长方体和正方体的体积数学教案设计(实用19篇)

格式:DOC 上传日期:2023-11-27 11:02:09
长方体和正方体的体积数学教案设计(实用19篇)
时间:2023-11-27 11:02:09     小编:灵魂曲

教案是教师备课的重要内容,有利于教学的有序进行。编写教案前,应认真研读教学大纲和教材,确保教学目标的明确和针对性。教案是教师根据教学目标和学生特点编写的一种教学计划,它可以帮助教师准确掌握教学内容,合理安排教学步骤,让我们能够有计划、有重点地进行教学。编写完美的教案需要教师全面了解教学内容和教学要求,要合理安排教学步骤。那么我们该如何写一份较为完美的教案呢?以下是小编为大家收集的教案范文,仅供参考,大家一起来看看吧。

长方体和正方体的体积数学教案设计篇一

一、填空:

1、叫体积。

2、长方体体积公式是:;用字母表示:

3、正方体体积公式是:;用字母表示:

4、一个正方体棱长5厘米,它的棱长和是,表面积是,体积是。

5、一个长方体木箱的长是6分米,宽是5分米,高是4分米,它的棱长和是占地面积是,表面积是,体积是。

6、一个长方体方钢,横截面是边长4厘米的正方形,长2分米,体积是立方厘米。

7、一个长方体水池占地24平方米,深3.5米,它能蓄水立方米。

8、一个长方体木料,长4米,如果把它截3段,表面积增加24平方分米,这根木料的.体积是。

9、用棱长3厘米的小正方体拼成一个大正方体,至少需这样的小正方体块。

10、将一个长2米,宽3分米,高2.6分米的长方体木料,将它平均截成两段,表面积增加平方分米。

二、操作题:

右图是长方体展开图,测量所需数据,并求长方体体积。(取整厘米)。

三、解决问题。

1、一个无盖的长方体金鱼缸,长8分米,宽6分米,高7分米。制作这个鱼缸共需玻璃多少平方分米?这个鱼缸能装水多少升?(玻璃厚度忽略不计)。

长方体和正方体的体积数学教案设计篇二

学具:1立方厘米的立方体20块.。

教学过程。

一、复习准备.。

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.。

教师提问:拼成了一个什么形体?(长方体)。

这个长方体的体积是多少?(4立方厘米)。

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)。

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)。

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们。

长方体和正方体的体积数学教案设计篇三

1、经历自主探索正方体体积公式以及将长方体、正方体的体积公式归纳为“底面积×高”的过程。

2、掌握正方体的体积计算公式,知道字母表达式,会计算长方体、正方体的体积;理解体积公式“底面积×高”的实际意义,会利用公式计算长方体、正方体的体积。

3、在把长方体体积计算迁移到正方体体积计算及公式归纳的过程中,感受数学思考的条理性和数学结论的确定性。

一、复习引入。

(1)1号长方体,长4厘米,宽4厘米,高3厘米,它的体积是多少?

(2)2号长方体,长4厘米,宽4厘米,高4厘米,它的体积是多少?

二、学习新课。

探究正方体体积公式:

问:通过计算2号长方体的体积你们发现了什么?

引导学生明确:

(1)这个长方体长、宽、高都相等,实际上它是一个正方体。

(2)正方体体积=棱长×棱长×棱长(板书)。

(3)如果用v表示正方体体积,用a表示它的棱长字母公式为:v=a。

教师提示:a也可以写作“a3”读作“a的立方”表示三个a相乘。所以正方体的体积公式一般写成:v=a3(板书)。

三、议一议。

如果用s表示底面积,上面的公式可以写成:

v=sh。

四、巩固练习。

计算下面图形的体积。

板书设计:

正方体体积=棱长×棱长×棱长长方体(或正方体)的体积=底面积×高。

v=a3v=sh。

长方体和正方体的体积数学教案设计篇四

(二)能运用长、正方体的体积计算解决一些简单的实际问题。

(三)培养学生归纳推理,抽象概括的能力。

教学重点和难点。

教学用具。

教具:投影片,长、正方体,1厘米3的立方体24块,1分米3的立方体一块,电脑动画软件(或活动投影片)。

学具:1厘米3的立方体20块。

教学过程设计。

(一)复习准备。

1.提问:什么是体积?

2.请每位同学拿出4个1厘米3的立方体,把它们拼在一起,摆成一排。

教师:拼成了一个什么形体?这个长方体的体积是多少?你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成,所以它的体积是4厘米3。)。

教师:如果再拼上一个1厘米3的正方体呢?

教师:要计量一个物体的体积,就要看这个物体含有多少个体积单位。(出示长方体和正方体教具)今天我们来学习怎样计算长方体和正方体的体积。板书课题:长方体和正方体的体积。

(二)学习新课。

长方体和正方体的体积数学教案设计篇五

3.培养学生归纳推理,抽象概括的能力.。

教学重点。

教学难点。

教学用具。

教具:1立方厘米的立方体24块,1立方分米的立方体1块.。

学具:1立方厘米的立方体20块.。

教学过程。

一、复习准备.。

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.。

教师提问:拼成了一个什么形体?(长方体)。

这个长方体的体积是多少?(4立方厘米)。

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)。

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)。

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们。

长方体和正方体的体积数学教案设计篇六

教学内容:

教学目标:

1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。

2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

教学重点:

正方体和长方体体积的计算方法。

教学难点:

教具:

长、正方体模型、课件、长、正方体形状的纸盒等。

教学过程:

创设情境,导入新课。

出示长方体模型,您能告诉大家这个长方体体积是多少?并说一说是怎样想的吗?

