数学书的读后感(实用14篇)

格式:DOC 上传日期:2023-11-27 15:45:06
数学书的读后感(实用14篇)
时间:2023-11-27 15:45:06     小编:QJ墨客

很多人在看完电影或者活动之后都喜欢写一些读后感,这样能够让我们对这些电影和活动有着更加深刻的内容感悟。读后感对于我们来说是非常有帮助的,那么我们该如何写好一篇读后感呢?下面是我给大家整理的读后感范文,欢迎大家阅读分享借鉴,希望对大家能够有所帮助。

数学书的读后感篇一

今天读了一篇《零国王斗跳蚤》的故事。

零国王被跳蚤咬了,它拿剑向跳蚤刺去,跳蚤准备和它大战。

跳蚤拿出一把比老鼠胡须还细的小宝剑跟零国王杀在一起。零国王被杀到跷跷板上,跳蚤跳到另一头,把国王弹飞到半空。零国王说自己表面个头大,但是没重量,因为是零。跳蚤打了喷嚏把国王冲出去好远,零国王一屁股坐在地上。跳蚤说连个喷嚏都经受不住还跟我斗,再见吧!

零国王气的双目圆瞪,摘下腰间的乘法钩子勾住跳蚤,喊道:"变",跳蚤不见了,国王自言自语说它能把任何东西乘没,就连法术高强的小数点都治不它。

这个故事让我明白了零是一个很厉害的数字。

数学书的读后感篇二

这个暑假,我读了《数学王国探秘》这一本书,这本书让我了解到数学的历史以及一些数学知识,逸事。让我有了很深的感触。

数学是起源于生活,也应用于生活。人们创造数目的最早的动机便是想知道一堆物体具体的数目。在数学的发展中,出现了一个智慧的迷宫,那就是幻方。这个游戏是给定1,2……n2。这些数字要求它们排列成n×n的方阵,并要使每一行,每一列,每一条对角线上的所有数字之和相等。每条直线上的数字之和叫做幻方常数。但有一个问题如何快速解决标准幻方,即从1按自然数顺序依次填到n2,这首先就要确定幻方常数例如三阶幻方常数是15,四阶幻方常数是34,那么n阶幻方的常数m是多少呢。我们可以先把n阶幻方的所有数的之和求出,得s=1+2+3+……+(n2―1)+n2=(1+n2)+(2+n2-1)+(3+n2―2)+……=n2/2(1+n2)再除n得m=1/n×n2/2(1+n2)=n/2(1+n2)所以标准幻方均可用m=n/2(1+n2)

而幻方的的排法也是异常的多,五阶幻方超过2亿,七阶幻方超过3亿,让我也不得不感叹数学的灵活多变。

书中让我另一处感触最深的一个便是巧算勾股数,在学习勾股定理的时候我们便会注意到整勾股数的问题也就是x2+y2=z2的正整数解组,简称勾股数,例如(3,4,5)所以如果a,b,c都是勾股数并具有(a2+b2=c2)那么a,b,c就称为一组勾股数那么,只需要将他们同时乘以正整数k,其结果(ka,kb,kc)也是一组勾股数。所以只要考虑a,b,c两两互素的勾股数,并把它称为基本勾股数组。那么怎么创造出一组勾股数来呢?毕达哥拉斯提出的一组在课本里出现过,便是设m是任意大于或等于2的正整数,则(m2―1,2m,m2+1)一定是一个勾股数,因为这组是两两互素,是基本勾股数组。但无法给出所有勾股数组。我国的数学名著《九章数论》给出了更妙的方法:若给两个数m,n那么,1/2(m2―n2)、mn、1/2就是一组勾股数每次给的m,n不同所得勾股数也不同。并且如果m,n互素,这个公式便能套出所有两两互素的勾股数组。因此这个公式叫做x2+y2=z2的通解公式。

