最新数学书的读后感(优质8篇)

格式:DOC 上传日期:2023-11-27 15:46:07
最新数学书的读后感(优质8篇)
时间:2023-11-27 15:46:07     小编:XY字客

“读后感”的“感”是因“读”而引起的。“读”是“感”的基础。走马观花地读,可能连原作讲的什么都没有掌握,哪能有“感”?读得肤浅,当然也感得不深。只有读得认真,才能有所感,并感得深刻。那么你会写读后感吗?知道读后感怎么写才比较好吗?下面是小编为大家带来的读后感优秀范文,希望大家可以喜欢。

数学书的读后感篇一

阅读了《特别要命的数学》这本书,我发现,数学真奇妙!

这本书以有趣的漫画、详细的文字和精彩的小故事把我们带入了一个有趣的数学世界里。比如,《有趣的方格》中,几何老师芬迪施教授告诉我们,骨牌有很多类型,也能拼成很多块。再比如,《水池问题》里,买护栏、买地砖和买优质池水。它告诉我们这三个问题要有不同的条件才能买到合适这个水池的材料。

我最喜欢那篇关于三维世界的解释文。里面说,二维世界里可以看到一维世界里的人,三维世界里的人可以看到二维世界里的人。同样,生活中竟然有能看到我们(三维世界的人)的四维世界的人!我感到不可思议!

数学是奇妙的,它的一些秘密我们人类也许还不知道。虽然如此,但这本书已经带我领略了部分数学的奥秘。我很开心,因为它让我感到数学奇幻的魅力。

数学真奇妙!

数学书的读后感篇二

昨天,妈妈送给了我一本书,叫做《奇妙的数王国》,我先看了这一篇《一场莫名其妙的战争》。

这一篇故事讲的是:弟弟小华和哥哥小强听到了枪炮声,就跑到了山顶上,他们看到有两支军队正在打架,一支军队穿着红色军装,他们胸前都有一个数字,这些数字都是偶数,另一支队伍穿着绿色军装,他们胸前也都有一个数字,但是,这些数字都是奇数。这时,小强和小华听到草丛里有人哭泣,于是小强就扒开草地一看,有一个衣着华丽的胖老头,他就是正在哭泣的人。

小强发现这个人胸前的数字是0,就以为他是0号,其实那个人告诉小强他就是0,那个人就是零国王。这时,响起了嘹亮的军号声,接着,偶数队伍中亮出了一面大红旗,突然,出来了一位军官,他的胸前写着一个“2”字,他就是偶数军团的2司令,在奇数这边也有一个军官,他的胸前写着一个“1”字,他就是奇数军团的1司令。这时,1司令和2司令已经让战斗进入了高潮。

其实,1司令和2司令是零国王的左膀右臂。这时,小强就问零国王:“是不是最小的正整数就能当司令?”其实不是这样的,1司令和2司令都有一种很特殊的能力。2司令逼着1司令和零国王把偶数叫做男人数,把奇数叫做女人数,可1司令和零国王都不同意,2司令这下可发火了,他就让战争继续开始。

数学书的读后感篇三

数学比较抽象、枯燥、严谨,而音乐则比较丰富、有趣、充满着情感及幻想。但两者却有着千丝万缕的联系,音乐虽然旋律多变,但都由七个音符组成,数字1~7在音乐中是神奇的数字;音乐中的节奏、强弱等都存在着数学中量的差异。因此,在组织数学活动中,将抽象的数学知识和生动的音乐紧密结合起来,充分发挥音乐的魅力,为数学活动注入新的生命力。

西尔威斯特说过:“难道不可以把音乐描述为感觉的数学,把数学描述为理智的音乐吗?”无锡市惠山区实验幼儿园针对音乐与数学领域的互补作了研究,从三个视角反映多个镜头:

镜头一:小班学习方位词。创编小老鼠捉迷藏的动作情节,学习方位词。

镜头二:中班学习序数。改编歌曲《打电话》的部分歌词为方位词。

镜头一:大班学习数的组成。选用音乐游戏《开汽车》,1名幼儿当司机,听着音乐开汽车,当音乐停,司机去邀请一位小朋友,教师告诉幼儿:1天上1是2,2里面有2个1,从而明白,1和1合起来是2。

镜头二:中班比较数的多少。玩音乐游戏《抢椅子》当音乐停,会有一位或者几位幼儿没有抢到椅子,引导幼儿用一一对应的方法比较,感知几比几少,几比几多,少多少,多多少。

镜头一:音乐游戏《蝴蝶找花》,当音乐开始,幼儿分别扮演蝴蝶在花丛中飞舞,按要求寻找花朵,如花的数量、大小、颜色等来排列。

镜头二:学习5的组成。改编音乐游戏《钓鱼》。现在音乐声中钓鱼,当钓到5条鱼后,音乐停止,把5条鱼放在两个盆中,边分鱼边记录。

从以上一个实例,认为两个领域内容在整合的过程中要注意三个问题:

1.挖掘音乐材料本身蕴含的数学关系。

在众多歌曲中,有些有明显的数学关系,如“数高楼”、“我的朋友在哪里”、“十个小矮人”等。又如“逛公园”和“拔萝卜”游戏存在着按高矮大小差异排序的`内容。

2.在幼儿熟悉的音乐中渗透数学内容。“找朋友”游戏幼儿很熟悉。幼儿在愉快的氛围中边唱边跳,寻找与自己数量相等、颜色或形状相同的朋友,思维辨别能力明显加强。使得数学方法纳入认知结构中,内化经验,形成新知识。

3.音乐游戏中应具有让幼儿独立思考的成分。

阅读文章再反思,认为两个领域的整个是双向双线相互渗透的。通过音乐材料的直观性帮助幼儿学习抽象的数学,化难为易。在音乐活动中渗透数学概念,丰富音乐的内容,深化游戏的玩法,体现游戏的可玩性和延续性。数学是一门基础性的学科,存在于生活的每一个环节,也可以称实用科学。它可以渗透在许多的领域中。比如,数学与健康的组合。数学与科学的组合,数学与美术的结合等等。仔细回顾和搜集我们平时的教学能采撷不少精彩的案例,在这些案例中,数学的渗透有时以活动难点呈现、有时则为解决难点的一种策略,总之,数学概念的整合能进一步深化有效教学。

数学书的读后感篇四

《黄爱华与活的数学课堂》这本书是我在学校图书室偶然间看到的,一看内容写的是活的数学课堂,我就把这本书借了出来,认真的翻阅它,我感觉到它真是一本好书,书页间飘散的墨香中,每每嗅出它那深藏的思想,也触发自己心底的思绪。读了黄爱华老师的书后,他的嗜书如命、执著追求以及精彩智慧的课堂深深打动了我,吸引着我,鼓舞着我。

黄爱华老师“活”的数学课堂艺术特色是“趣”、“实”、“活”。“趣”,让学生们感到新鲜有趣、富有吸引力;、“实”,在知识点教学的关键下真功夫,重点特出;“活”,在教学过程中对教材的灵活处理,应变自如、驾轻就熟、左右逢源。

《黄爱华与活的数学课堂》一书告诉我们:数学课堂教学要在多元智能理论的指导下,树立尊重个性的教育观;为学生创设自主探索的问题情境,提供充分的感性材料,让学生多种感官参与实践活动,致力改变学生的学习方式,使学生在自己动手操作、独立思考、观察讨论、合作交流、自主探究的过程中感受、理解数学知识,在经历掌握数学知识的过程中,培养了学生分析、比较、概括等逻辑思维能力,使他们在知、情、意诸方面和谐发展;数学课堂让儿童在再创造的过程中同化和顺应,以此不断丰富和完善知识结构,这样的课堂才是适合儿童发展的数学课堂,才是高效的课堂。

黄爱华老师是营造现实而富有吸引力学习背景的高手,善于根据实际创设现实的、有趣的、探究性的、开放的和新奇的及喻理的问题情境。这些良好的问题情境深深地吸引学生,唤起学生的求知欲望,燃起学生智慧的火花,有效地发展了学生的数学思维。

揣摩黄爱华老师的课堂案例,几乎每节课都有大量的学生动手操作的内容;黄老师善于引导学生在操作中独立思考,在自主探索中产生交流的需要;他鼓励和引导学生在小组交流中,既要正确表达自己的想法,又要倾听别人的意见,有效地增进合作交流的“涵养”;班级交流中,往往会呈现多样的学生思考方法和多种解决问题的策略,促使每个学生在数学上都有新的发展。

“问渠哪得清如水,为有源头活水来”。营造和谐、灵动的课堂,毫无疑问教师自身的素质是决定性的因素。我相信,只要坚持不懈的学习、实践和思考,这样美妙的数学课堂离我们一线教师不会太远!

数学书的读后感篇五

有关数学的故事跨越了几千年。本书分为数学简史和数学概念小史两部分,在介绍数学的知识的同时又讲述了各个时期,各个地区的数学历史与发展,并且解决了很多的'数学题目。

数学简史这部分介绍了许多地区的数学历史与发展。数学的开端、希腊数学、印度数学、阿拉伯数学等等。数学概念小史这部分则通过事例,介绍了数学界许多重要人物的成果和相关题目。数字“0”的故事就很有趣。四世纪的时候,巴比伦人用一个小点来避免楔形文字记数混淆,“0”作为占位开始了它的生命。但这时候,它还只是一个跳过某些东西的符号。公元九世纪的印度开始把0作为一个数字来对待。当时在东方国家数学是以运算为主,而西方是以几何为主,所以当阿拉伯数学家阿尔.花剌子模初引入0这个符号和概念到西方时,曾经引起西方人的困惑,把0本身作为一个数字看待的想法花了很长时间才确立。

