教案应该是教师教学思想和经验的反映,是教师职业素养的重要体现。在编写教案时应充分考虑学生的实际情况和学习能力。在制定自己的教案时,可以参考这些范文,做出更加详细和精确的教学设计。
高中数学幂函数教案篇一
教学任务分析:
(1)理解幂函数的概念,会画五种常见幂函数的图像;
(2)结合幂函数的图像,理解幂函数图像的变化情况和性质;
(3)通过观察、总结幂函数的性质,培养学生概括抽象和识图能力。
教学重点:
常见幂函数的的概念、图像和性质。
教学难点:
幂函数的单调性及比较两个幂值的大小。
教具准备:
多媒体课件、投影仪、打印好的作业。
教学情景设计。
问题。
问题2:如果正方形的边长为x,那么正方形面积y=?
问题3:如果正方体的棱长为x,那么正方体体积y=。
问题4:如果正方形场地的面积为x,那么正方形的边长?y=?
问题5:如果某人x秒内骑车行进1千米,那么他骑车的平均速度y=(千米/秒)引导学生探索发现:
引导学生归纳结论。
(1)?指数为常数。
1、即(是)。
2、(不是)。
3、(不是)。
定义域。
值域。
高中数学幂函数教案篇二
数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。
二、重视每一个学生。
三、做好课外与学生的沟通。
四、要多了解学生。
你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。
高中数学幂函数教案篇三
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;
中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范;
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。
山西铁路工程建设监理有限公司。
刘荣申。
高中数学幂函数教案篇四
引入课题1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:
yx1-11-1yx1-11-1yx1-11-1。
1随x的增大,y的值有什么变化?2能否看出函数的最大、最小值?
2.画出下列函数的图象,观察其变化规律:
f(x)=x1从左至右图象上升还是下降______?2在区间____________上,随着x的增大,f(x)的值随着________.
yx1-11-1。
2.f(x)=-2x+11从左至右图象上升还是下降______?2在区间____________上,随着x的增大,f(x)的`值随着________.
1在区间____________上,f(x)的值随着x的增大而________.
2在区间____________上,f(x)的值随着x的增大而________.
高中数学幂函数教案篇五
教学目标:
通过实例,理解幂函数的概念;能区分指数函数与幂函数;会用待定系数法求幂函数的解析式。
教学重难点:
重点从五个具体幂函数中认识幂函数的一些特征。
难点指数函数与幂函数的区别和幂函数解析式的求解。
教学方法与手段:
1、采用师生互动的方式,在教师的引导下,学生通过思考、交流、讨论,理解幂函数的定义,体验自主探索、合作交流的学习方式,充分发挥学生的积极性与主动性。
2、利用投影仪及计算机辅助教学。
教学过程:
函数的完美追求:对于式子,
如果一定,n随的变化而变化,我们建立了指数函数;
如果一定,随n的变化而变化,我们建立了对数函数。
设想:如果一定,n随的变化而变化,是不是也应该确定一个函数呢?
创设情境。
请大家看以下问题:
思考:以上问题中的函数有什么共同特征?
引导学生分析归纳概括得出:(1)都是以自变量x为底数;(2)指数为常数;(3)自变量x前的系数为1;(4)只有一项。上述问题中涉及的函数,都是形如的函数。
探究新知。
一、幂函数的定义。
一般地,形如的函数称为幂函数,其中是自变量,是常数。
中前面的系数是1,后面没有其它项。
小试牛刀。
(1),
思考:幂函数与指数函数有什么区别?
