分析。

在初中阶段通过对一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识,同时经过初中的学习学生已具备了一定的观察、发现、分析、抽象、概括能力,为函数单调性的学习做好了准备,但是把具体的、直观形象的函数单调性的特征用数学符号语言进行定量刻画对高一的学生来说比较困难,同时单调性的证明又是学生在函数学习中首次接触到的代数论证内容,刚上高一的学生在代数方面的推理论证能力是比较薄弱的。

三、教学目标。

1、知识与技能:

(2)初步掌握利用函数图象和定义判断、证明函数单调性的'方法步骤。

2、过程与方法:

3、情感、态度与价值观:

通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生感知从具体到抽象,从特殊到一般,从感性到理性的认知过程,体会数形结合的思想。

四、教学重点、难点。

难点:函数单调性概念(数学符号语言)的认知,应用定义证明单调性的代数推理论证。

五、教学、学法分析。

通过对一次函数、二次函数、反比例函数的学习已经对函数的增减性有了初步的感性认识,因此探究时先以基本初等函数为载体,针对它们的图像,依据循序渐进原则,设计几个问题,通过引导学生多思,多说多练,学生回答的同时教师利用多媒体展示,使认识得到深化。在整个教学过程中主要采取教师启发讲授,学生探究学习的教学方法。

六、教学过程。

(一)创设问题情境引入课题。

给出德国著名心理学家艾宾浩斯描绘的著名的“艾宾浩斯遗忘曲线”。

学生回答,教师补充。“艾宾浩斯遗忘曲线”从左向右看图像是下降的,对此如何从数学的观点进行解释呢?这种以函数图像的上升或下降为标准对函数进行研究,这就是我们这一节课要学习的“函数的单调性”。

设计意图:利用“艾宾浩斯遗忘曲线”引入新课,可以激发学生的学习数学的兴趣,引发学生探求数学知识的欲望。

展示目标:

教师向学生展示本节课的学习目标及教学重点和教学难点。

设计意图:让学生明确本节课要学习的内容。

(二)新知探究。

问题1、做出下列函数的图象。

设计意图:检查学生掌握基本初等函数图像的情况。(分组完成不同的任务,及时发现存在问题,教师进行点评。)。

问题2、观察函数图象哪部分是上升的,哪部分是下降的?(从左到右)。

(1)函数:在整个定义域内上升。

(2)函数:在整个定义域内上升。

(3)函数:在______上升,在上下降。

(4)函数:在______上升,在上下降。

对于引导学生进行分类描述,为后面说明函数的单调性是在定义域内某个区间而言的,是函数的局部性质埋下伏笔。

问题3、怎样用自变量,函数值来描述这种上升和下降?

上升:某个区间上随自变量x的增大,也越来越大。

下降:随自变量的增大,越来越小。

问题4、你能根据自己的理解说说什么是增加的、减少的吗?

如果函数在某个区间上随自变量的增大,y也越来越大,我们说函数在该区间上为增加的;如果函数在某个区间上随自变量的增大,y越来越小,我们说函数在该区间上为减少的。

设计意图:

(1)合理设置层次,为揭示函数单调性做好铺垫。

(2)函数单调性实质上揭示了在定义域的某个子集(或某一区间)上,函数值随自变量的变化而变化,描述函数图像在这个子集(或这一区间)的升降趋势,有利于多角度、深层次揭示这一概念的本质特征,帮助学生体会运用动态观点判断函数的单调性,培养学生形象思维。

学生回答,教师根据实际回答情况引导学生得到函数单调性的数学表达式。

(1)在给定区间内取两个数,例如1和2。

(2)仿(1),取多组数值验证均满足,所以在为增加的。

(3)任取,因为,即,所以在上为增加的。

对于学生错误的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量。

设计意图:对二次函数的单调性认识由感性上升到理性认识的高度,逐步提升学生的思维高度,为学习函数的单调性做好铺垫,突破难点,同时培养学生的数学表达能力。

这是本节课的难点,为了分解难度老师启发引导学生,得出增函数严格的定义,然后学生类比得出减函数的定义。

一般地,设函数的定义域为a,区间ia:______如果对于区间i内的任意两个变量,当时都有______,那么就说在这个区间上是增加的。

课后作业。

1、必做题:习题2—3a组第2题:(2),(3)、第4,5题。

2、选作题:习题2—3b组第2题。

设计意图:不同的人在数学上可以获得不同的发展,每个学生都能够获得这些数学,有专长的,可以进一步发展、因此设计了不同程度要求的题目。

高中数学幂函数教学教案篇十五

1.使学生理解函数单调性的概念,并能判断一些简单函数在给定区间上的单调性.。

3.通过本节课的教学,渗透数形结合的数学思想,对学生进行辩证唯物主义的教育.。

教学重点与难点。

教学过程设计。

一、引入新课。

(用投影幻灯给出两组函数的图象.)。

第一组:

第二组:

生:第一组函数,函数值y随x的增大而增大;第二组函数,函数值y随x的增大而减小.。

(点明本节课的内容,既是曾经有所认识的,又是新的知识,引起学生的注意.)。

二、对概念的分析。

【本文地址:http://www.xuefen.com.cn/zuowen/15718938.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档