数学的奇妙我只领略一二,以后还有更长的数学道路需要我去体味。

数学书的读后感篇三

世纪老人冰心说过:"读书好,好读书,读好书。""读一本好书,可以使你心灵充实;读一本好书可以使你明辨是非;读一本好书可以使你有爱心,知礼仪。"让我们喜欢读书,热爱读书,从读书中获得快乐与幸福。这是我们第二实验小学师生们不断的追求。

我最近读了《数学故事》这本书。本书紧密联系现实生活,是以课本为依据,贯彻新课程的标准理念,从数字,运用,计算,代数,几何,统计,与概率,逻辑推理等方面讲述了一个个精彩的小故事。这里不仅能给予学生智慧,还能给予学生力量,在教育之路上收获的快乐与幸福。

这里的数学不在是枯燥的数字和公式,而是一个个活泼有趣的故事,每个故事后面的小板块也为它增色不少。

就说神秘的数字1吧,先讲小故事,数字王国召开大会,主要是讲讲各个数字成员的用途。再说,1是有着特殊含义的数字。

我们大家都知道,排序的时候,1就意味着第一位。而所谓第一位,就是大王或者头目,甚至班长,队长什么的。可是在衡量物品的数量或大小的时候,1也被用作代表"很小","少"的意思。这时的1,和刚才所说的代表顺序的1的意思就完全相反了。

即使在一个很小的地方,1也能发出耀眼的光芒。

大家听过"一字值千金"这句话吧这里把"一"和"千"放在一起比较,更突出了"一"的力量。还有像"千里之行始于足下","以一推十"这类的名句也足以证明1的神奇之处。

之所以数学里面的一些抽象的东西变成了活了的东西,数是数学学习的基础,数字是蕴藏智慧的精灵,每一个数字背后都有着有趣的故事。0是由谁创造的呢?无穷无尽的数字都有怎样的分类呢?数字之间会发生一些怎样有趣的故事呢?数字王国的秩序如何维持?这些有趣的数学问题在这本书中都有讲述。每一个平凡的数字背后都有一段不平凡的故事,这些故事会给我们打开一个完整不同的数学世界。在这里,数学不再枯燥,数字成了一个个充满智慧的精灵。有趣的`数学问题,灵活的解题思路。它不要求你一定解出答案,而是希望你从这些故事中提炼出一种数学思维。

奇数,偶数隐藏的秘密这个故事的后面考考你,韩信率部队屡克敌兵,于是赏三军,并且举行了一场拔河比赛。左边的参赛人员是3个小兵和2个大兵,右边参赛人员是4个大兵和1个小兵。比赛之前人们都知道4个大兵的力气和5个小兵的力气相当,但左边那2个大兵是孪生兄弟,力气特别大,他们的力气是2个小兵加1个大兵的力气之和。还没比赛,韩信就说出了胜败,赛后结果正是韩信所说的。

那么韩信到底是说哪边胜利呢?

象这样有趣的数学问题充分体现了在故事中提炼出一种数学思维。还有休闲吧,思维拓展训练营,问题直通车等帮助理解数学知识。相信这本书将激励孩子告别普通与平庸,在轻松的故事中变得更加优秀。

合上书本,我想,我如何才能让我的学生喜欢我,让我的学生喜欢数学,会学数学好好努力吧,我对自己说。

数学书的读后感篇四

《数学》读后感(一)

不一样的数学故事读后感

在这个寒假中,我读了一本书,名叫《不一样的数学故事》。这是一本有趣的书,本书的作者是梦小得。

这本书主要讲数学十分好玩,书中的人物有怪怪老师和他的一群学生。

我读完了这本书,我感受到了,数学特别好玩。我特别喜欢书中的怪怪老师,因为,我觉得他讲的数学课非常好玩,所以,在我读了《不一样的数学故事》我就发现,学习是快乐的,是简单的,只要你找对方法。最后,我建议同学们读一读这本书。

我爱数学!

