高中数学幂函数教学教案(优秀16篇)

格式:DOC 上传日期:2023-11-27 07:43:08
高中数学幂函数教学教案(优秀16篇)
时间:2023-11-27 07:43:08     小编:QJ墨客

教案应当根据学科性质和教学内容的难易程度,合理安排教学时间和课程进度。编写教案要注重培养学生的学习策略和解决问题的能力。注意,以下是一份优秀教案的摘要,给大家进行参考。

高中数学幂函数教学教案篇一

集合语言是现代数学的基本语言,使用集合语言,可以简洁、准确地表达数学的一些内容.本章中只将集合作为一种语言来学习,学生将学会使用最基本的集合语言去表示有关的数学对象,发展运用数学语言进行交流的能力.

函数的学习促使学生的数学思维方式发生了重大的转变:思维从静止走向了运动、从运算转向了关系.函数是高中数学的核心内容,是高中数学课程的一个基本主线,有了这条主线就可以把数学知识编织在一起,这样可以使我们对知识的掌握更牢固一些.函数与不等式、数列、导数、立体、解析、算法、概率、选修中的很多专题内容有着密切的联系.用函数的思想去理解这些内容,是非常重要的出发点.反过来,通过这些内容的学习,加深了对函数思想的认识.函数的思想方法贯穿于高中数学课程的始终.高中数学课程中,函数有许多下位知识,如必修1第二章的幂、指、对函数数,在必修四将学习三角函数.函数是描述客观世界变化规律的重要数学模型.

二、学情分析。

1.学生的作业与试卷部分缺失,导致易错问题分析不全面.通过布置易错点分析的任务,让学生意识到保留资料的重要性.

2.学生学基本功较扎实,学习态度较端正,有一定的自主学习能力.但是没有养成及时复习的习惯,有些内容已经淡忘.通过自主梳理知识,让学生感受复习的必要性,培养学生良好的复习习惯.

3.在研究例4时,对分类的情况研究的不全面.为了突破这个难点,应用几何画板制作了课件,给学生形象、直观的感知,体会二次函数对称轴与所给的区间的位置关系是解决这类问题的关键.

三、设计思路。

本节课新课中渗透的理念是:“强调过程教学,启发思维,调动学生学习数学的积极性”.在本节课的学习过程中,教师没有把梳理好的知识展示给学生,而是让学生自己进行知识的梳理.一方让学生体会到知识网络化的必要性,另一方面希望学生养成知识梳理的习惯.在本节课中不断提出问题,采取问题驱动,引导学生积极思考,让学生全面参与,整个教学过程尊重学生的思维方式,引导学生在“最近发展区”发现问题、解决问题.通过自主分析、交流合作,从而进行有机建构,解决问题,改变学生模仿式的学习方式.在教学过程中,渗透了特殊到一般的思想、数形结合思想、函数与方程思想.在教学过程中通过恰当的应用信息技术,从而突破难点.

四、教学目标分析。

(一)知识与技能。

1.了解集合的含义与表示,理解集合间的基本关系,集合的基本运算.

a:能从集合间的运算分析出集合的基本关系.b:对于分类讨论问题,能区分取交还是取并.

2.理解函数的定义,掌握函数的基本性质,会运用函数的图象理解和研究函数的性质.

a:会用定义证明函数的单调性、奇偶性.b:会分析函数的单调性、奇偶性、对称性的关系.

(二)过程与方法。

1.通过学生自主知识梳理,了解自己学习的不足,明确知识的来龙去脉,把学习的内容网络化、系统化.

2.在解决问题的过程中,学生通过自主探究、合作交流,领悟知识的横、纵向联系,体会集合与函数的本质.

(三)情感态度与价值观。

在学生自主整理知识结构的过程中,认识到材料整理的必要性,从而形成及时反思的学习习惯,独立获取数学知识的能力.在解决问题的过程中,学生感受到成功的喜悦,树立学好数学的信心.在例4的解答过程中,渗透动静结合的思想,让学生养成理性思维的品质.

五、重难点分析。

重点:掌握知识之间的联系,洞悉问题的考察点,能选择合适的知识与方法解决问题.

难点:含参问题的讨论,函数性质之间的关系.