高中数学幂函数教案篇六
老师讲课认真听讲,不会的问题及时标记。在课堂上,做一个好学生,认真听讲,对于老师讲的问题及时记录,进行相应的标记,在下课的时候,及时询问老师,早日解决问题。
一定要课前预习一下知识点。在上课前或平时闲暇时间,一定要注意课下多多预习,预习比复习更加重要,真的很重要,关乎到课堂的思维能力的转变,多多看看,对自己的理解有帮助。
课上要学会学习,记笔记,也要记住老师讲的知识点。课堂上,自己要活跃一点,带给老师感觉,让老师对你有印象,便于日后学习高中数学,与老师探讨学习方法,记笔记,记住讲的重点。
多做一些比较普通而又常出的问题,来熟悉自己学的知识。在课下的时候,自己找出适合自己做的题,在做题中找出适合自己的题目,来进行做和学,总有一份题目适合自己做,便会更熟悉自己学的知识。
学会总结本节课的知识点,重点,做一个学会学习的人。及时总结所学的知识点,做一个学好习的人,让自己的心中有着大致的思路,能够解答出老师的,这便是可以了。
建立一个记错本,错误的题记录到本子上。将自己以前做过的错题,及时的整理出来,并且能够及时的回顾,便于日后在本子上学习到知识,能够复习到自己以前错过的题。
与老师经常交流学习方法,总有一个适合你。多多的与老师交流,给老师留下一个好印象,便于自己和老师更深入的交流学习,及时的询问一下高中数学的学习方法,总有一个适合自己。
高中数学幂函数教案篇七
《考试说明》和《考纲》是每位考生必须熟悉的最权威最准确的高考信息,通过研究应明确“考什么”、“考多难”、“怎样考”这三个问题。
命题通常注意试题背景,强调数学思想,注重数学应用;试题强调问题性、启发性,突出基础性;重视通性通法,淡化特殊技巧,凸显数学的问题思考;强化主干知识;关注知识点的衔接,考察创新意识。
《考纲》明确指出“创新意识是理性思维的高层次表现”。因此试题都比较新颖活泼。所以复习中你就要加强对新题型的练习,揭示问题的本质,创造性地解决问题。
2.多维审视知识结构。
高考数学试题一直注重对思维方法的考查,数学思维和方法是数学知识在更高层次上的抽象和概括。知识是思维能力的载体,因此通过对知识的考察达到考察数学思维的目的。你需要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法。
3.把答案盖住看例题。
参考书上例题不能看一下就过去了,因为看时往往觉得什么都懂,其实自己并没有理解透彻。所以,在看例题时,把解答盖住,自己去做,做完或做不出时再去看,这时要想一想,自己做的与解答哪里不同,哪里没想到,该注意什么,哪一种方法更好,还有没有另外的解法。经过上面的`训练,自己的思维空间扩展了,看问题也全面了。如果把题目的来源搞清了,在题后加上几个批注,说明此题的“题眼”及巧妙之处,收益将更大。
4.研究每题都考什么。
数学能力的提高离不开做题,“熟能生巧”这个简单的道理大家都懂。但做题不是搞题海战术,要通过一题联想到多题。你需要着重研究解题的思维过程,弄清基本数学知识和基本数学思想在解题中的意义和作用,研究运用不同的思维方法解决同一数学问题的多条途径,在分析解决问题的过程中既构建知识的横向联系又养成多角度思考问题的习惯。
与其一节课抓紧时间大汗淋淋地做二、三十道考查思路重复的题,不如深入透彻地掌握一道典型题。例如深入理解一个概念的多种内涵,对一个典型题,尽力做到从多条思路用多种方法处理,即一题多解;对具有共性的问题要努力摸索规律,即多题一解;不断改变题目的条件,从各个侧面去检验自己的知识,即一题多变。习题的价值不在于做对、做会,而在于你明白了这道题想考你什么。
5.答题少费时多办事。
解题上要抓好三个字:数,式,形;阅读、审题和表述上要实现数学的三种语言自如转化(文字语言、符号语言、图形语言)。要重视和加强选择题的训练和研究。不能仅仅满足于答案正确,还要学会优化解题过程,追求解题质量,少费时,多办事,以赢得足够的时间思考解答高档题。要不断积累解选择题的经验,尽可能小题小做,除直接法外,还要灵活运用特殊值法、排除法、检验法、数形结合法、估计法来解题。在做解答题时,书写要简明、扼要、规范,不要“小题大做”,只要写出“得分点”即可。
6.错一次反思一次。
每次考试或多或少会发生一些错误,这并不可怕,要紧的是避免类似的错误在今后的考试中重现。
因此平时要注意把错题记下来,做错题笔记包括三个方面:
(1)记下错误是什么,最好用红笔划出。
(2)错误原因是什么,从审题、题目归类、重现知识和找出答案四个环节来分析。
(3)错误纠正方法及注意事项。根据错误原因的分析提出纠正方法并提醒自己下次碰到类似的情况应注意些什么。你若能将每次考试或练习中出现的错误记录下来分析,并尽力保证在下次考试时不发生同样错误,那么在高考时发生错误的概率就会大大减少。
7.分析试卷总结经验。
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类。
(1)遗憾之错。就是分明会做,反而做错了的题。
(2)似非之错。记忆不准确,理解不够透彻,应用不够自如;回答不严密不完整等等。