《数学》读后感(二)

这本书的作者是张秀丽,书里写了这几个主要的人物,它们是:怪怪老师,皮豆,蜜蜜,女王,十一,和乌鲁鲁(它是怪怪老师从外星球带来的一只狗狗)。这本书每章都有数学知识。我来给大家说说这本书的主要内容吧!

这本书讲了怪怪老师回到阿瓦星球充电,皮豆他们还是在数学的世界了遨游,又一次,皮豆是东西是在零食包里发现了一张卡片。上面写着集齐10000张卡片就可以得到宇宙飞船的船票,于是皮豆他们向乌鲁鲁要了40000张,因为他们有四个人。所以要了40000张,。第二天他们和乌鲁鲁一起出发前往宇宙飞船,当他们见到宇宙飞船时个个都很兴奋。就在这时乌鲁鲁却在一边大声地叫着说:“这不是真的,这是3d电影“。大家一下子就没有了兴奋劲,感觉上当受骗了。

他们一起回到家打电话给了报社,把工厂骗人的事情和报社的人说了。之后关于工厂骗人的新闻就上了头条。他们虽然是上当受骗了,但是他们却从中学到了计数单位。他们也和怪怪老师学到了四则运算。他们在打假的同时也学到了很多的知识。

我突然很想很想能成为皮豆他们这样子。这样真好啊!

《数学》读后感(三)

《好玩的数学》的作者是中国有名的科普教授――谈祥柏,这本书也是他送给少年儿童最好的礼物。

谈祥柏教授是我国着名的科普作家,从事数学科普工作已经有半个多世纪了,他与张景中院士,李毓佩教授一起被称为“中国科普三驾马车”。谈祥柏教授还有着扎实的古文功底与非常渊博的文史知识,并通晓英、日、德、法以及阿拉伯文等多种语言,因此谈祥柏教授写的《趣味数学》的内容妙趣横生,并且与智力的训练巧妙的结合在了一起,深受我们少年儿童的喜爱。

谈祥柏教授还将许多国外的着名而且优秀教学科普作品翻译给了中国所有读者,其中包括世界着名数学科普大师马丁加德纳等许多着名人物的作品。

谈祥柏教授写的《好玩的数学》中分为许多种类,包括:数学是大花园,数学史大作坊,数学是大超市,数学是大课堂,数学是大戏台,这些内容都表达着自己含义的大题目,中题目,还有“弹子盘上的数学”中有的小题目……还有许多有趣的题目和有趣的内容,只有有趣的题目才是最吸引人的,因为只有题目新奇才可以吸引读者。

同学们,听了这些你是不是也对这本书很感兴趣了呢?不妨和我一起看看吧!

数学书的读后感篇五

读这本书是因为朋友的差评:“太无聊了,日本哥们压力大到用无聊解压,真的看不下去。”

我向来好奇心重,作者的大便书在国内外如此畅销,怎么会low到这个程度?好奇心就是动力,一定要评下无聊度数,反正姐也是亚历山大,实在无聊也顺便解压了。

带着这个有色眼镜,我开始批判性阅读。

没想到的是,从无聊开始,到有聊还没结束,我一直被这本书引领着,开启了更上一层的快乐生活。

作者的画风还是那么独树一帜,用最简单的笔画画出的却是传奇,看似小儿科,其实却是大家的范;文字不多,提纲挈领,点到为止,留更多的发挥空间让读者去思考,可谓仁者见仁智者见智;书中涵盖的内容非常宽泛,把抽象而枯燥的数字形象化具体化,引入生活、工作,通过思维的改变,让我们获得发现美和乐趣的能力。

通过这些小的图文并茂的实例,我掌握了送礼的艺术、定价的策略、消费的陷阱、目标制定的技巧、绩效方案的策略,并把这些融入到生活和工作中,起到了非常好的效果。同时了解了符合人性的思维架构并建立之,在很多方案的设计中运用,大大提高了方案通过的成功率!