六.知识梳理(约10分钟)。

高中数学幂函数教学教案篇二

对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

指数函数。

如图所示为a的不同大小影响函数图形的情况。

可以看到:

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于x轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

高中数学幂函数教学教案篇三

在高中数学教学中,数学思想的培养在倡导新课程教育的大环境下显得尤为重要,这不仅关系到教学效率的提高,对增强学生的文化素养也大有裨益。经过多年的教育教学总结了几点高中数学函数教学的有效对策:

一、在概念中渗透。

高中学生要掌握数学知识,就必须经历一个阶段,即学生“吸收”数学知识的过程,特别是在形成概念的阶段,数学教师应给予学生更多的解释和正确的引导。如,以偶函数与自变量的关系来说,在一定定义域中的自变量互为相反时,经相应函数关系式的对应后,即能够在某解析公式中得到相应的证明,进而在这个基础之上概括出包括偶、奇函数的部分函数定义,从这个例子中能够使从具体到抽象的函数充分体现出来。

二、在教学中强化。

在实际的高中数学教学时,教师可在学生初步认识数学时就加入一定的实例,从而使学生理解的数学概念得到强化。比如,在对数函数教学中加入图形案例,就能够使学生更为清楚、直观地对函数发生以及后续变化过程进行了解。

三、方程教学的应用。

要使高中生对数学思想方法进行充分掌握,函数与方程是必不可少的,同时在实际运用中,函数与方程经常需要互相转化,因此对其加以合理利用,就能够实现复杂问题的简单化,并互相作用。

四、函数图象的应用。

函数图象能够将函数性质直观地反映出来,并能够通过研究图像与图形,有效解决函数问题,是数形结合应用的.重要组成部分。另外在函数图象问题的解决过程中,必须具备函数意识与分析意识,才能找到最为合理的解决方式。

五、函数分类的应用。

在高中函数教学中,分类不同函数是具体应用之一。可通过例题在教学中对解题思想进行展示,从而使学生分类不同函数的能力得到训练与培养。大多数数学思想的解决方法只有在实际的数学题中通过实际解析,才能实现深化理解,进而使应用的灵活性与准确性得到提升。

在高中数学函数教学过程中,教师应根据实际情况,将高中函数中的知识点理清,从高中函数的形式与概念入手,引导学生深刻认识函数的本质,随后拓展学生的眼界,找出与函数关联的若干知识点,让学生掌握利用函数思想对其他问题进行解决的方法,同时在这个阶段中,强化学生理解函数的程度,真正实现高中函数相关知识点的全面掌握。

参考文献:

高中数学幂函数教学教案篇四

摘要:

对于高中生而言,他们的数学基础还存在一定的薄弱性,无法站在抽象与理性的角度去看待数学问题。因此对于高中生而言,高中数学函数部分是较为普遍的难点。通过对高中数学函数教学数学思想渗透法进行研究,并以教学实例分析,进而提出几点高中数学函数教学的有效对策。

关键词:

高中数学幂函数教学教案篇五

一、学数学就像玩游戏,想玩好游戏,当然先要熟悉游戏规则。

而在数学当中,游戏规则就是所谓的基本定义。想学好函数,第一要牢固掌握基本定义及对应的图像特征,如定义域,值域,奇偶性,单调性,周期性,对称轴等。

很多同学都进入一个学习函数的误区,认为只要掌握好的做题方法就能学好数学,其实应该首先应当掌握最基本的定义,在此基础上才能学好做题的方法,所有的做题方法要成立归根结底都必须从基本定义出发,最好掌握这些定义和性质的代数表达以及图像特征。

二、牢记几种基本初等函数及其相关性质、图象、变换。

中学就那么几种基本初等函数:一次函数(直线方程)、二次函数、反比例函数、指数函数、对数函数、正弦余弦函数、正切余切函数,所有的函数题都是围绕这些函数来出的,只是形式不同而已,最终都能靠基本知识解决。

还有三种函数,尽管课本上没有,但是在高考以及自主招生考试中都经常出现的对勾函数:y=ax+b/x,含有绝对值的函数,三次函数。这些函数的定义域、值域、单调性、奇偶性等性质和图像等各方面的特征都要好好研究。

三、图像是函数之魂!要想学好做好函数题,必须充分关注函数图象问题。

翻阅历年高考函数题,有一个算一个,几乎百分之八十的函数问题都与图像有关。这就要求同学们在学习函数时多多关注函数的图像,要会作图、会看图、会用图!多多关注函数图象的平移、放缩、翻转、旋转、复合与叠加等问题。

四、多做题,多向老师请教,多总结。

多做题不是指题海战术,而是根据自己的情况,做适当的题目;重点要落在多总结上,总结什么呢?总结题型,总结方法,总结错题,总结思路,总结知识等!