(3)无为之错。由于不会答错了或猜错了,或者根本没有作答,这是无思路、不理解,更谈不上应用的问题。原因找到后就尽早消除遗憾、弄懂似非、力争有为。切实解决“会而不对、对而不全”的老大难问题。
8.优秀是一种习惯。
柏拉图说:“优秀是一种习惯”。好的习惯终生受益,不好的习惯终生后悔、吃亏。如“审题之错”是否出在急于求成?可采取“一慢一快”战术,即审题要慢,要看清楚,步骤要到位,动作要快,步步为营,稳中求快,立足于一次成功,不要养成唯恐做不完,匆匆忙忙抢着做,寄希望于检查的坏习惯。
高中数学幂函数教案篇八
地位及重要性。
函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内,函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的应用。通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。
教学目标。
(1)了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;。
(2)了解能用图形语言正确表述具有单调性的函数的图象特征;。
(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。
教学重难点。
重点是对函数单调性的有关概念的本质理解,
二.说教法。
根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的.模式。力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。
三.说学法。
在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。然后通过对函数单调性的概念的学习理解,最终把问题解决。整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。
四.说过程。
通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。
设置问题情景。
[引例]学校准备建造一个矩形花坛,面积设计为16平方米。由于周围环境的限制,其中一边的长度长不能超过10米,短不能少于4米。记花坛受限制的一边长为x米,半周长为y米。
写出y与x的函数表达式;。
(用多媒体出示问题,并让学生思考)。
高中数学幂函数教案篇九
熟练掌握三角函数式的求值。
教学重难点。
熟练掌握三角函数式的求值。
教学过程。
【知识点精讲】。
三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形。
三角函数式的求值的类型一般可分为:。
(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。
三角函数式常用化简方法:切割化弦、高次化低次。
注意点:灵活角的变形和公式的变形。
重视角的范围对三角函数值的影响,对角的范围要讨论。
【例题选讲】。
课堂小结】。
三角函数式的求值的关键是熟练掌握公式及应用,掌握公式的逆用和变形。
三角函数式的求值的类型一般可分为:。
(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。
三角函数式常用化简方法:切割化弦、高次化低次。
注意点:灵活角的变形和公式的变形。
重视角的范围对三角函数值的影响,对角的范围要讨论。
【作业布置】。
p172能力提高5,6,7,8高考预测。
高中数学幂函数教案篇十
教材分析:
幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数。?幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数?.组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质。对于幂函数,只需重点掌握?这五个函数的图象和性质。学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了方法上的准备。因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。
课时分配1课时。
教学目标。
重点:从五个具体的幂函数中认识的概念和性质。
难点:从幂函数的图象中概括其性质,据幂函数的单调性比较两个同指数的指数式的大小。
知识点:幂函数的定义、五个幂函数图象特征。
能力点:通过具体实例了解幂函数的图象和性质,并能进行简单的应用。
自主探究点:通过作图归纳总结幂函数的相关性质。
考试点:了解幂函数的概念,
结合函数的图象了解它们的变化情况。
易错易混点:学生容易将幂函数和指数函数混淆。
拓展点:通过指数函数的图象性质研究幂函数指数的变化。
教具准备:多媒体辅助教学。
课堂模式:导学案。
一、引入新课。
(一)回顾引入。
【师生互动】师:数学的内在美常常让我感动,下面我们共同来欣赏运算的完美性,
思考:由8、2、3、这四个数,运用数学符号可组成哪些等式?