关于竹节的篇章,我自己也受益匪浅,生活未必总是多姿多彩的,但如果我们拥有了发现和创造爱或美的能力,我们总会拥有快乐,因为我们拥有了创造快乐的能力。自己快乐了,我们会带给身边的人快乐,生活就不一样了!

看似浅显的漫画书,其实蕴含了很多的人生哲理,这个浮夸的时代,需要静下心来品读!

书是不是无聊,你也来试试!

数学书的读后感篇六

几年前,我还在读大二的时候,有一次在随意找书,无意中发现了这本《数学之美》,看到书名之后,我以为这是一本纯粹讲解数学的书籍,由于我对数学的理论和计算兴趣并不大,但是我对于数学的发展史、数学的思维方法以及那些有趣的数学家的故事感兴趣。所以当我仅仅看到这个书名之后,我想从中找到这些有趣的东西,但是看到第二章的时候,我就没有了兴趣,当时只觉得书中罗里吧嗦讲了一堆数学在it各个领域的应用,于是就放下了。

后来自己也从事了it行业,并且接触到了很多的概念和技术知识,知道了了机器学习、深度学习、自然语言处理等等。于是就想起来曾经在大学看过一本《数学之美》的书籍,里边大概写了一些it领域的数学知识,于是前一段时间在回家的火车上带着这本书看完了。

现在我来谈谈自己读完的感想。

首先我谈谈这本书好的地方:

第一、作者使用一些有趣的例子讲明白了晦涩的专业知识。比如说作者在第六章,使用竞彩足球队夺冠的例子,形象的说明了信息的含义和信息熵的'含义。诸如这些有趣的例子,我觉得可以作为初学通信专业学生的科普教材。

第二、作者讲述了自然语言处理领域中的大牛人物,这样针对专业领域杰出人物的介绍常常更容易引起学生的兴趣,所谓榜样的力量是无穷的。比如对自然语言领域的大牛人物——弗里德里克贾里尼克(frederekjelinek)的介绍。我个人觉得,当前工科大学中对于这一类的故事讲解太少,以为的讲解专业知识太过于枯燥,另外,很多专业知识,只要本书写的很详细学生都能看懂,无需讲解。多分享一些前任的工作方法和、经历和事迹,更能从情感上调动学生的积极性。

本书也有很多缺点,第一、以我来看,本书依然是一本专业性的书籍,不适合非it专业的学生阅读,书中还是存在大量的数学公式和知识,没有一定的专业基础根本读不下去。

第二、本书取名《数学之美》,书名太大,并没有从数学的角度讲解数学之美,而主要从it领域讲解数学的应用,更多的是概率论的应用。

最后我的看法是,本书作为it专业领域的学生科普书籍很不错,相比教材来说有趣了不少,也能让读者了解到行业发展的情况。不单单的去学习一些枯燥的专业知识,还要去了解这门技术的来龙去脉,以及未来的发展方向。所以推荐学习电子信息类专业的学生阅读。结合作者在google的经历,用浅显易懂的语言解释了以上数学分支在文本挖掘(自然语言分析,分词,语义分析),网络爬虫,密码学,搜索引擎等工作原理,可作为这些方面的入门之作,值得一读。

另外、我看完最大的收获就是,知道了原来这个世界是由这些人创造了这些有趣知识,知道了原来这些听起来高大上的技术知识,是这么发展来的,知道了原来学过的那些数学知识,是用在了什么地方!比如以前学习概率论的时候,只知道到计算盒子里边的黑球和白球(教科书中的例子真是又幼稚,又无趣),知道了更多人的故事,看见了更多的世界!所以呢,本书还是值得画上两三个小时概略读一读的。

数学书的读后感篇七

《数学史》一直是我最想读的一本书教学中我越来越觉得作为一个数学教师,数学史对我们有多少重要!于是我拜读了数学史。

我知道了,数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这便使数学成为人类文化中最基础的工具。而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