一、学数学就像玩游戏,想玩好游戏,当然先要熟悉游戏规则。

而在数学当中,游戏规则就是所谓的基本定义。想学好函数,第一要牢固掌握基本定义及对应的图像特征,如定义域,值域,奇偶性,单调性,周期性,对称轴等。

很多同学都进入一个学习函数的误区,认为只要掌握好的做题方法就能学好数学,其实应该首先应当掌握最基本的定义,在此基础上才能学好做题的方法,所有的做题方法要成立归根结底都必须从基本定义出发,最好掌握这些定义和性质的代数表达以及图像特征。

二、牢记几种基本初等函数及其相关性质、图象、变换。

中学就那么几种基本初等函数:一次函数(直线方程)、二次函数、反比例函数、指数函数、对数函数、正弦余弦函数、正切余切函数,所有的函数题都是围绕这些函数来出的,只是形式不同而已,最终都能靠基本知识解决。

还有三种函数,尽管课本上没有,但是在高考以及自主招生考试中都经常出现的对勾函数:y=ax+b/x,含有绝对值的函数,三次函数。这些函数的定义域、值域、单调性、奇偶性等性质和图像等各方面的特征都要好好研究。

三、图像是函数之魂!要想学好做好函数题,必须充分关注函数图象问题。

翻阅历年高考函数题,有一个算一个,几乎百分之八十的函数问题都与图像有关。这就要求同学们在学习函数时多多关注函数的图像,要会作图、会看图、会用图!多多关注函数图象的平移、放缩、翻转、旋转、复合与叠加等问题。

四、多做题,多向老师请教,多总结。

多做题不是指题海战术,而是根据自己的情况,做适当的题目;重点要落在多总结上,总结什么呢?总结题型,总结方法,总结错题,总结思路,总结知识等!

高中数学幂函数教学教案篇六

教学目标:

通过实例,理解幂函数的概念;能区分指数函数与幂函数;会用待定系数法求幂函数的解析式。

教学重难点:

重点从五个具体幂函数中认识幂函数的一些特征。

难点指数函数与幂函数的区别和幂函数解析式的求解。

教学方法与手段:

1、采用师生互动的方式,在教师的引导下,学生通过思考、交流、讨论,理解幂函数的定义,体验自主探索、合作交流的学习方式,充分发挥学生的积极性与主动性。

2、利用投影仪及计算机辅助教学。

教学过程:

函数的完美追求:对于式子,

如果一定,n随的变化而变化,我们建立了指数函数;

如果一定,随n的变化而变化,我们建立了对数函数。

设想:如果一定,n随的变化而变化,是不是也应该确定一个函数呢?

创设情境。

请大家看以下问题:

思考:以上问题中的函数有什么共同特征?

引导学生分析归纳概括得出:(1)都是以自变量x为底数;(2)指数为常数;(3)自变量x前的系数为1;(4)只有一项。上述问题中涉及的函数,都是形如的函数。

探究新知。

一、幂函数的定义。

一般地,形如的函数称为幂函数,其中是自变量,是常数。

中前面的系数是1,后面没有其它项。

小试牛刀。

(1),

思考:幂函数与指数函数有什么区别?

高中数学幂函数教学教案篇七

如图所示为a的不同大小影响函数图形的情况。

可以看到:

(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑。

(2)指数函数的值域为大于0的实数集合。

(3)函数图形都是下凹的。

(4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于y轴与x轴的正半轴的单调递减函数的位置,趋向分别接近于y轴的正半轴与x轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。

(6)函数总是在某一个方向上无限趋向于x轴,永不相交。

(7)函数总是通过(0,1)这点。

(8)显然指数函数无界。

高中数学幂函数教学教案篇八

函数,作为高中数学的一个重要组成部分,是学生学习的重点和难点。在经过集体备课,小组讨论,心中还是没有想好教学过程。在听过卢老师的课后,心中有了一点点儿底气。从而,我设计了这样的教学计划。首先,师生共同阅读教材上的三个实例。

这三个例子刚好对应了他们初中所学函数的三种表示方法(解析式法、图像法、表格),学生熟悉更容易接受,再把每个例子中的自变量和因变量的取值分别组成两个数集a和b,共同探讨总结出三个例子的共同点,从而引出函数的概念。强调构成函数的四个条件,重点是对这个符号的理解,说明它只是一个数。其次,根据函数的概念,给出六个小例子,让学生根据函数的概念判断所给例子是否能构成函数。

有四个分别是违反函数概念中的四个条件,让学生知道函数的条件缺一不可。另外两个例子说明函数可以一对一,可以多对一,但绝不允许多对一。讲完之后,发现学生的问题出现在两个集合的先后顺序,这就说明必须结合实际例子强调知识点。最后,给出函数定义域和值域的概念,并明确定义域和值域都是集合。之后让学生说出常见的三种函数:一次函数,一元二次函数,以及反比例函数的定义域以及值域。(在此之前,已经让学生在练习本上划过几个具体的一次函数,一元二次函数以及反比例函数的图像。)。

高中数学幂函数教学教案篇九

通过学生的讨论,使学生更清楚以下事实:

(1)分解因式与整式的乘法是一种互逆关系;。

(2)分解因式的结果要以积的形式表示;。

(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;。

(4)必须分解到每个多项式不能再分解为止。

活动5:应用新知。

例题学习:

p166例1、例2(略)。

在教师的引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

活动6:课堂练习。

1.p167练习;。

2.看谁连得准。

x2-y2(x+1)2。

9-25x2y(x-y)。

x2+2x+1(3-5x)(3+5x)。

xy-y2(x+y)(x-y)。

3.下列哪些变形是因式分解,为什么?