生:探讨,交流。
师生共同分析:
师:我们知道对于等式。
1.如果一定,随着的变化而变化,我们建立了指数函数。
2.如果一定,随着的变化而变化,我们建立了对数函数。
设想:如果一定,随着的变化而变化,是不是也可以确定一个函数呢?
【设计说明】使学生回忆所学两个基本初等函数,为所要学习的幂函数作铺垫。
(二)观察下列对象:
问题(1):如果张红购买了每千克1元的蔬菜千克,那么她需要付的钱数=元,
问题(2):如果正方形的边长为,那么正方形的面是=。
问题3):如果正方体的边长为,那么正方体的体积是=。
问题(4):如果正方形场地面积为,那么正方形的边长=。
问题(5):如果某人s内骑车行进了1km,那么他骑车的平均速度=。
【师生互动】师:(1)它们的对应法则分别是什么?
(2)以上问题中的函数有什么共同特征?
让学生独立思考后交流,引导学生概括出结论。
生:(1)乘以1(2)求平方(3)求立方。
(4)求算术平方根(5)求-1次方。
师:上述的问题涉及到的函数,都是形如:,其中是自变量,是常数。
师生:共同辨析这种新函数与指数函数的异同。
二、探究新知。
组织探究。
1.幂函数的定义。
一般地,形如(r)的函数称为幂函数,其中是自变量,是常数。
如等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数。
【师生互动】师:1.幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”的函数,引导学生注意辨析。
2.研究函数的图像。
(1)(2)(3)。
(4)(5)。
生:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所作图象,体会幂函数的变化规律。
师:引导学生应用函数的性质画图象,如:定义域、奇偶性。
师生共同分析:强调画图象易犯的错误。
【设计意图】(1)通过具体作图,可使学生加深对图象的直观印象,记忆比较牢固;同时也提高了学生数形结合的思维能力;(2)符合学生的认知规律,由特殊到一般,从具体到抽象;(3)充分发挥学生学习的能动性,以学生为主体,展开课堂教学。
【师生互动】师:引导学生观察图象,归纳概括幂函数的的性质及图象变化规律。
生:观察图象,分组讨论,探究幂函数的性质和图象的变化规律,并展示各自的结论进行交流评析,并填表。
定义域值域奇偶性单调性定点。
师生共同分析幂函数性质:
(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);。
高中数学幂函数教案篇十一
通过学生的讨论,使学生更清楚以下事实:
(1)分解因式与整式的乘法是一种互逆关系;。
(2)分解因式的结果要以积的形式表示;。
(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;。
(4)必须分解到每个多项式不能再分解为止。
活动5:应用新知。
例题学习:
p166例1、例2(略)。
在教师的引导下,学生应用提公因式法共同完成例题。
让学生进一步理解提公因式法进行因式分解。
活动6:课堂练习。
1.p167练习;。
2.看谁连得准。
x2-y2(x+1)2。
9-25x2y(x-y)。
x2+2x+1(3-5x)(3+5x)。
xy-y2(x+y)(x-y)。
3.下列哪些变形是因式分解,为什么?
(1)(a+3)(a-3)=a2-9。
(2)a2-4=(a+2)(a-2)。
(3)a2-b2+1=(a+b)(a-b)+1。
(4)2πr+2πr=2π(r+r)。
学生自主完成练习。
通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。
活动7:课堂小结。
从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?
学生发言。
通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。
活动8:课后作业。
课本p170习题的第1、4大题。
学生自主完成。
通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。
板书设计(需要一直留在黑板上主板书)。
15.4.1提公因式法例题。
1.因式分解的定义。
2.提公因式法。
高中数学幂函数教案篇十二
2.通过对抽象符号的认识与使用,使学生在符号表示方面的能力得以提高.。
难点:重点是在映射的基础上理解的概念;
难点是对抽象符号的认识与使用.。
投影仪。
自学研究与启发讨论式.。
(要求学生尽量用自己的话描述初中的定义,并试举出各类学过的例子)。
提问1.是吗?