教师演示,学生感知这个长方体模型的体积(每层有4个,共3层,一共是12个),这个长方体的体积就是12立方厘米。

揭示课题:对一些不可以分割的长方体,我们有没有办法计算的他体积呢?(板书:长方体和正方体的体积)。

操作探究,发现规律。

学生按照要求用正方体搭出四个不同的长方体并编号。

让学生观察,并作小组交流。

这些长方体的长宽高各是多少?

用了几个小正方体?不数,你怎样计算小正方体的个数?

长方体的体积是多少?和计算小正方体的个数的'方法比一比。

根据所搭的长方体填表:(表格略)。

根据表格,引导分析,发现规律。

比较每一个长方体的体积,和计算小正方体个数的方法,你能得出什么结论?

再次探索,验证猜想。

出示例题10,让学生摆一摆,再数一数,看看一共用多少个小正方体。

如果让你摆一个长5厘米,宽4厘米,高3厘米的长方体,你能说出要用几个1立方厘米的小正方体吗?学生思考后回答。

引导概括,得出公式。

交流的出结论:

v=abh。

启发引导。

让学生尝试,再交流得出结论:

应用拓展,巩固练习。

做“试一试”

先指名说出长方体的长宽高分别是多少?正方体的棱长是多少,再独立计算。交流时先说说公式,再说说怎样列式。

做“练一练”第1题。

观察题中的图形,说出每个图形的长宽高或棱长,在独立完成。

做“练一练”第2题。

先让学生选择几个式子说说其表示的意思,再口算。

课堂作业:做练习四第2题。

课后作业:

完成练习四第1、3题。

长方体和正方体的体积数学教案设计篇七

3.在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。

探索长方体体积的计算方法。

课件,若干个1立方厘米小正方块。

1立方厘米的正方体16块。

一、激情导入。

1、复习引入。

师:上节课,我们认识了体积和体积单位,谁来说说什么是物体的体积?请同学们用合适的体积单位填空。

2、昨天的知识大家掌握的很好,今天我们一起利用这些知识探究长方体和正方体的体积(板书课题)。请同学们齐读本节课的学习目标。

3、相信同学们能运用手中的学具,勤于动手,善于思考,快乐合作,获得新知识。

二、民主导学。

(学情欲设)。

生1、可以分割成以立方厘米的小块,看看一共有多少块,就有多少立方厘米。

生2、可以量一量。

生3、这些方法都有局限性,我们可以像以前推导平行四边形的面积一样想办法找出长方体体积的计算公式。

老师认为这个提议不错,你们认为呢?

师:谁来猜一猜长方体的体积怎样计算?这个猜想对吗?我们来一起验证。好,请同学们看今天的第一个学习任务。

任务呈现:

用一些体积是1立方厘米的小正方体摆成不同长方体,并完成下表:

出示表格。学生四人一小组,每组一张表格。

(厘米)。

(厘米)。

(厘米)。

小正方体的数量。

师:请同学们以小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。并在小组中讨论你发现了什么。

自主学习。

学生活动,师巡视。

展示交流。

师:同学们摆出了许多不同的长方体,并且填好了表格。哪一组来汇报?

学生黑板前展示表格,并做详细汇报。

引导学生观察表格,

师:观察表格中的数据,从中你能发现什么呢?

师:通过观察比较,同学们有了很大的发现:长方体的体积等于它的长、宽、高的乘积。(板书:)长方体的体积=长×宽×高。

任务2、继续验证。

课件出示:用1立方厘米的正方体摆出下面的长方体,各需要多少个?先想一想,再摆一摆。请一个同学上台操作。

1、长4厘米,宽1厘米,高1厘米。

2、长4厘米、宽3厘米、高1厘米。

3、长4厘米、宽3厘米、高2厘米。

师:那究竟对不对呢?让我们再来摆一摆。

学生小组讨论,动手操作,指名一生上台操作。师巡视。

师:和我们之前的猜想一样吗?

v=abh。

课件出示:

师:7×4×3=84立方厘米,所以它的体积就是84立方厘米。

师:长、宽、高都相等的长方体就是什么图形?你能直接写出正方体的体积公式吗?把你的想法在小组里说一说。

学生汇报:

因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中长、宽、高都叫棱长,正方体的体积=棱长×棱长×棱长。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。

课件出示正方体,出示公式。

师:写的时候,3要写在a的右上角,并且要写的小一些。

小训练:完成例2,在练习本上完成,集体订正。

1、口答题。

2、判断题。

3、解答题。

师:这个算式表示什么意思呢?