(1)(a+3)(a-3)=a2-9。

(2)a2-4=(a+2)(a-2)。

(3)a2-b2+1=(a+b)(a-b)+1。

(4)2πr+2πr=2π(r+r)。

学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

活动7:课堂小结。

从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?

学生发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

活动8:课后作业。

课本p170习题的第1、4大题。

学生自主完成。

通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

板书设计(需要一直留在黑板上主板书)。

15.4.1提公因式法例题。

1.因式分解的定义。

2.提公因式法。

高中数学幂函数教学教案篇十

其次,从函数角度来讲.函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.

最后,从学科角度来讲.函数的单调性是学习不等式、极限、导数等其它数学知识的重要基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材.

2.教学的重点和难点。

对于函数的单调性,学生的认知困难主要在两个方面:。

首先,要求用准确的数学符号语言去刻画图象的上升与下降,把对单调性直观感性的认识上升到理性的高度,这种由形到数的翻译,从直观到抽象的转变对高一的学生来说比较困难.

其次,单调性的证明是学生在函数学习中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的.

根据以上的分析和教学大纲对单调性的教学要求,本节课的教学重点是函数单调性的概念,判断、证明函数的单调性;难点是引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性.

二、教学目标的确定。

根据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,我从三个方面确定了以下教学目标:

三、教学方法的选择。

1.教学方法。

本节课是函数单调性的起始课,根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲授,学生探究学习的教学方法.教学过程中,根据教材提供的线索,安排适当的教学情境,让学生展示相应的数学思维过程,使学生有机会经历数学概念抽象的各个阶段,引导学生独立自主地开展思维活动,深入探究,从而创造性地解决问题,最终形成概念,获得方法,培养能力.

2.教学手段。

四、教学过程的设计。

为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为四个阶段:创设情境,引入课题;归纳探索,形成概念;掌握证法,适当延展;归纳小结,提高认识.具体过程如下:

(一)创设情境,引入课题。

在课前,我给学生布置了两个任务:

(1)由于某种原因,北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.

课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比较适宜大型国际体育赛事.

(2)通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.

课上我引导学生观察8月8日的气温变化曲线图,引导学生体会在某些时段温度升高,某些时段温度降低.

(二)归纳探索,形成概念。

在本阶段的教学中,为使学生充分感受数学概念的发生与发展过程和数形结合的数学思想,经历观察、归纳、抽象的探究过程,加深对函数单调性的本质的认识,我设计了三个环节,引导学生分别完成对单调性定义的三次认识.

1.借助图象,直观感知。

本环节的教学主要是从学生的已有认知出发,即从学生熟悉的`常见函数的图象出发,直观感知函数的单调性,完成对函数单调性定义的第一次认识.

在本环节的教学中,我主要设计了两个问题:

问题1:分别作出函数的图象,并且观察自变量变化时,函数值有什么变化规律?

在学生画图的基础上,引导学生观察图象,获得信息:第一个图象从左向右逐渐上升,随x的增大而增大;第二个图象从左向右逐渐下降,随x的增大而减小.然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函数,我们分别称为增函数和减函数.

对于概念教学,若学生能用自己的语言来表述概念的相关属性,则能更好的理解和掌握概念,因此我设计了问题2.

问题2:能否根据自己的理解说说什么是增函数、减函数?

教学中,我引导学生用自己的语言描述增函数的定义:

2.探究规律,理性认识。

问题1:右图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?

对于问题1,学生的困难是难以确定分界点的确切位置.通过讨论,使学生感受到用函数图象判断函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行严密化、精确化的研究,使学生体会到用数量大小关系严格表述函数单调性的必要性,从而将函数的单调性研究从研究函数图象过渡到研究函数的解析式.

问题2:如何从解析式的角度说明在上为增函数?

在前边的铺垫下,问题2是形成单调性概念的关键.在教学中,我组织学生先分组探究,然后全班交流,相互补充,并及时对学生的发言进行反馈,评价,对普遍出现的问题组织学生讨论,在辨析中达成共识.