(由学生讨论,发表各自的意见,有的认为它不是,理由是没有两个变量,也有的认为是,理由是可以可做.)。
现在请同学们打开书翻到第50页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)。
提问2.新的的定义是什么?能否用最简单的语言来概括一下.。
(板书)2.2。
一、的概念。
问题3:映射与有何关系?(一定是映射吗?映射一定是吗?)。
引导学生发现,是特殊的映射,特殊在集合a,b必是非空的数集.。
2.本质:是非空数集到非空数集的映射.(板书)。
然后让学生试回答刚才关于是不是的问题,要求从映射的角度解释.。
此时学生可以清楚的看到满足映射观点下的定义,故是一个,这样解释就很自然.。
教师继续把问题引向深入,提出在映射的观点下如何解释是个?
从映射角度看可以是其中定义域是,值域是.。
3.的三要素及其作用(板书)。
例1以下关系式表示吗?为什么?
(1);(2).。
解:(1)由有意义得,解得.由于定义域是空集,故它不能表示.。
(2)由有意义得,解得.定义域为,值域为.。
由以上两题可以看出三要素的作用。
(1)判断一个关系是否存在.(板书)。
例2下列各中,哪一个与是同一个.。
(1);(2)(3);(4).。
解:先认清,它是(定义域)到(值域)的映射,其中。
.
再看(1)定义域为且,是不同的;(2)定义域为,是不同的;
(4),法则是不同的;
而(3)定义域是,值域是,法则是乘2减1,与完全相同.。
(2)判断两个是否相同.(板书)。
4.对符号的理解(板书)。
例3已知试求(板书)。
分析:首先让学生认清的含义,要求学生能从变量观点和映射观点解释,再进行计算.。
含义1:当自变量取3时,对应的值即;
含义2:定义域中原象3的象,根据求象的方法知.而应表示原象的象,即.。
计算之后,要求学生了解与的区别,是常量,而是变量,只是中一个特殊值.。
1.的定义。
2.对三要素的认识。
3.对符号的认识。
五、
2.2例1.例3.。
一.的概念。
1.定义。
2.本质例2.小结:
3.三要素的认识及作用。
4.对符号的理解。
探究活动。
答案:
高中数学幂函数教案篇十三
投影仪
自学研究与启发讨论式.
一、复习与引入
(要求学生尽量用自己的话描述初中函数的定义,并试举出各类学过的函数例子)
提问1.是函数吗?
(由学生讨论,发表各自的意见,有的认为它不是函数,理由是没有两个变量,也有的认为是函数,理由是可以可做.)
二、新课
现在请同学们打开书翻到第50页,从这开始阅读有关的内容,再回答我的问题.(约2-3分钟或开始提问)
提问2.新的函数的定义是什么?能否用最简单的语言来概括一下.
(板书)2.2函数
一、函数的概念
问题3:映射与函数有何关系?(函数一定是映射吗?映射一定是函数吗?)
引导学生发现,函数是特殊的映射,特殊在集合a,b必是非空的数集.
2.本质:函数是非空数集到非空数集的映射.(板书)
然后让学生试回答刚才关于是不是函数的问题,要求从映射的角度解释.
此时学生可以清楚的看到满足映射观点下的函数定义,故是一个函数,这样解释就很自然.
教师继续把问题引向深入,提出在映射的观点下如何解释是个函数?
从映射角度看可以是其中定义域是,值域是.
3.函数的三要素及其作用(板书)
以下关系式表示函数吗?为什么?
(1);(2).
解:(1)由有意义得,解得.由于定义域是空集,故它不能表示函数.
(2)由有意义得,解得.定义域为,值域为.
由以上两题可以看出三要素的作用
(1)判断一个函数关系是否存在.(板书)
(1);(2) (3);(4).
解:先认清,它是(定义域)到(值域)的映射,其中
.
再看(1)定义域为且,是不同的;(2)定义域为,是不同的;
(4),法则是不同的;
而(3)定义域是,值域是,法则是乘2减1,与完全相同.