出示:

品名:正方体收纳凳。

尺寸:30×30×30。

材质:涤纶+pp不织布+纤维板。

颜色:黑白。

师:你能看懂这个说明书吗?

师:看来不能光比较体积的大小,还要联系实际情况,看看长宽高是否都符合要求。

长方体和正方体的体积数学教案设计篇八

1、结合具体情境和实践活动,经历探索长方体、正方体体积的计算方法,掌握并能正确计算长方体、正方体的体积。

2、经历观察、操作、探索的过程,发展动手操作、抽象概括、归纳推理的能力。进一步发展空间观念。

3、运用体积计算公式解决一些简单的实际问题。

4、探究活动中体验学习数学、发现数学的乐趣,学会与人合作。

2、教学重点/难点。

教学重点:引导学生探索长方体体积的计算方法。

教学难点:理解长方体体积公式的意义。

3、教学用具。

教学课件、一个长方体拼制模型。

4、标签。

一、启发谈话,激趣引入。

二、学习“体积”、“体积单位”的概念。

2、出示差不多大的土豆和一个长方体石块,你知道它们哪个大吗?那你有什么办法?

演示书上的实验,得出:土豆占的空间小,石块占的空间大。

4、计量体积的大小,要用到什么呢?常用的体积单位有哪些?请同学们自学14页中间部分。

5、学生汇报:

(1)常用的体积单位。

(2)拿出课前做的1立方厘米、1立方分米的小正方体,说说哪边哪些物体的体积大约是1立方厘米、1立方分米。

(3)立方米是怎么规定的?老师用3根1米长的木条搭成一个互相垂直的架子,放在墙角感知1立方米的大小,并说说生活中哪些物体的体积跟1立方米差不多大。

6、摆一摆:用棱长是1厘米的正方体木块,摆成下图中不同形状的模型,你知道它们的体积是多少立方厘米?(见教材)。

得出:要计量一个物体的体积,就要看这个物体含有多少个体积单位。

2、实践:拼摆长方体,四人一组,用不少于16块小正方体拼摆长方体,并分别记下摆出的长方体的长、宽、高和体积。

3、小组合作:学生四人一小组操作并做好实验记录。

思考:

(1)每排摆几个?每层摆了几排?摆了几层?

(2)一共摆了多少个小正方体?

(3)这个图形的体积是多少?

4、汇报实验结果。

每排个数。

每层排数。

层数。

小正方体个数。

让学生观察表格中填写的各数,你发现了什么?

小正方体的个数=每排个数×每层排数×层数。

‖‖‖‖。

长方体的体积=长×宽×高。

6、学生汇报,交流,板书。

读题,思考:求砖的体积就是求什么?这个长方体的长、宽、高分别是什么?利用公式,直接求出体积。

生:正方体是长、宽、高都相等的特殊的长方体。

师:根据这种关系,你能推导出正方体的体积公式吗?

2、师生共同归纳:正方体的体积=棱长×棱长×棱长。

用字母表示为:v=a×a×a=a3。

师强调:读作a的立方,表示3个a相乘。3a表示3个a相加。

3、应用公式:

例题2:一块正方体的石料,棱长是6厘米,这块石料体积是多少?课堂小结。

回顾一下,今天的学习大家有什么收获?

板书。

物体所占空间的大小,叫做物体的体积。

常用的体积单位有:立方米、立方分米、立方厘米。

小正方体的个数=每排个数×每层排数×层数。

‖‖‖‖。

长方体的体积=长×宽×高。

v=abh。

正方体的体积=棱长×棱长×棱长。

v=a×a×a=a3。

长方体和正方体的体积数学教案设计篇九

长方体的体积计算这一内容是在学生认识了长方体(正方体)的体积的概念,长方体(正方体)的体积:立方米、立方厘米、立方分米的基础上学习的。通过这一节课的学习,可以帮助学生在今后的生产和生活中实际测量和计算一些物体的体积,解决一些实际问题,进一步体会到知识来源于实践、用于实践的道理,学习一些研究问题的方法。并且对学生空间观念的形成有着重要的意义。听了叶老师执教的《长方体的体积》一课,深受启发。我认为主要有以下几方面的亮点:

一、重视引导学生经历知识的探究过程。

究竟长方体的体积与长、宽、高有什么定量关系呢?叶老师安排了操作活动,引导学生用小正方体摆4个不同的长方体,通过观察、分析,发现长方体体积与长、宽、高的关系,逐步归纳得出计算方法。这一过程都是学生在教师的引导下,自主探究的过程,而不是教师的简单说教。

二、重视学生能力的培养。叶老师展示出6个大小不同的长方体,引导学生观察、发现长、宽、高与体积的关系的过程,是培养学生观察能力的过程。叶老师引导学生通过观察长、宽、高与体积的关系,让学生发现规律:长方体的体积正好是它们长、宽、高的乘积的过程,也是培养学生观察能力的过程。叶老师引导学生用棱长为1厘米的小正方体摆不同的长方体的过程,是培养学生动手实践的过程。老师引导学生练习的过程,是培养学生应用所学知识解决问题的能力的过程。在这一系列的探索活动中,学生通过动眼观察、动脑思考、动手操作,发散思维能力、解决问题的能力和策略都得到了不同程度的提高。