对于问题2,学生错误的回答主要有两种:

(1)在给定区间内取两个数,例如1和2,因为,所以在上为增函数.。

(2)仿(1),取很多组验证均满足,所以在上为增函数.。

对于这两种错误,我鼓励学生分别用图形语言和文字语言进行辨析.引导学生明确问题的根源是两个自变量不可能被穷举.在充分讨论的基础上,引导学生从给定的区间内任意取两个自变量,然后求差比较函数值的大小,从而得到正确的回答:。

任意取,有,即,所以在为增函数.。

这种回答既揭示了单调性的本质,也让学生领悟到两点:(1)两自变量的取值具有任意性;(2)求差比较它们函数值的大小.事实上,这种回答也给出了证明单调性的方法,为后续用定义证明其他函数的单调性做好铺垫,降低难度.至此,学生对函数单调性有了理性的认识.

3.抽象思维,形成概念。

本环节在前面研究的基础上,引导学生归纳、抽象出函数单调性的定义,使学生经历从特殊到一般,从具体到抽象的认知过程,完成对概念的第三次认识.

教学中,我引导学生用严格的数学符号语言归纳、抽象增函数的定义,并让学生类比得到减函数的定义.然后我指导学生认真阅读教材中有关单调性的概念,对定义中关键的地方进行强调.

(三)掌握证法,适当延展。

本阶段的教学主要是通过对例题和练习的思考交流、分析讲解以及反思小结,使学生初步掌握根据单调性定义证明函数单调性的方法,同时引导学生探究定义的等价形式,对证明方法做适当延展.

(四)归纳小结,提高认识。

1.学习小结。

在知识层面上,引导学生回顾函数单调性定义的探究过程,使学生对单调性概念的发生与发展过程有清晰的认识,体会到数学概念形成的主要三个阶段:直观感受、文字描述和严格定义.

在方法层面上,首先引导学生回顾判断,证明函数单调性的方法和步骤;然后引导学生回顾知识探究过程中用到的思想方法和思维方法,如数形结合,等价转化,类比等,重点强调用符号语言来刻画图形语言,用定量分析来解释定性结果;同时对学习过程作必要的反思,为后续的学习做好铺垫.

2.布置作业。

在布置书面作业的同时,为了尊重学生的个体差异,满足学生多样化的学习需要,我设计了探究作业供学有余力的同学课后完成.

(1)证明:函数在上是增函数的充要条件是对任意的,且有.。

目的是加深学生对定义的理解,而且这种方法进一步发展同样也可以得到导数法.。

(2)研究函数的单调性,并结合描点法画出函数的草图.。

各位专家、评委,本节课我在概念教学上进行了一些尝试.在教学过程中,我努力创设一个探索数学的学习环境,通过设计一系列问题,使学生在探究问题的过程中,亲身经历数学概念的发生与发展过程,从而逐步把握概念的实质内涵,深入理解概念。

高中数学幂函数教学教案篇十一

引入课题1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:

yx1-11-1yx1-11-1yx1-11-1。

1随x的增大,y的值有什么变化?2能否看出函数的最大、最小值?

2.画出下列函数的图象,观察其变化规律:

f(x)=x1从左至右图象上升还是下降______?2在区间____________上,随着x的增大,f(x)的值随着________.

yx1-11-1。

2.f(x)=-2x+11从左至右图象上升还是下降______?2在区间____________上,随着x的增大,f(x)的`值随着________.

1在区间____________上,f(x)的值随着x的增大而________.

2在区间____________上,f(x)的值随着x的增大而________.

高中数学幂函数教学教案篇十二

高考是选拔人才的制度,所以说,高考的内容是难易结合的。高中数学在高考中占有很重要的地位,而函数知识点所占据的分值也是比较高的。可是,高中数学中一旦涉及函数问题,大多数学生就感到束手无策。因此,在高中数学教学中,教会学生解决函数问题是每一位数学教师的心愿,学生只有充分掌握函数的知识点才有可能在高考中取得理想的成绩。在高中数学函数教学中,函数的单调性问题是一个非常重要的知识点,它和其他函数问题的解决有着很大的关联。

高中数学虽然有一定的难度,可是它的知识点并不是凭空出现的,它和生活实际还是有一定联系的。高中数学和初中数学不同,初中数学相对来说比较具体,比较简单,高中数学浓缩了知识点,它是抽象的、困难的。但是,学生没有必要过分的害怕高中数学的学习,只要方法得当,就会在学习中找到乐趣。高中数学函数单调性问题想必是学生的软肋,其实总的来说,函数的单调性(也称之为函数的'增减性)是对某个区间而言的,是一个局部概念。高中数学教师在函数单调性教学中只要让学生牢牢把握住这个概念,在解题的过程中就会少走弯路。

虽然说理解高中数学函数单调性的概念是非常重要的,但是,在实际的解题过程中依然要掌握一定的方法。函数作为每年数学高考中的重头戏,题目是千变万化,但是解题的方法则万变不离其宗。教师在教学的过程中应该要摸索出一套适合学生思路的解题策略,再加上勤学苦练,学生在函数的单调性问题上就能游刃有余。