(2)判断两个函数是否相同.(板书)
4.对函数符号的理解(板书)
已知函数试求(板书)
分析:首先让学生认清的含义,要求学生能从变量观点和映射观点解释,再进行计算.
含义1:当自变量取3时,对应的函数值即;
含义2:定义域中原象3的象,根据求象的方法知.而应表示原象的象,即.
计算之后,要求学生了解与的区别,是常量,而是变量,只是中一个特殊值.
三、小结
1.函数的定义
2.对函数三要素的认识
3.对函数符号的认识
四、作业:略
五、
2.2函数例1.例3.
一.函数的概念
1.定义
2.本质例2.小结:
3.函数三要素的认识及作用
4.对函数符号的理解
答案:
高中数学幂函数教案篇十四
1、初步掌握函数概念,能判断两个变量间的关系是否可看作函数。
2、根据两个变量间的关系式,给定其中一个量,相应地会求出另一个量的值。
3、会对一个具体实例进行概括抽象成为数学问题。
过程与方法。
1、通过函数概念,初步形成学生利用函数的观点认识现实世界的意识和能力。
2、经历具体实例的抽象概括过程,进一步发展学生的抽象思维能力。
情感与价值观。
1、经历函数概念的抽象概括过程,体会函数的模型思想。
2、让学生主动地从事观察、操作、交流、归纳等探索活动,形成自己对数学知识的理解和有效的学习模式。
1、掌握函数概念。
2、判断两个变量之间的关系是否可看作函数。
3、能把实际问题抽象概括为函数问题。
1、理解函数的概念。
2、能把实际问题抽象概括为函数问题。
一、创设问题情境,导入新课。
『师』:同学们,你们看下图上面那个像车轮状的物体是什么?
高中数学幂函数教案篇十五
一、教学目标:
知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。
过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。
情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教学重点、难点:
教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。
三、教学过程:
(一)创设情景。
学生回答:y与x之间的关系式,可以表示为y=2x。
问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%。求出这种物质的剩留量随时间(单位:年)变化的函数关系。设最初的质量为1,时间变量用x表示,剩留量用y表示。
学生回答:y与x之间的关系式,可以表示为y=0.84x。
引导学生观察,两个函数中,底数是常数,指数是自变量。
问题:指数函数定义中,为什么规定“a?0且a?1”如果不这样规定会出现什么情况?
(1)若a0会有什么问题?
x1则在实数范围内相应的函数值不存在)2(2)若a=0会有什么问题?(对于x0,a无意义)。
(3)若a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要。)。
师:为了避免上述各种情况的发生,所以规定a?0且a?1。
1(1)y4x(2)yx4(3)y4x(4)y4(5(于:,n的大小:
设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。
(五)课堂小结。
(六)布置作业。
高中数学幂函数教案篇十六
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.
本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.
(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;。
(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.
理解并掌握诱导公式.
正确运用诱导公式,求三角函数值,化简三角函数式.
“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.
数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.
在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.
“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生最大程度的消化知识,提高学习热情是教者必须思考的问题.
在本节课的教学过程中,本人引导学生的学法为思考问题共同探讨解决问题简单应用重现探索过程练习巩固.让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.
1.复习锐角300,450,600的三角函数值;。
2.复习任意角的三角函数定义;。
3.问题:由,你能否知道sin2100的值吗?引如新课.
自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.
1.让学生发现300角的终边与2100角的终边之间有什么关系;。
2100与sin300之间有什么关系.
由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫.
高中数学幂函数教案篇十七
3.探究发现任意角 与 的三角函数值的关系.
利用诱导公式(二),口答下列三角函数值.
(1). ;(2). ;(3). .
喜悦之后让我们重新启航,接受新的挑战,引入新的问题.
由sin300= 出发,用三角的定义引导学生求出 sin(-300),sin1500值,让学生联想若已知sin = ,能否求出sin( ),sin( )的值.
1.探究任意角 与 的三角函数又有什么关系;
2.探究任意角 与 的三角函数之间又有什么关系.
遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题-观察发现-到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战.而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战.彼此相信,彼此信任,产生了师生的默契,师生共同进步.