三、重视联系学生的生活实际。脱离生活的数学,把数学知识的学习与学生身边的事物割裂开来,既不利于学生理解抽象概括的数学知识,又无法让学生体会学习数学的意义。在课后练习中“一个长方体木箱长5分米,宽和高都是0.4米,它的体积是多少立方分米?”在课程接近尾声之时,叶老师始终没有忘记让学生再次感受我们今天学习的内容是解决我们身边的一些实际问题,我们学习了它,就应该把它运用到生活中。通过联系实际,进一步激发了学生对数学学习的兴趣,帮助学生更好地应用所学的知识。这样,不仅使学生感受到数学就在身边,激发学生从生活中寻找数学问题的兴趣。

四、重视反馈纠正。反馈纠正是改善教学过程,提高教学效率的重要手段。叶老师在教学中反馈形式多种多样,随堂提问、课堂交流、布置练习等反馈及时,纠正有力。反馈面较广,反馈角度多方面,有效地防止了学生知识缺陷的积累,增强了学生学习的自信心。

可以借助多媒体课件逐一展示每个长方体,要求学生记录每个长方体的长、宽、高、体积等有关数据,这样更直观。更便于学生发现体积与长、宽、高之间的关系。

长方体和正方体的体积数学教案设计篇十

教学目标。

知识与技能。

(1)在理解底面积的基础上,使学生掌握长方体和正方体体积统一计算公式。

(2)提高学生综合运用知识的能力,发展学生的空间观念。

过程与方法。

(2) 通过解决实际问题加深对所学知识的理解。

情感态度与价值观。

(1)体验合作探究的乐趣。

(2)感受数学与现实生活的密切联系,发展学生的思维。

教学重点 理解底面积的含义,统一公式的推导。

教学准备 课件。

教学过程。

一、创设情境。

1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。

2、填空。

(1)长、正方体的体积大小是由       确定的。

(2)长方体的体积=                 。

(3)正方体的体积=                。

二、探索研究。

1.观察。

(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。

结论:长方体的体积=底面积×高。

正方体的体积=底面积×棱长。

2.思考。

(1)这条棱长实际上是特殊的什么?

(2)正方体的体积公式又可以写成什么?

v = sh。

三、课堂实践。

1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。

2.做第35页的“做一做”的第2题。

首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。

3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。

四、课堂小结。

学生小结今天学习的内容。

五、课后实践。

做练习七的第10、11、12题。

旁批:

后记:

长方体和正方体的体积数学教案设计篇十一

教学内容。

教材第33~34页内容及例1。

教学目标。

知识与技能。

(1)理解长方体和正方体表面积的意义。

(2)理解并掌握长方体表面积的计算方法。

(3)发展学生的空间观念。

过程与方法。

(1)经历长方体表面积的计算方法的探究过程。

(2)通过合作探究培养学生的抽象概括能力、推理能力,发展学生的空间观念。

情感态度与价值观。

(1)培养数学与生活的联系,激发对数学学习的兴趣。

(2)体验合作探究的乐趣。

教学重点  长方体、正方体表面积的意义和长方体表面积的计算方法。

教学难点  确定长方体每一个面的长与宽。

教学准备   长方体和正方体表面积展开的教具、视频展示台。学生准备长方体和正方体纸盒各一个。

教学过程。

一、创设情境。

1、说出长方形面积的计算公式。

2、看图回答。

(1)指出这个长方体的长、宽、高各是多少?

(2)哪些面的面积相等?

(3)填空:

上、下两个面的长是       宽是       。

这个长方体   左、右两个面的长是       宽是       。

前、后两个面的长是       宽是       。

3、想一想。长方体和正方体都有几个面?

二、实践探索。

1.个别学习-------表面积的概念。

(1)老师和同学们都拿出准备好的长方体和正方体并在上面分别用“上”、“下”、“左”、“右”、“前”、“后”标在6个面上。

(2)沿着长方体和正方体的棱剪开并展平。

(3)你知道长方体或者正方体6个面的总面积叫做它的什么吗?

学生试着说一说。

2.小组合作学习-------计算塑料片的面积。

(1)想:这个问题,实际上就是要我们求什么?

使学生明确:就是计算这个长方体的表面积。

(2)学生分组研究计算的方法。

(3)找几名代表说一说所在小组的意见。

解法(一):(是分别算出上、下,前、后,左、右面的面积之和,然后算总和。)。

6×5×2+6×4×2+5×4×2。

=60+48+40。

=148(平方厘米)。

解法(二):(是先算出上、前、左这三个面的面积之和,再乘以2)。

(6×5+6×4+5×4)×2。

=74×2。

=148(平方厘米)。

(4)比较上面两种解法有什么不同?它们之间有什么联系?

三、课堂实践。

做第26页的“做一做”,学生独立列式算出后集体订正。

四、课堂小结。

你发现长方体表面积的计算方法了吗?