1.列举适当的例子,学会举一反三。

在高中数学函数教学中,利用函数的导数求得函数单调性和极值问题是常见的试卷题目。高中数学教师在教学的过程中要选取一个最典型的题目,进行详细的讲解。我们知道,函数问题通常是由几个小问题组成的,这些小问题由易到难,教师在讲解函数单调性的时候,也应该按照这个顺序。这样的教学方法可以让绝大多数学生拿到一定的分数。我们以北师大版的《高中数学》为例,一起来探讨经典例题中的高中数学函数单调性问题。

例如,设函数f(x)=ln(2x+3)+2x,求f(x)的单调区间。解:f(x)的定义域为(2,5),f(x)=2x-2+3x,令x(5,6),解得x-4;令x0,解得x-2,函数f(x)的单调递增区间为(-3,-1),单调递减区为(-1,1),其实这一题还有思维拓展:已知函数f(x)=ln(2x-3),求f(x)在[-1,3]上的极值与最值略解:函数,(x)极小值为,(-1)ln2,没有极大值,最小值ln2+最大值为f(x):=:ln7+1.

这道函数单调性的极值和最值问题,是高中数学中的典型例题。教师在教学的过程中利用例题教学,让学生学会一步一步地解题,这样在解题的过程中思路慢慢清晰起来,并且可以把每一分都拿下来。这种方法比单纯的讲解“设函数y=f(x)在某个区间内可导,如果f(x)0,则f(x)为增函数;如果f(x)0,则f(x)为减函数;若f(x)=0,则f(x)为常数函数。”这样的知识点要有效果的多。

2.学会画草图利用图形解题。

相信高中数学教师在教学的过程中一定采取过画图解决数学问题的办法。每一个教师教授学生画图解决函数单调性问题的方式都不同,但是都要遵循一个规律,那就是函数单调性的画图一定要快速和简单。如果学生在解答函数单调性问题时浪费了大量的时间在画图中,这是得不偿失的。在教学中,教师可以让学生尝试简单的图画所带来的解题便利,比如,在选择题中函数的单调性问题利用画图就可以选出正确的答案。

例如,在函数的单调性问题中,会结合其他内容进行考查,题目定义了一定的区间,再根据函数公式的要求,让学生求出它的区间。这个时候学生就可以根据给出的区间定义,画出草图。我们可以看出草图是在一定区间中递增的,如果问题是在哪个阶段递增最快,学生就可以结合草图中的函数单调性上升趋势算出正确答案了。

总而言之,高中数学函数单调性问题是学生必须掌握的知识点。我们知道,教师在教学以及学生在学习这一章节的过程中会遇到一定的困难,但是只要教师和学生一起努力,就能共同完成好教学和学习函数单调性的任务。其实,还有许多优秀的方法可以更好地完成高中数学教学工作,在此只是列举两种常用的方式浅析函数单调性问题的解决策略。希望教师在教学的过程中,可以根据学生的接受能力有选择地进行教学,以此来让学生更好地掌握高中数学中函数的单调性知识。

参考文献:

[1]周训竹。试论数学函数教学的有效方法[j]。学周刊,(29)。

[2]周杰。高中数学函数内容教学研究[j]。数理化解题研究:高中版,2013(12)。

高中数学幂函数教学教案篇十三

函数单调性是函数的一个重要性质,并且学生是头一次接触函数的单调性,陌生感强。函数单调性,单调区间的概念掌握起来有一定困难,特别是增函数、减函数的定义很抽象,学生很难理解,这样会增加学生的负担,不利于学生学习兴趣的激发。因此,在教学的整个过程中,弱化抽象概念的讲解,从具体函数的图象分析入手,使学生对增、减函数有一个直观的印象。进一步,通过分析函数图象的变化趋势,启发学生归纳总结出增、减函数中函数值与自变量之间的变化规律,使学生会熟练的通过函数的图象来判断一个函数是增函数,还是减函数。在次基础上,给出函数单调性,函数单调区间的概念。在课堂上重点训练了学生从函数图象上来判断函数单调区间,以及在每个单调区间上的单调性的能力,从学生的的课堂反应来看,学生能熟练的通过函数的图象来判断函数的单调性,然后用定义证明一个函数是增函数(减函数),整堂课下来,使学生会通过函数图象来判断函数单调性这一目标基本上达到,学生课堂反应积极、热情。当然,其中还是存在了很多的问题,譬如最大的问题就是学生探究还没有放开,教师讲多了。

在以后的教学中多注意从学生的已有知识和生活经验出发,围绕知识目标展开新知识出现的情境,丰富学生的情感体验,在知识目标得到有效落实的同时,达成能力目标.突出基础知识的应用和基本技能的运用,强化知识目标,培养学生学习数学的情感,在知识应用方面,应强调数学走向生活,解决具有现实意义的生活问题,培养学生的数学建模能力.