我知道了,第一次数学危机——你知道根号2吗?你知道平时的一块钱两块糖之中是怎么迸溅出无理数的火花的吗?正是他——希帕苏斯,是他首先发现了无理数,是他开始质疑藏在有理数的背后的神奇数字。从那时起无理数成为数字大家庭中的一员,推理和证明战胜了直觉和经验,一片广阔的天地出现在眼前。但是,希帕苏斯却被无情地抛进了大海。不过,历史却绝对不会忘记他,纵然海浪早已淹没了他的身躯,我们今天还保留着他的名字——希帕苏斯!

第二次数学危机——知道吗?站在巨人的肩膀上的牛顿,曾经站在英国大主教贝克莱的前面,用颤抖的嗓音述说者自己的`观点,没有人相信他,没有人支持他,即便他的观点着实是今天的正解!数学分析被建立在实数理论的严格基础之上,数学分析才真正成为数学发展的主流。

我知道了,我们中国在数学上的成就也绝对不能忽视,从《九章算术》到《周髀算经》,中国传统数学源远流长,有其自身特有的思想体系与发展途径。它持续不断,长期发达,成就辉煌,呈现出鲜明的“东方数学”色彩,对于世界数学发展的历史进程有着深远的影响。

数学书的读后感篇八

在我阅读数学史之前,数学在我的脑子里,就是一个很难很难的学科。数学漂浮在我的脑海里,像一只枯萎的蝴蝶,死板而又无味。

但是在阅读数学史之后我知道了,数学的历史源远流长。我了解到,在早期的人类社会中,是数学与语言、艺术以及宗教一并构成了最早的人类文明。数学是最抽象的科学,而最抽象的数学却能催生出人类文明的绚烂的花朵。这便使数学成为人类文化中最基础的工具。而在现代社会中,数学正在对科学和社会的发展提供着不可或缺的理论和技术支持。

就像书中所写的一样,或许在数学课上讲一些有趣的小故事,可以提高学生的专注力和兴趣,然后引入课堂。

可能是由于我见识短浅(?)我一直认为中国数学是非常高深,深不可测的那种,认为中国数学在世界有最高的影响力和地位。但其实中数是非常具有影响力(九九乘法表,11的两边一拉中间相加)但希腊数学是独一无二的,尽管在现在的数学之中,希腊数学家的逻辑推理和证明都是摆在数学中心的。数学家或许有许多不同,但他们绝对拥有财力·时间和数学天赋。他们的严谨性和专业精神恐怕是我毕生难以追求的吧。

总的来说,数学是人类创造活动的过程,而不单纯是一种形式化的结果;运用辨证唯物主义的观点看待数学科学及数学教育,在他们的形成和发展过程中,不但表现出矛盾运动的特点,而且它们与社会、政治、经济以及一般人类的文化有着密切的联系,而这些联系就像龙须酥一样香浓醇厚,万般丝滑,密不可分,是不能够轻易斩断的关系!

数学史不仅仅是单纯的数学成就的编年记录。数学的发展决不是一帆风顺的,在跟读的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临困难和战盛危机的斗争记录。无理量的发现、微积分和非欧几何的创立…这些例子可以帮助人们了解数学创造的真实过程,而这种真实的过程是在教科书里以定理到定理的形式被包装起来的。对这种创造过程的了解则可以使人们探索与奋斗中汲取教益,获得鼓舞和增强信心。

我相信在未来,数学史带给我的影响,会影响到我的一生,我也希望中国数学能够源远流长,从《九章算术》到《周髀算经》呈现出更多的”东方数学“的色彩!