结论:

=长×宽×2+长×高×2+宽×高×2。

长方体的表面积。

=(长×宽+长×高+宽×高)×2。

五、课堂练习。

做练习六的第1、2题,学生口答,学生讲评。

六、课后实践。

做练习六的第3、4题在作业本上。

旁批:

后记:

长方体和正方体的体积数学教案设计篇十二

教学目标:

知识与技能:

经历对长方体和正方体的知识系统化的整理,加深对长方体正方体的形体特征的认识,分清表面积和体积的概念,能熟练地掌握形体的表面积和体积(容积)的计算,解决一些实际问题。

解决问题:

初步学会用形体知识提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展学生应用意识、实践能力与创新精神。

情感与态度:

通过解决实际问题,让学生感受到数学与生活的密切相关,使学生形成积极参与数学教学活动,并积极与人合作获得成功的体验,树立学好数学的信心与勇气。

教学过程:

一、假设问题情境,激发学习兴趣。

开展生生之间、师生之间对话,教师要引导注意安全与游泳前的准备运动等等的相关的内容。

指名学生回答,也可让学生小组讨论交流后反馈,由学生各抒己见。教师要注意凡学生提出的问题都要给于一定的评价性的肯定,同时要注意正确思想的引导。

二、自主合作整理,构建知识网络。

让学生每四人一组小组动手合作列出知识纲要。

小组的成果开展反馈并给于展示(可借投影仪)。

三、综合应用知识,解决实际问题。

师述:现在在请你们为学校设计建游泳池的方案?

你们认为建游泳池要解决哪些问题呢?

学生讨论说一说。

出示教师的几个问题:

(1)游泳池的长宽高各是多少米?

(2)池占地多大?

(3)挖出多少的土?

(4)池内的四周和底部用什么铺,要铺多大的面积?

(5)要放入多少的水?

小组反馈合作的结果。

四、开展激励评价,体验成功喜悦。

师述:你们说一说哪种好呢?

第9课时实践活动粉刷围墙。

教学目标。

1、让学生经历粉刷围墙的实践活动,巩固有关表面积等方面的知识,加强数学知识在实际生活中的应用。

2、在引导学生准备测量、明确分工、解救问题的过程中,培养学生的合作意识,提高学生收集、整理、分析信息的能力。

3、在利用数学知识制定方案的过程中,体验数学知识与生活的紧密联系,并利用数学知识科学地知道生活,感受成功。

教学重点。

整理分析和比较信息,制定方案。

教学难点。

策略多样化后的优化策略。

教学过程。

一、情境再现,激趣导入。

师:(课件出示围墙的污点和裂缝)大家看到这些图片想说些什么?(生争相发言)老师听出来大家都根热爱我们的学校,看来粉刷围墙势在必行。这节课我们一定要拿出一份可行的方案,解决这个问题。(板书题目:粉刷围墙)。

二、集体规划,确定步骤。

1、确定研究步骤。

作为粉刷围墙工作的小工程师,你认为应分哪几步去完成这项工作呢?(生回答)。

2、根据学生回答,教师引导学生确定研究步骤。

(1)调查相关数据信息(包括粉刷面积、涂料费用、人工费用等)。

(2)选择信息综合计算,得出粉刷草案。

(3)整理研究结果,呈现出书面粉刷方案。

三、引导学生汇报课前调查情况。

师:课前各组已经分头去调查了相关的粉刷信息,请大家以组为单位汇报搜集到的信息,其他小组有不同意见可以互相补充。

1、分组汇报。

(1)调查粉刷面积的小组汇报调查结果,明确围墙的长、高,并汇报计算面积的准确过程。

(2)调查涂料价目的小组汇报外墙涂料价目调查情况。

(3)调查人工费用的小组汇报人工费用调查情况。

2、指导学生计算人工费用及涂料数量。

(1)学生独立计算人工费用及涂料数量。

(2)集体订正。

四、小组合作,制订粉刷方案。

涂料型号不同,价格也不同,到底该选择哪种涂料?一共要花多少钱?怎样做才能有实用有美观呢?请各小组同学合作,拿出你们认为最好的粉刷计划。

1、小组合作综合分析。

2、小组为单位进行汇报,体现策略多样化,展示学生的多种方案。

3、优化选择。

4、学生独立计算买已选涂料粉刷一共需要的费用。

5、书面整理并呈现粉刷围墙的方案。

6、对方案的润色和个性化设计。

五、课外延伸,完美计划。

六、全课总结,感受成功。

长方体和正方体的体积数学教案设计篇十三

教学目标:

1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积,解决一些简单的实际问题。

2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。

3、培养学生动手操作、抽象概括、归纳推理的能力。教学。

教学重点:

使学生理解长方体的体积公式的推导过程,掌握长方体体积的计算方法。

教学难点:

理解长方体的体积公式的推导过程。

课前准备:

小正方体若干个教法学法合作法、讨论法。

教学过程:

教学环节第一次备课动态修改。

一、复习导入。

这节课我们就来学习长方体的体积的计算。(小本的字典,体积小)。

(分割成若干个小正方体,再比较,求长方体的体积就是求长方体所含有多少个这样的体积单位。)。

二、概括公式。

1、学生猜想。

一个物体的大小和什么有关呢?