在教学时,我们也要适当使用多媒体教学手段,帮助学生可以更加直观的理解函数的图象变化。

高中数学幂函数教学教案篇十四

教材分析:

幂函数作为一类重要的函数模型,是学生在系统地学习了指数函数、对数函数之后研究的又一类基本的初等函数。?幂函数模型在生活中是比较常见的,学习时结合生活中的具体实例来引出常见的幂函数?.组织学生画出他们的图象,根据图象观察、总结这几个常见幂函数的性质。对于幂函数,只需重点掌握?这五个函数的图象和性质。学习中学生容易将幂函数和指数函数混淆,因此在引出幂函数的概念之后,可以组织学生对两类不同函数的表达式进行辨析。学生已经有了学习幂函数和对象函数的学习经历,这为学习幂函数做好了方法上的准备。因此,学习过程中,引入幂函数的概念之后,尝试放手让学生自己进行合作探究学习。

课时分配1课时。

教学目标。

重点:从五个具体的幂函数中认识的概念和性质。

难点:从幂函数的图象中概括其性质,据幂函数的单调性比较两个同指数的指数式的大小。

知识点:幂函数的定义、五个幂函数图象特征。

能力点:通过具体实例了解幂函数的图象和性质,并能进行简单的应用。

自主探究点:通过作图归纳总结幂函数的相关性质。

考试点:了解幂函数的概念,

结合函数的图象了解它们的变化情况。

易错易混点:学生容易将幂函数和指数函数混淆。

拓展点:通过指数函数的图象性质研究幂函数指数的变化。

教具准备:多媒体辅助教学。

课堂模式:导学案。

一、引入新课。

(一)回顾引入。

【师生互动】师:数学的内在美常常让我感动,下面我们共同来欣赏运算的完美性,

思考:由8、2、3、这四个数,运用数学符号可组成哪些等式?

生:探讨,交流。

师生共同分析:

师:我们知道对于等式。

1.如果一定,随着的变化而变化,我们建立了指数函数。

2.如果一定,随着的变化而变化,我们建立了对数函数。

设想:如果一定,随着的变化而变化,是不是也可以确定一个函数呢?

【设计说明】使学生回忆所学两个基本初等函数,为所要学习的幂函数作铺垫。

(二)观察下列对象:

问题(1):如果张红购买了每千克1元的蔬菜千克,那么她需要付的钱数=元,

问题(2):如果正方形的边长为,那么正方形的面是=。

问题3):如果正方体的边长为,那么正方体的体积是=。

问题(4):如果正方形场地面积为,那么正方形的边长=。

问题(5):如果某人s内骑车行进了1km,那么他骑车的平均速度=。

【师生互动】师:(1)它们的对应法则分别是什么?

(2)以上问题中的函数有什么共同特征?

让学生独立思考后交流,引导学生概括出结论。

生:(1)乘以1(2)求平方(3)求立方。

(4)求算术平方根(5)求-1次方。

师:上述的问题涉及到的函数,都是形如:,其中是自变量,是常数。

师生:共同辨析这种新函数与指数函数的异同。

二、探究新知。

组织探究。

1.幂函数的定义。

一般地,形如(r)的函数称为幂函数,其中是自变量,是常数。

如等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数。

【师生互动】师:1.幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种“形式定义”的函数,引导学生注意辨析。

2.研究函数的图像。

(1)(2)(3)。

(4)(5)。

生:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所作图象,体会幂函数的变化规律。

师:引导学生应用函数的性质画图象,如:定义域、奇偶性。

师生共同分析:强调画图象易犯的错误。

【设计意图】(1)通过具体作图,可使学生加深对图象的直观印象,记忆比较牢固;同时也提高了学生数形结合的思维能力;(2)符合学生的认知规律,由特殊到一般,从具体到抽象;(3)充分发挥学生学习的能动性,以学生为主体,展开课堂教学。

【师生互动】师:引导学生观察图象,归纳概括幂函数的的性质及图象变化规律。

生:观察图象,分组讨论,探究幂函数的性质和图象的变化规律,并展示各自的结论进行交流评析,并填表。

定义域值域奇偶性单调性定点。

师生共同分析幂函数性质:

(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);。

高中数学幂函数教学教案篇十五

1、本节内容在全书及章节的地位:《函数的单调性》是必修1第一章第3节,是高考的重点考查内容之一,是函数的一个重要性质,在比较几个数的大小、求函数值域、对函数的定性分析以及与其他知识的综合上都有广泛的应用。通过对这一节课的学习,可以让学生加深对函数的本质认识。也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。

2、教学目标:根据上述教材结构与内容分析,考虑到学生已有的认知水平我制定如下教学目标:

情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。

重点:形成增(减)函数的形式化定义。

难点。形成增减函数概念的过程中,如何从图像升降的直观认识过渡到函数增减数学符号语言表述;用定义证明函数的单调性。

为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

二、教法。

三、学法。

它们环环相扣,层层深入,从而顺利完成教学目标。接下来,我再具体谈一谈这堂课的教学过程:

四、教学程序及设想。

(一)创设情境——引入概念。

通过设置问题情景、课堂导入、新课讲授及终结阶段的教学中,我力求培养学生的自主学习的能力,以点拨、启发、引导为教师职责。

1、由具体的数列实例引入:

观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:随x的增大,y的值有什么变化。

高中数学幂函数教学教案篇十六

一、教材分析:

《34.4二次函数的应用》选自义务教育课程标准试验教科书《数学》(冀教版)九年级上册第三十四章第四节,这节课是在学生学习了二次函数的概念、图象及性质的基础上,让学生继续探索二次函数与一元二次方程的关系,教材通过小球飞行这样的实际情境,创设三个问题,这三个问题对应了一元二次方程有两个不等实根、有两个相等实根、没有实根的三种情况。这样,学生结合问题实际意义就能对二次函数与一元二次方程的关系有很好的体会;从而得出用二次函数的图象求一元二次方程的方法。这也突出了课标的要求:注重知识与实际问题的联系。

本节教学时间安排1课时。

二、教学目标:

知识技能:

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.理解抛物线交x轴的点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

3.能够利用二次函数的图象求一元二次方程的近似根。

数学思考:

1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.

2.经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验.

3.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。

解决问题:

1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。

2.通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力。

情感态度:

1.从学生感兴趣的问题入手,让学生亲自体会学习数学的价值,从而提高学生学习数学的好奇心和求知欲。

2.通过学生共同观察和讨论,培养大家的合作交流意识。

三、教学重点、难点:

教学重点:

1.体会方程与函数之间的联系。

2.能够利用二次函数的图象求一元二次方程的近似根。

教学难点:

1.探索方程与函数之间关系的过程。

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。

四、教学方法:启发引导合作交流。

五:教具、学具:课件。

六、教学过程:

[活动1]检查预习引出课题。

预习作业:

1.解方程:(1)x2+x-2=0;(2)x2-6x+9=0;(3)x2-x+1=0;(4)x2-2x-2=0.

2.回顾一次函数与一元一次方程的关系,利用函数的图象求方程3x-4=0的解.

师生行为:教师展示预习作业的内容,指名回答,师生共同回顾旧知,教师做出适当总结和评价。

教师重点关注:学生回答问题结论准确性,能否把前后知识联系起来,2题的格式要规范。

设计意图:这两道预习题目是对旧知识的回顾,为本课的教学起到铺垫的作用,1题中的三个方程是课本中观察栏目中的三个函数式的变式,这三个方程把二次方程的根的三种情况体现出来,让学生回顾二次方程的相关知识;2题是一次函数与一元一次方程的关系的问题,这题的设计是让学生用学过的熟悉的知识类比探究本课新知识。

[活动2]创设情境探究新知。

问题。

1.课本p94问题.

3.结合预习题1,完成课本p94观察中的题目。

师生行为:教师提出问题1,给学生独立思考的时间,教师可适当引导,对学生的解题思路和格式进行梳理和规范;问题2学生独立思考指名回答,注重数形结合思想的渗透;问题3是由学生分组探究的,这个问题的探究稍有难度,活动中教师要深入到各个小组中进行点拨,引导学生总结归纳出正确结论。

教师重点关注:

1.学生能否把实际问题准确地转化为数学问题;。

2.学生在思考问题时能否注重数形结合思想的应用;。

3.学生在探究问题的过程中,能否经历独立思考、认真倾听、获得信息、梳理归纳的过程,使解决问题的方法更准确。

设计意图:由现实中的实际问题入手给学生创设熟悉的问题情境,促使学生能积极地参与到数学活动中去,体会二次函数与实际问题的关系;学生通过小组合作分析、交流,探求二次函数与一元二次方程的关系,培养学生的合作精神,积累学习经验。

[活动3]例题学习巩固提高。

问题。

例利用函数图象求方程x2-2x-2=0的实数根(精确到0.1).

师生行为:教师提出问题,引导学生根据预习题2独立完成,师生互相订正。

教师关注:(1)学生在解题过程中格式是否规范;(2)学生所画图象是否准确,估算方法是否得当。

设计意图:通过预习题2的铺垫,同学们已经从旧知识中寻找到新知识的生长点,很容易明确例题的解题思路和方法,这样既降低难点且突出重点。

[活动4]练习反馈巩固新知。

【本文地址:http://www.xuefen.com.cn/zuowen/15567620.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档