数学书的读后感篇九

16世纪到17世纪,可以说是一个数学史路上一个里程碑,在16世纪早期,学者们创造了代数,他们被称为“未知数计算家”,在那个时期,代数占据了数学史的中心位置,而到了16世纪末17世纪初,人类开始了新的探索,代数与几何共存,以此来研究天文,工程,航海,甚至是政治上的一些问题:开勒普用希腊圆锥描述太阳系,托马斯·哈里奥特则发展代数,笛卡尔把代数和几何结合,从而开始理解彗星,光等现象,这一时期,可以说是各种数学成就在此出生,但最出名的,还是微积分,当时人们无法用数字表现出天体的运动,无法表现一些抽象的.物体,于是牛顿与莱布尼茨发明了微积分,但微积分始终还是较为抽象,不就后,当时最著名的数学家——欧拉也做出了一系列成就:三角形中的几何学,多面体的基本定理,有趣的是,欧拉甚至将数应用于船舶,中彩票或是过桥,欧拉将自己生活的方方面面都往数学上想,在他的世界中,数学无处不在。

我们不难看出这些数学家的发明的确大大改变了人们的生活,他们掌握了探索世界的钥匙——数学,将数学应用到方方面面,我们现代生活不也是如此,处处是数学,但最重要的是,我们热爱数学。

数学书的读后感篇十

今天,我读了一本数学家的故事里面介绍了一位著名的数学家―祖冲之。

祖冲之是我国南北朝时期的'数学家、天文学家。祖冲之的父亲和祖父都爱好数学,他就是生活在这样的家庭里,从小就读了很多书。他特别爱研究数学和天文历法,经常观察太阳和星球的情况。宋孝武帝听到他的名气,很喜欢他。派他去做官,但是他对做官不敢兴趣,还是专心的研究数学,这种精神多值得我们学写呀!他还创制出了一部新的历法――大明历。他为古代数学着作九章算术作了注释,又编写了一本缀术。在当时那样艰苦的条件下他做出了这么大的贡献,可见祖冲之是多么伟大。

我要学习祖冲之这种勇往直前、坚持不懈的学习和研究精神。

数学书的读后感篇十一

《千万别恨数学》读后感

数学学习也要系统地进行才会有好的效果。如果不根据自己的能力和水平制定合适的学习计划,即使在学习上投入了大量的时间,换来的也往往是微不足道的效果。适合自己水平和能力的、系统的学习方法,与不走弯路的、正确的学习方法是不可或缺的。

本书将这种学习计划按照大家的水平分成了5个阶段,如下:

第一,要具备学好任何学科的品质素质。如自信,坚毅,踏实,勤奋。而这些品质的迁领就是兴趣。有了兴趣,一切都好说,,学习的苦与累在学生眼里都是快乐。

第二,注重基础知识。要学一元二次不等式,连一元二次方程的根都不会求,能学会才怪呢。《千》中提出一追本溯源法,看起来费时,时间长了就会有很大进步。还建议把低年级的书带在身边。可以说是一个不错的方法。教师要多注重学生的理解,不能忙赶进度,而忘了学生知识的吸收。适当的放慢进程,甚至拿出一两节课复习以前的课程,对于基础差的学生都是很有益处的。

第三,题的选择。学生有个习惯,总觉得把本单元上所有的'练习题做了才算真正的掌握知识。殊不知,只要能把基础题都做对就能拿到很高的分数。难题上耗费很长时间,实在是得不偿失。这一点我深有体会,曾经的我用这种方法复习数学分析,高等代数,常常因为个别题而放慢了复习的进程,而这些题考的可能性很小!为此,学生找一些基础题库,多练练,思考的错误的原因,有针对的练习,远远比题海战术要好得多。对于《千》中的习题集学习法,我是深有体会和赞同。

第四,注重解题的题意的理解。我经常和学生说的一句话是,你做不出题,肯定是题中的条件没有完全利用上,或它的深层次含义没看出来。这一点也正是数学严谨性的体现。在解题时,我会和学生花很长时间分析条件。提高学生解题能力。