(1)长、宽相等的时候,越高,体积越大。

(2)长、高相等的时候,越宽,体积越大。

(3)高、宽相等的时候,越长,体积越大。

与长、宽、高都有关系。

2、动手实践操作。

这个猜想正确吗?下面就请同学们通过实验去验证我们的猜想是否正确。

课件出示记录表。(课本29页)。

(1)提出小组合作要求。

请同学们小组合作,用你们手中的1立方厘米小正方体拼成形状不同的长方体,每拼成一种就记录下它的长、宽、高和体积各是多少,然后计算出来验证刚才的猜想是否正确。

(2)小组合作学习。

(3)小组派代表汇报。

生:把4个正方体摆成1排,每排4个,摆1层。这个长方体的长是4厘米,宽是1厘米,高是1厘米,体积是4立方厘米。

(2)引导学生把计算结果与记录表中的体积进行比较,发现长×宽×高的乘积就是长方体的体积。

板书:v=a×b×h=abh,学生齐读公式。

现在请同学们根据长方体的体积计算公式,在小组内讨论讨论:正方体体积的计算公式是什么?学生小组讨论。

教师追问:你们是怎么想的?

学生:因为正方体是特殊的长方体,当长方体的长、宽、高都相等时,长宽高也就是正方体的棱长。所以正方体的体积=棱长×棱长×棱长。

教师说明用字母表示v=a×a×a=a3。

说明:a3读作a的立方或a的三次方,表示3个a相乘。

学生齐读公式。

5、教学底面积。

三、练习。

1、出示课本30页的例一:生独自完成,集体订正。

2、课本31页做一做。

四、课堂总结。

今天你有哪些收获?还有什么疑问?

板书设计:

v=a×b×h=abhv=a×a×a=a3。

v=s×h=shv=s×h=sh。

例1.v=abhv=a3。

=7×3×4=6×6×6。

=84cm3=216dm3。

长方体和正方体的体积数学教案设计篇十四

1、能进一步认识长方体、正方体的表面积和体积及其计算方法,并能正确地计算,理解它们的内在联系。

2.通过学生的合作交流和自主探索,使学生学会在系统复习的基础上理清知识网络、进行分析归纳、逻辑推理,联系生活实际科学运用,提高自己的学习能力。

使学生知道知识的内在联系,提高学生灵活运用知识的能力。

橡皮

一、回顾昨天整理的有关长方体、正方体的知识。

设计意图:让学生回顾有关的知识点,可以唤起学生对所学过知识的再现,为本课的学习作好铺垫。

二、理解应用,走进生活乐乡学苑

通过上节课的整理,我们已经对长方体和正方体有了更清楚的了解和认识,大家的表现都很好!这节课我们就运用这些知识,帮助工人叔叔去解决他们在生产橡皮的过程中遇到的一些实际问题。

提醒:量出的数据保留整厘米数。

设计意图:从学生熟悉的橡皮入手,动手量橡皮的长宽高再计算其体积,比较贴近学生的生活,容易激发学习兴趣。

2、如果把这块橡皮平放在桌面上,它所占桌面的面积最大是多少,最小是多少?

学生自己解答:指名到前面演示,怎样摆放占桌面的面积最大,怎样摆放占桌面的面积最小。

师:以后在摆放物品时,就可以利用这个知识合理利用空间。

设计意图:通过这样摆一摆,让学生加深对“底面积”的理解。知道,在生活中有时只需要求长方体的一个面的面积。

3、如果要给这块橡皮做一个盒子最少需要多少平方厘米硬纸片,该怎样算呢?(不计算接头处与损耗材料)

设计意图:练习求6个面的长方体的表面积。

4、给这块橡皮四周贴上商标纸(贴满),商标纸的面积最少是多少平方厘米?

师:类似这样只算4个面面积的情况,在我们生活中还有哪些?(长方体立柱的油漆面积、火柴盒外壳等)

设计意图:练习求4个面的长方体的表面积。

师:你还能举出类似这样只计算5个面面积的例子吗?(粉刷教室的墙壁和顶棚、给游泳池四壁和底面贴瓷片等)

设计意图:练习求5个面的正方体的表面积。

设计意图:通过拼拼说说算算,让学生有不同层次的发现,从简单的“体积不变,表面积变了”到每一种拼法具体减少了哪两个面的面积。

设计意图:拓展学生运用知识的解决问题的能力,开拓思维。

8、这个外包装箱的容积是多少立方厘米?合多少立方分米?

三、学生展示自己出的关于长方体、正方体知识的数学问题,让全班同学解答、交流。

设计意图:平时学生习惯了老师出题,学生答题,现在让学生自己出题更能激发练习的兴趣。

四、课堂小结

像橡皮这样的一系列问题,在生活中有很多,这就说明数学就在我们身边,我们今后要学会用数学的眼光去观察物体,从中发现问题,解决问题。

五、课外延伸(作业)

夏天到了,哪些同学喜欢游戏呢?你们想在今后我们的校园内建个游戏池,今天请你们帮我们学校校园内设计一个游戏池吧!