读完这本书,我对古人先辈的智慧感到敬佩,对数学历史的源远流长感到惊叹,更对数学知识有了更深的理解。数学源于生活却高于生活。如今,数学在生活中被广泛的运用,很多事情都离不开数学。所以,我们不说对数学进行什么更深层次的研究,而是应该更加热爱它。并且我们要学习前人那种对未知事物的坚定、执着的探索精神,对当下学习的数学知识学懂、吃透。我认为,这是很重要的。

数学书的读后感篇六

祖冲之是我国南北朝时期一位伟大的科学家,他对圆周率的计算得出了非常精确的结果。这篇文章讲的是祖冲之经过很长时间的编写,终于写成了《大明历》,他上书皇帝,请求颁布实行。皇帝命令主管天文历法的宠臣戴法兴进行审查。但是戴法兴思想保守,是个腐朽势力的卫道士,他极力反对新历法。面对戴法兴的刁难、攻击,祖冲之寸步不让,和他唇枪舌剑的辩论。最终,《大明历》没有通过,后来在祖冲之去世后,《大明历》才颁布实行。

读了这个故事,使我对祖冲之坚贞不屈的精神非常敬佩。正因为他有这样的精神,才能持之以恒地坚持。是啊,任何事情要取得成功,都离不开“坚持”两个字。不由地,我想到了许多人,有文化名人、爱国将士,和我身边的同学。

[数学家的故事读后感]

数学书的读后感篇七

从小到大,在学习数学的过程中,接触大量的数学题,对数学的历史很少提及。《数学史》,一本专门研究数学的历史,娓娓道来,满足了我的好奇,把数学的发展过程展示出来。

本书于1958年出版,作者j.f.斯科特。书中主要阐述西方数学的发展历史,但也专门用一章讲述印度和中国的数学发展。沿着时间轴,数学的发展经历了从初等到高等的过程。

上古时代的古埃及人和古巴比伦人在平时的生产劳作中运用到了数学知识。

古希腊人继承这些数学知识并不断拓展,成为数学史上一个“黄金时代”,涌现出毕达哥拉斯、柏拉图、亚里士多德、欧几里得、阿基米德,丢番图等一系列耳熟能详的名字。

在黑暗的中世纪,数学发展处于停滞状态,而斐波那契的出现把数学带上复兴。

文艺复兴,数学又进入一个蓬勃发展的时期,对解三次方程和四次方程、三角学、数学符号、记数方法的研究没有停步。“+”、“-”、“=”、“”、“”的符号是在那个时候出现的,同时出了一名数学家韦达——韦达定理的发明者。

7世纪,解析几何出现、力学兴起、小数和对数发明。这些都为微积分的发明奠定了基础。牛顿和莱布尼兹两位大师的研究,在数学领域开辟了一个新纪元。

8世纪,为完善微积分中的概念,各路数学家在数学分析方法上有所发展。欧拉、拉格朗日,柯西等大师采用极限、级数等方法让微积分更加严谨。同时,非欧几何的理论开始萌芽。

纵观全书,数学的发展是由一群人搭建起来的。前人的工作为后人的研究奠定了基础。后人在前人的工作上不断突破和创新。另外,数学中也有哲理,天地有大美而不言。当看到欧拉时,想到欧拉公式;看到韦达,想到韦达定理。公式很简洁,但把规律说清楚了。数学爱好者可以试着解里面的数学题,看看古人在当时是如何研究的,有的方法很笨拙,有的方法很巧妙。读完后,发现学习数学,会解几道数学题是不够的,还要学会去培养自己的思维。毕竟数学家的思维也会受到历史的局限。比如负数开根号,当时被人看来是无法接受,后来发明了虚数。

历史是在不断地前进,数学的发展亦然。想知道数学和历史的跨界,那就来看《数学史》。

数学书的读后感篇八

那天,我怀着沉重的心情读了《三个数学家》这本书,我深深地被她们刻苦学习的精神感动了,并对他们的不幸遭遇深表同情,其中给我留下印象最深刻的是希帕蒂亚。

公元前370年左右,希帕蒂亚诞生在埃及,她还没满六岁就开始跟着她爸爸学习,她的学习态度十分认真,“他总是不闻窗外种种诱惑,而专心致于面前的书本。”当时,她只有六岁!

我不禁想了自己,平时上自习课的时候,校园稍微有点动静,我就东张西望,怎么学得好呀!

读到这里我热泪流出了眼眶,我恨,恨那些残忍的暴徒,恨那个不公平的世界……

【本文地址:http://www.xuefen.com.cn/zuowen/15699029.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档