笔算两位数乘两位数教学设计(专业14篇)

格式:DOC 上传日期:2023-11-27 07:38:11
笔算两位数乘两位数教学设计(专业14篇)
时间:2023-11-27 07:38:11     小编:灵魂曲

承载着丰富知识和文化的语文学科,在我们的学习和成长中起着重要的作用。充分了解总结的要求和目标,才能写出一个较为完美的总结。感谢小编为我们精心搜集整理的这些总结范文,让我们一起来欣赏吧。

笔算两位数乘两位数教学设计篇一

《两位数减两位数(退位)的笔算》这节课是在学生已经掌握了两位数减一位数退位减法的口算,以及两位数减两位数不退位减法和两位数加两位数加法笔算(包括不进位和进位)的基础上进行教学的。学生对于方法、过程已经有了一定的经验。

为了突破难点,我在讲授新知识前充分复习了旧知识,出示了一些十几减几的口算,学生直接抢答,从而从认知上、思维上让学生做好准备。在新知识的传授中,当学生自主得出算式“72-56=”后,继续向学生提出质疑“我们上节课学习的不退位减法个位上6减2是够减的,可今天这道题个位上2减6不够减,怎么办?”在教学时我主要采用让学生合作探究的形式学习新知,并且通过学具的操作与演示,对重点和难点进行层层突破。整节课课堂气氛活跃。我认为我们教师要把学习的主动权交给学生,让他们借助已有的知识经验自己去探索,去发现解决问题的方法。教学中我重视了学生参与学习的过程,“学生是数学学习的主人”,我相信学生,承认学生在教学活动中的主体地位。“72-56”该怎样计算,让学生通过独立思考、实践操作去发现方法。在合作、交流、汇报自己的方法中让学生的思维发生碰撞,达到互相启发、共同进步的目的.。列竖式计算学生也出现了不同的思路,我再次放手让学生独立计算、比较、发现,整个教学过程都突出了学生经历、参与、探讨的过程。

出现的问题:

(1)个别学生相同数位对不齐。这几个学生要进行单独辅导,让他们认清数位,知道数位上的数表示的意义。

果多了十。在教学中还要多做强调与规范。

笔算两位数乘两位数教学设计篇二

数学教学必须建立在学生的认知发展水平和已有的知识经验基础之上,有了一定的学习基础,此类题大多学生都会算。所以我要把主动权交还给学生,让他们借助已有的知识经验自己去探究,去发现解决问题的方法。

我为学生设计了一个情景:星期天,老师去新华书店挑了三本书:《十万个为什么》每本48元、《安徒生童话》每本35元、《格林童话》每本23元。你能提出用减法计算的数学问题吗?我直接把学生引向本节的学习内容,当然我也把“问题权”交给了学生,让学生自己提出问题,自己解决问题,这样大大提高了学生的学习积极性。在解决问题过程中体现解题多样化,口算、摆小棒、笔算均可。算法多样化是问题解决策略多样化的一种重要思想,它是培养学生创新意识的基础。就计算教学而言,提倡并鼓励算法多样化,不仅纠正了“计算方法单一,过于注重计算技能”的教学方法,主要是鼓励了学生进行个性化的学习。然后大家集体交流各自方法,从而也引出了笔算减法,通过学生自己讲解、互相质问、教师引导到改正展示,都是那么水到渠成,学生不仅学会了笔算两位数减两位数的方法,分析问题、解决问题的能力也得到了提高,一举两得。

这一节课也让我深深体会到:作为一名老师要有足够的耐心,要把机会留给每一个学生,让每一个学生都发展、提高、创造的机会,让他们都体验到成功的快乐,学习数学的快乐!

笔算两位数乘两位数教学设计篇三

1、根据三位数乘一位数、两位数乘两位数的笔算方法,推出并掌握三位数乘两位数的笔算方法,能正确进行计算。

2、通过旧知到新知的迁移,感受数学知识和方法的内在联系,培养迁移类推能力和解决简单实际问题的能力。

3、在主动参与学习活动的过程中,进一步体验学习成功的快乐,激发探索计算方法。

一、复习引入。

笔算:回忆一二年级的加法和乘法,看视频,如果王爸爸把鱼卖到每斤12元,28斤鱼的,能卖到500元吗?[设计意图:本节新知是建立在学生已有的多位数乘一位数的笔算和两位数乘两位数的笔算方法等旧知的基础之上,唤起学生的旧知可有效迁移到新知的探究中。在课一开始就创设了学生非常熟悉并且喜欢的“爸爸去哪儿”的卖鱼片段,立刻就吸引了孩子们的眼球,他们学习兴趣特别高,老师趁机出示问题,紧紧抓住学生的注意力。

二、探究新知。

如果每人有499元,他们剧组有23人,一共会有多少钱呢?引出三位数乘两位数。

(2)学生进行估算,并说出自己的想法。

(3)笔算。

学生尝试,师巡视挑选有代表性的做法之后全班交流。

[教后反思:正如事先预设的一样,学生模仿之前的笔算方法较轻松地完成了。提问:

1、497是几个人的钱,20个499元是多少钱,最后23个人的钱是多少,学生都很容易答出来了,只是朱逢行别出心裁用了这样一种方法:

他解释道:每人500元,23人有500乘23元,最后再减去一个23元,就是所有人的钱。

学生的思维有时很独特,不得不令人佩服。]。

两大组以比赛的形式进行,师挑选典型做法全班交流。

三、课堂总结。

师:通过讨论归纳,利用两位数乘两位数的算理,学生推出三位数乘两位数的计算方法。

四、延伸练习。

笔算两位数乘两位数教学设计篇四

1、出示一幅订牛奶的情景图。(一份牛奶每月28元,订5个月要花多少钱?)。

指导学生从图中获知数学信息及所求问题,提问:你打算怎样列式解答呢?解决这个问题需要用到以前学习的什么知识呢?(28×5;前面学过的两位数乘一位数笔算的知识)。

教师请一位同学在黑板上写出笔算过程,同时请其他同学口算:13×20;12×40;30×21;lo×l5;28×10。师:这些都是前面刚学过的乘法口算,说说你的口算过程。(两位数乘整十数的口算……)。

引导学生一起检查黑板上写出的28×5的笔算过程。提问:通过28×5的笔算,我们可以求得订5个月牛奶要花的钱。刚才口算"28×10"可以解决这里怎样的问题呢?(订10个月牛奶要花的钱)。

出示:订一年这样的牛奶要花多少钱?根据学生回答,教师板书:28×12。再提问:与前面学过的两位数乘一位数、两位数乘整十数相比,这是一道怎样的算式呢?(两位数乘两位数)。

教师板书课题,并明确今天的学习内容。

二、展开探索,算法多样。

1、估算28×12的积大约是多少呢?(把28看作30,12看作10,28×12的积大约是300)。

2、启发谈话:28x12的精确答案是多少呢?这是个新的问题,小朋友,开动脑筋能否用以前学过的知识得出28×12的结果呢?请试着在纸上算一算!如果独立计算有困难,可以先自学课本30页中的算法,再独立进行计算。

3、学生在小组内展开交流,说说各自的计算方法。

4、全班集体分享,教师将其写在黑板上,并让学生分别说出思路。

三、深化研究,优化算法。

1、回顾:我们还没有学习28×12的计算方法,同学们就能用这么丰富的计算方法得出结果,真了不起!老师想知道,你们是借助以前学过的哪些知识来解决的呢?(第1种方法借助两位数乘一位数、两位数乘整十数以及笔算加法的知识;第2、3两种方法借鉴了两位数乘一位数的竖式计算;4、5两种方法都是运用的两位数乘一位数的知识。)。

2、赏析:在这些算法中,你比较欣赏哪一种算法?(我喜欢第一种方法,因为它容易理解;我喜欢竖式计算,因为它比较清楚简捷;我认为四、五两种方法不仅容易理解,而且只用两步就可以算得最后的结果……)。

3、讨论:如果要计算29×13你会选择怎样的计算方法呢?(同桌讨论,全班交流)提问:为什么没有同学选择像黑板上(4)、(5)两种方法来计算呢?(4)、(5)两种方法有局限性,乘数13不能像1那样拆。

4、比较:方法(2)、(3)都是用的竖式计算,你发现它们有什么异同呢?(这两个竖式只是十位上的“1”去乘28,所得的积写法不同,其它都一样)提问:你是怎样理解这两种不同写法的呢?(方法(2)与以前学习的笔算一样,用乘法口诀”一八得八”、“一二得二”记录每步乘得的积;方法(3)乘数12十位上的“1”表示10,28×10口算得280)思考:在方法(2)中,乘数十位上的“1”乘得的积“28”与第一次乘得的积“56”相比,写的位置靠前一位了,你是怎样理解的呢?(这里的“28”表示28个十)试想:如果乘数十位不是“1”,而是数字较大的“9”时,你觉得运用哪种写法比较好呢?(口算的方法有些困难,运用乘法口诀记录每步乘积比较容易)观察方法(1)、(2)之间的联系,教师根据学生的口答进行连线。

5、小结:方法(2)是将方法(1)分步计算的过程用竖式的形式表示出来,当我们理解之后,采用方法(2)的写法不仅使计算过程清晰,而且还便于检查。所以小学阶段我们进行笔算的基本算法是竖式计算,随着学习的不断深入,它的优势将会更明显。(完善课题,添上“笔算”)同桌小朋友相互说一说怎样用竖式计算"28×12”,在计算过程中要注意些什么?(用乘数十位上的数去乘,乘得的积的末尾要和十位对齐)。