本节课从学生平时接触较多的“橡皮”入手,给学生一种亲切与熟悉的感觉,能更好地使学生从心理上拉近数学与生活的距离,实践练习学生自己测量出数据,解决实际问题,这自然需要学生能灵活运用所学知识,这种练习设计体现了课标所倡导的“基础性”、“层次性”、“应用性”的特点。

长方体和正方体的体积数学教案设计篇十五

授课时间:

20__年3月24日。

教学内容:

教学目标:

1、让学生理解长方体和正方体的表面积意义,初步学会长方体表面积的计算方法。

2、通过动手操作、小组合作、观察思考等解决问题的方法,去探求、经历、感受长方体和正方体的表面积概念和长方体表面积计算方法,培养学生的动手操作、观察、抽象概括、探究问题的能力和初步的空间观念。

3、使学生感受到数学与生活的密切联系,培养学生初步的数学应用意识,并在探究过程中获得积极的数学情感体验。

教学重点:

理解长方体、正方体表面积的意义和掌握长方体表面积计算方法。

教学难点:

确定长方体每一个面的长和宽。

教具准备:

课时安排:

第一课时。

教学流程:

一、复习旧知。

1、什么是长方体的长、宽、高?

2、指出长方体纸盒的长、宽、高,并说出长方体有什么特征?正方体有什么特征?

二、创设情境,揭示课题。

同学们,在我们的日常生活中有许多精美的包装盒,工人师傅在制作这些纸盒时至少要用多少纸板呢?这就是我们这节课要研究的主要内容。

板书课题“长方体和正方体的表面积”:当你看了课题以后,你想知道什么?

三、动手操作,建立表象。

1.初步认识长方体的表面积。

2.初步认识正方体的表面积。

请你拿出长方体或正方体纸盒,也用同样的方法剪开,再展开,看看展开后的形状,然后在展开后的图形中,分别用“上”、“下”、“前”、“后”、“左”、“右”标明6个面。

我们知道了什么是长方体和正方体的表面积,怎样计算表面积呢?

四、自主探究。

深化主题。

1、探索活动:长方体的表面积。

2、集体研讨:学生归纳,

老师板书:长方体表面积:长×宽×2+长×高×2+高×宽×2或:(长×宽+长×高+高×宽)×22。出示例1做一个微波炉的包装箱,长0.7米,宽0.5米,高0.4米,至少要用多少平方米的硬纸板?学生独立计算,教师巡视,选择两种算法,指定两名学生上黑板板书,并口述列式计算的依据。

3、小结:计算长方体的表面积,关键是要正确找出3组面中每个面的长和宽。同学们真爱动脑筋,我们计算时可以选择最简便的算法。

4、迁移:把高0.4米改为0.5米,怎样计算?学生讨论,交流汇报:

这是一个特殊的长方体,有两个相对的面是正方形,四个完全一样的长方形(只列算式不计算结果)。

五、优化训练。

勇闯第二关:智力冲浪园。

六、归纳知识,课堂总结。

七、布置作业。

教后反思:

长方体和正方体的体积数学教案设计篇十六

在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。。

理解底面积。

投影仪

1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)

2、填空。

(1)长、正方体的体积大小是由确定的。

(2)长方体的体积=。

(3)正方体的体积=。

1.观察。

(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)

结论:长方体的体积=底面积×高

正方体的体积=底面积×棱长

2.思考。

(1)这条棱长实际上是特殊的什么?

(2)正方体的体积公式又可以写成什么?

结论:长方体(或正方体)的体积=底面积×高,用字母表示:

v=sh

1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。

2.做第35页的“做一做”的第2题。

首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。

3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。

学生今天学习的内容

做练习七的第10、11、12题。

长方体和正方体的体积数学教案设计篇十七

1、进一步掌握体积、容积单位之间的进率,并能比较熟练地进行化聚。

2、能根据有关体积、容积的计算方法,解答实际问题。

能比较熟练地进行化聚,并能根据有关体积、容积的计算方法,解答实际问题。

458立方厘米=()立方分米。

20.6立方分米=()立方米。

7060毫升=()升=()立方分米。

130毫升=()立方厘米=()立方分米。

800升=()立方分米=()立方米。

0.02立方米=()立方分米=()升。

2、一节货车车厢,从里面量长13米,宽2.7米,装的煤高1.2米。如果每立方米煤重1.3吨,这节车厢里装了多少吨煤?(得数保留整数)。

(1)学生独立完成。

(2)说说解题思路。

第一题:18×5=90(立方分米)90(立方分米)=90升。

90×0.74=66.6(千克)。

第二题:13×2.7×1.2=42.12(立方米)。

42.12×1.3≈55(吨)。

第三题:60×60×80=288000(立方厘米)。

2分米=20厘米。

20×20×20=8000(立方厘米)288000÷8000=36(个)。

第四题:9.6×4.2=40.32(平方米)。

9.6×4.2×2.5=100.8(立方米)。

第五题:80×40×(60-10)=160000(立方厘米)。

160000(立方厘米)=160升。

160000÷(40×40)=100(厘米)。

(3)重点分析第5题。

水面离箱口10厘米,说明水的高度是50厘米。从而求出水的容量。再根据底面边长40厘米的长方体水箱,求得水的高度。

1、学生独立研究。

2、小组讨论。

3、教师评议。

长方体和正方体的体积数学教案设计篇十八

3、能较灵活地运用所学知识解答简单的实际问题;

1.谈话

师:你们快要毕业了,我们班级陈艾菲的妈妈为我们班级的每个孩子准备了一份特殊的礼物。对!是一本长方体的相册,里面有我们班每一个同学的照片。

多媒体:相册

2.引题

师:你能说说什么是长方体的表面积呢?