诱导公式(三)、(四)
给出本节课的课题
三角函数诱导公式
标题的后出,让学生在经历整个探索过程后,还回味在探索,发现的成功喜悦中,猛然回头,哦,原来知识点已经轻松掌握,同时也是对本节课内容的小结.
的三角函数值,等于 的同名函数值,前面加上一个把 看成锐角时原函数值的符合.(即:函数名不变,符号看象限.)
设计意图
简便记忆公式.
求下列三角函数的值:(1).sin( ); (2). co.
设计意图
本练习的设置重点体现一题多解,让学生不仅学会灵活运用应用三角函数的诱导公式,还能养成灵活处理问题的良好习惯.这里还要给学生指出课本中的“负角”化为“正角”是针对具体负角而言的.
学生练习
化简: .
设计意图
重点加强对三角函数的诱导公式的综合应用.
1.小结使用诱导公式化简任意角的三角函数为锐角的步骤.
2.体会数形结合、对称、化归的思想.
3.“学会”学习的习惯.
1.课本p-27,第1,2,3小题;
2.附加课外题 略.
设计意图
加强学生对三角函数的诱导公式的记忆及灵活应用,附加题的设置有利于有能力的同学“更上一楼”.
八.课后反思
对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,针对教材的内容,编排了一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来,通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到了一定的预期效果,尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。
然而还有一些缺憾:对本节内容,难度不高,本人认为,教师的干预(讲解)还是太多。
在以后的教学中,对于一些较简单的内容,应放手让学生多一些探究与合作。随着教育改革的深化,教学理念、教学模式、教学内容等教学因素,都在不断更新,作为数学教师要更新教学观念,从学生的全面发展来设计课堂教学,关注学生个性和潜能的发展,使教学过程更加切合《课程标准》的要求。用全新的理论来武装自己,让自己的课堂更有效。
高中数学幂函数教案篇十八
(3)能正确使用“区间”及相关符号,能正确求解各类的定义域.。
2.通过概念的学习,使学生在符号表示,运算等方面的能力有所提高.。
(1)对记号有正确的理解,准确把握其含义,了解(为常数)与的区别与联系;
(2)在求定义域中注意运算的合理性与简洁性.。
3.通过定义由变量观点向映射观点的过渡,是学生能从发展的角度看待数学的学习.。
1.教材分析。
(1)知识结构。
(2)重点难点分析。
是的定义和符号的认识与使用.。
2.教法建议。
高中数学幂函数教案篇十九
对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。
右图给出对于不同大小a所表示的函数图形:
可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。
(1)对数函数的定义域为大于0的实数集合。
(2)对数函数的值域为全部实数集合。
(3)函数总是通过(1,0)这点。
(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。
高中数学幂函数教案篇二十
(二)解析:本节课要学的内容指的是会判定函数在某个区间上的单调性、会确定函数的单调区间、能证明函数的单调性,其关键是利用形式化的定义处理有关的单调性问题,理解它关键就是要学会转换式子。学生已经掌握了函数单调性的定义、代数式的变换、函数的概念等知识,本节课的内容就是在此基础上的应用。教学的重点是应用定义证明函数在某个区间上的单调性,解决重点的关键是严格按过程进行证明。
二、教学目标及解析。
(一)教学目标:
掌握用定义证明函数单调性的步骤,会求函数的单调区间,提高应用知识解决问题的能力。
(二)解析:
会证明就是指会利用三步曲证明函数的单调性;会求函数的单调区间就是指会利用函数的图象写出单调增区间或减区间;应用知识解决问题就是指能利用函数单调性的意义去求参变量的取值情况或转化成熟悉的问题。
三、问题诊断分析。
在本节课的教学中,学生可能遇到的问题是如何才能准确确定的符号,产生这一问题的原因是学生对代数式的恒等变换不熟练。要解决这一问题,就是要根据学生的实际情况进行知识补习,特别是因式分解、二次根式中的分母有理化的补习。
在本节课的教学中,准备使用(),因为使用(),有利于()。
【本文地址:http://www.xuefen.com.cn/zuowen/15654222.html】