教书的过程,我从令一个角度体会了学习的方法。让我在教学中能加以注意。

数学书的读后感篇十二

数学,似乎是一个枯燥的学科,但却是我们生活里最为有用的工具之一,它是物理化学生物的摇篮,是政治经济学的基础,是市场里的公平称,是我们量化自己的必要工具...是的,数学是一个“工具箱”!那么,前人是怎么样把这个工具弄得更为人性化,更能让我们好好地使用呢?看完《这才是好读的'数学史》后,我知道了许多。

《这才是好读的数学史》介绍了数学从有记载的源头,到最初的算数,再到代数、几何等领域不断地深入化发展的历史过程。本书按照历史发展顺序,先后介绍了数学的开端,古希腊的数学,古印度的数学,古阿拉伯的数学,中世纪欧洲的数学,十五和十六世纪的代数学。

在人类对于数学漫漫求索之路上,诞生了许多古代文化,而这些古代文化发展了各种各样的数学。其中,古代伊拉克的历史跨越了数千年,它包括了许多文明,如苏美尔,巴比伦,亚述,波斯和希腊文明。所偶有这些文明都了解并使用数学,但有很多变化。在这儿不得不提到的是古希腊数学。在此之前,各个文明运用数学仅仅是用来协助、解决一些简单的生活问题,有时不就此满足的人们也会有简单的探索,但希腊的数学家们是独一无二的,他们将逻辑推理和证明作为数学中心,也是正因如此,他们永远改变了运用数学的意义。

数学源于生活却高于生活。如今的数学在生活中被广泛的运用,一起热爱数学吧!向为数学做出巨大奉献的前人们致敬!

数学书的读后感篇十三

首先,看到这本书后,第一个感觉是这本书太厚了,肯定无聊。而第二个印象是在每一个概念后的“见数学概念小史某某页”,然后这最重要的事是这书讲了这我不曾了解的事。

从过去到现在,先是古埃及人,他们的方法对于现代太不实用了,但是他们还是聪明,知道用符号,用两个符号来表示1()和10(),这东西就是幂,在生活中肯定很少用,而且我还发现这数学呢我一直认为是想从简单到复杂,但是并不是如此,可以说是相反的。

比巴伦的数学家们特别有趣,造的题目也有趣,不实用,但是很好玩,在本书的15页,有这原题,这大概就是用一根芦苇去测量田有多大,其实就是二元一次方程,但是看完头都大了,不知到底在讲什么。

继续读着,诶!看见了老熟人——欧几里得,从小学周围的人都在谈论着他,给我讲他的旷世巨作《几何原本》,过去经常说“好,好,好,《几何原本》好。”但是我并不知道这书居然是公元前三千多年左右写的,我一直认为他是希腊人,但是他居然是埃及人,这好奇怪,据书中说有很多的希腊数学家都不是希腊人。

继续读,数学也和天文学有关,从天文学中又出现了三角学,原来三角学是从天文学出来的,在读阿拉伯数学时,看见了“杨辉”三角形,但是这书中的是“帕斯卡三角形”,其实也是“杨辉”三角形,所以后者好记些。

微积分里面看见了伽利略,但是似乎不是他的主场,所以不管他,微积分这里知道了流数和微分基本上都是我们现在所称的导数。他们的发明者分别是牛顿和莱布尼茨。牛顿这特别熟悉了,这莱布尼茨是个律师和数学家,他最可以的是他的公式几乎都是在颠簸的马车上写下。在各个学科每每留下了著作。

还有一个人让我记住了,叫做欧拉,不光名字好记,他自己也是一个喜欢记的人,据书上所说,他可以说是一个论文天才也是数学天才,因为只要他有一个好的方法,自己马上就写一篇论文,来记下自己的观念。

这便是这《这才是好读的数学史》上篇的读后感,不是特别无聊,反而还有一些有趣,整体的布局也不错,让读者一步步深入,有特别强的吸引力,可能因人而异吧,下篇就是纯数学了,所以这便是我的读后感了。