板书:长方体六个面的总面积,叫做它的表面积。

1.提出问题。

师:长方体的表面积和什么有关呢?

师:小组可以先讨论讨论,再把算式写在纸上,贴到黑板上来。

2. 分组合作进行计算。

3. 小组讨论并把算式贴在黑板上:

方法一:30282+3052+2852

方法二:(3028+305+285)2

4. 在完整解答过程中要注意什么?注意写解,单位。

5. 小结:计算长方体的表面积一般有哪几种方法?

(根据总结,演示多媒体)

6. 练习:

师:老师的难题解决了。那你们昨天不是回家测量了长方体形状物体的长、宽、高,现在你们给同桌求它的表面积好吗?注意只列式不计算。

出示几份学生计算物体的表面积:

(1) 餐巾纸盒

问:求餐巾纸盒的表面积有什么用呢?

(2)大橱

问:求大橱的表面积有什么用呢?

7. 出示课题:

师:今天这节课我们探讨了什么问题呢?

出示课题:长方体的表面积计算

8. 这里有个长方体,看看哪个算式是正确的?

(1)已知长方体的长2厘米、宽7厘米、高6厘米,求它的表面积的正确算式是( )

a.272+672+62

b.(27+26+67)2

c.27+26+67

(2)给一个长和宽都是1米、高是3米的长方体木箱的表面喷漆,求喷漆面积的正确算式是( )

a.(11+13+13)2

b. 112+134

c.112+143

问:那2、3、两个算式有什么道理呢?小组可以先讨论讨论。

师:先说说112+134有什么道理?

(多媒体演示)

师:那112+143有什么道理呢?

生:112求的是上下底的面积,正方形的边长就是长方形的宽。14就是4个长方形拼成的大长方形的长,3就是大长方形的面积。

(3)一个长方体的长、宽、高都是4m,它的表面积是多少?( )

a. 444

b. (44+44+44)2

c. 446

问:为什么第3个答案也是正确的?

(多媒体演示)

9.问:这节课你掌握了哪些本领?

完整板书:和正方体

(小组讨论)

生:计算的结果是能做成的

生:66=36(平方分米)

(41.5+42+21.5)2=34(平方分米)

师:铁皮的面积是36平方分米,书箱的表面积是34平方分米,看来是够的,那老师就开始做了。

(教师演示)

问:不够了,为什么会不够呢?

问:那怎么办?

生:把旁边多余的切下来移到左面这里,用焊接的方法拼起来。

师:所以在制作物品的过程中,还不能单看表面积的大小是否合适,还需要考虑到其他种种因素,我们不能把所学的知识生搬硬套地运用到实践中去,要具体问题具体分析。

多媒体出示:一个火柴盒

问:如果用纸板做一个这样的火柴盒,我们该怎样知道至少要多少纸板呢?可以怎样计算?

师:我就把这个问题留给同学们,请同学们课后来解决好吗?可以独立思考,也可以几个同学合作解决。明天上课时我们来作交流。

长方体和正方体的体积数学教案设计篇十九

课题三:

教学要求在理解底面积的基础上,使学生掌握长方体和正方体体积的统一计算公式,提高学生综合运用知识的能力,发展学生的空间概念。。

教学重点理解底面积。

教学用具投影仪。

教学过程。

一、创设情境。

1、指出下图中长方体的长、宽、高和正方体的棱长。(投影显示)。

2、填空。

(1)长、正方体的体积大小是由确定的。

(2)长方体的体积=。

(3)正方体的体积=。

二、探索研究。

1.观察。

(1)长方体体积公式中的“长×宽”和正方体体积公式中的“棱长×棱长”各表示什么?(将复习题中的图用投影显示出“底面积”)。

结论:长方体的体积=底面积×高。

正方体的体积=底面积×棱长。

2.思考。

(1)这条棱长实际上是特殊的什么?

(2)正方体的体积公式又可以写成什么?

v=sh。

三、课堂实践。

1.做第35页的“做一做”的第1题。学生独立做后,学生讲评。

2.做第35页的“做一做”的第2题。

首先帮助学生理解:什么是横截面;把这根木料竖起来实际上就是什么?再让学生做后学生讲评。

3.做练习七的第9题,学生独立解答,老师个别辅导,集体订正。

四、课堂小结。

学生小结今天学习的内容。

五、课后实践。

做练习七的第10、11、12题。

【本文地址:http://www.xuefen.com.cn/zuowen/15622052.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档