数学书的读后感篇十四

说实话,教了二十多年小学数学,年复一年,日复一日的和那些阿拉伯数字打交道,有时真觉得数学很乏味的,但作为老师,为了培养学生学习数学的兴趣,总是想方设法挖掘数学的有趣之处,有时真的是绞尽脑汁。放假前到校长室借书时,看到《有趣的数学(第1集)》一书,顿觉眼前一亮,便毫不犹豫的借了来,书拿来一看,作者是韩国的,太陌生了,于是先上网查了一下作者的相关资料,一查才知道,作者李光延博士是韩国著名的数学教授,一直致力于向普通大众普及数学知识,展示数学的魅力和数学的美。《有趣的数学》有两集(我借的是第1集),在韩国非常畅销,吸引了大批青少年走进数学殿堂。这么有诱惑力的书,一定要好好读读。

读完全书,我的第一感觉就是原来数学并不是那么枯燥、单调、乏味的,也可以充满诗情画意,整本书的内容就像简介中说的一样“融会古今、大气磅礡,寓精微的数学道理于玩笑幽默之间,图文并茂、趣味盎然”。《有趣的数学(第1集)》有趣又简单,任何知识层面的人都可以阅读,虽然是按数学发展的历史编写的`,但不一定非得从头读起,无论阅读哪一部分都可获得简单的数学知识以及了解与数学有关的故事,特别是我们数学教师在讲课时引用《有趣的数学》中与讲课内容相关的简单的数学故事,可以让学生更容易接受所学的知识。

本书诠释“什么是数学”时,讲的第一个小故事是:有两名罪犯,一名是数学教授,另一名是教授的学生,他们都因做了坏事犯了罪,被判死刑。当时法律规定,临刑前可以满足除免死以外的任何一个要求。死刑执行官先问教授有什么要求,教授说:“我的最后要求是为那个学生讲一节数学课。”执行官答应了他的要求,于是执行官又问教授的学生有什么要求,学生深思了一会儿说:

“我的最后要求是在教授讲课前杀了我。”执行官也答应了他的要求。随后,执行官犯了难:答应教授的要求,就得先给那名学生上课;答应学生的要求,在教授上课前就得处死学生。最终,教授和学生都没有被处死。

这个故事可以唤起厌学学生的兴趣,使他感受到数学在危急时刻还能挽救人的生命,足可见数学是一门多么了不起的学科。同时还可以引导学生明白,面对一个新问题时,要善于深入思考,要向故事中教授的学生学习,多给自己一些时间作深入思考,以便于作出正确的选择。

当课堂上遇到特别爱提无用问题的学生时,可以给他讲讲这则故事:某一数学老师总是因为一名学生的不断提问而不能进行正常教学,一天,这位老师做了一个决定,走进教室后对那位学生说:“每堂课总是因为你而影响上课,从今往后,每堂课只允许你提两个问题。”于是,这名学生问道:“只能提两个问题吗?”老师回答说:“现在还剩一个问题了。”不用说教,不用批评,用一个风趣的小故事,使学生明白了课堂不能乱发问,要想好了再说,提有用的问题的道理。

书中像这样的故事很多,如:生物学家、数学家、计算机专家等人去非洲旅行时看到一群斑马,他们作出不同的反映的故事;工程师、物理学家、数学家遇到一起火灾时的不同做法的故事,等等。我们都可以在合适的时机讲给学生听,让学生深切感受到数学在生活中的作用,从而爱上数学。

通过读这本书,也让我对数学史上一些重要的数学家,如阿贝尔和伽罗华、笛卡儿、高斯、泰勒斯、毕达哥拉斯、欧拉、欧几里得、牛顿、费尔马等等有了更深刻地了解,增长了自己的数学课外知识,使自己能更好的教好数学。正如书中所说的:“对自己所做的事要竭尽全力,而且知道自己在做什”。

【本文地址:http://www.xuefen.com.cn/zuowen/15698724.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档