6、练习:出示课本第31页“想想做做”第一题,学生独立练习后,全班进行交流。

四、发现规律,学会检验。

1、教师在黑板上出示12×28的竖式,与刚才28×12的竖式比较异同。(都是两位数乘两位数,只是乘数的位置交换了)提问:它们的计算结果会怎样呢?学生带着猜想补充完整课本31页“试一试”的计算并观察验证。启发:运用这一规律可以对两位数乘两位数进行验算。

2、课本“想想做做”第二题。

五、熟练运用,拓展提高。

1、完成课本“想想做做”第三题,学生纠错后在全班集体交流。

2、学生独立完成课本“想想做做”第四题,教师巡视指导。

3、完成课本“想想做做”第五题。启发谈话:学以致用不仅能巩固我们学习的知识,还能提高我们运用知识解决问题的能力。看到了这样的生活情景你能提出什么问题?学生利用今天学习的知识进行解答。

4、提问:你能利用今天学习的知识,计算语文课本上你喜欢的一篇课文大概的字数吗?(数一数课文每行有多少字,大约有多少行,利用今天学习的两位数乘两位数的知识算一算就可以知道了)学生试着练习。

六、交流体会,分享收获。

启发谈话:通过这节课的学习,相信你有很多学习的体会和收获,与同学们一起分享吧!

笔算两位数乘两位数教学设计篇五

除数是一位数的除法是本册教材重点也是难点教学内容之一,这部分内容是学生学习除数是两位数、除数是多位数除法的重要基础。本节课是笔算这一内容的起始课,是在学生已经掌握了用乘法口诀求商的方法、学会了除法算式的写法及学习了口算除法的基础上进行教学的。本节课的教学重点是探索一位数除两位数的笔算方法,掌握竖式的书写方法和格式;难点是理解一位数除两位数的笔算除法的算理。

我从学生的生活经验和已有知识出发,精心创设情境,引导学生开展尝试、操作、交流、实践。基于学生是数学学习的主人这一教学观念,我从学生的认知发展水平和已有的知识经验出发,组织探究笔算方法的活动。

先以解决三年级平均每班种多少棵?为例,请学生运用已有的知识、技能,探索422怎样算。在学生独立探索后,交流自己的方法。有的学生通过分小棒,知道结果;有的学生口算出422=21;还有的学生在运用口算方法的同时,写出竖式表示计算结果。交流活动展示了学生探索的成果,也显示出学生对笔算方法的不了解。因此,我提出:今天我们重点研究笔算除法明确学习内容。通过课件再现分小棒的过程,并以师生对话教师板书的方式,共同经历笔算的过程,帮助学生了解笔算除法的顺序、求商的方法和商的书写位置。

接着,请学生解决四年级平均每班种多少棵?的问题,进一步探索笔算除法。在这里,先让学生用竖式计算522,并告诉学生:可以先用小棒分一分,再写竖式。我们看到,有的学生动手分小棒,有的学生直接写竖式,每个学生都在认真探索。1分钟过去了,我请写完的同学和同桌说一说,是怎样算的;2分钟过去了,请学生向全班展示,师生分享着成功的喜悦。展示后,课件动态显示分小棒和笔算522的过程,并在黑板上再现除法竖式,理顺思路,提升了学生对除法笔算过程和算理的理解。然后,老师特意请学生回忆比较422与522的笔算过程有什么不同?通过比较,突出522的第二个计算过程,即被除数十位上余下的数与个位上整节课,从植树节、植树活动开始,到布置学校的设计活动,围绕着学生的学习展开了一系列活动。学生经历了探索,运用除法笔算方法的全过程,主动构建知识。学生学的快乐、主动,达到了预期的教学目的。的数合并,再继续除,使学生进一步认识除法的笔算方法。

笔算两位数乘两位数教学设计篇六

本节课的主要教学内容是两位数减两位数的退位减法的第一课时,其重点难点就是让学生理解,当个位不够减时,从十位退1当作十。为了突破这一重难点,我让学生通过摆小棒和小组内的合作交流来理解其意义。

《数学课程标准》指出,数学教学必须建立在学生的认知发展水平和已有的知识经验基础之上,有了一定的学习基础,此类题大多学生都会算。所以我们要把主动权交给学生,让他们借助已有的知识经验自己去探究,去发现解决问题的方法。作为教师不要去为学生设计“过渡题”“样板题”,这样容易把学生带入教师预设的方法中。应该放手让学生自己去比较,分析,选择适合自己的计算方法,或心服口服的认同书本上相对较好的方法。

此外,我们还需要为学生创设出一个宽松民主的学习气氛,留给学生主动提问、主动分析、畅所欲言的空间。鼓励学生多想、多说、多发言。

在这节课中,我也发现了许多自己在教学方面的不足之处。对于课堂生成资源运用的不灵活。当学生提出不一样的想法时,不能很好的顺着学生的问题引入到新课中。学生小组合作交流不熟练,动手能力还有待提高。在摆小棒过程中,有极个别小组出现了用小棒摆出数字造型的现象。这些都是我在日后的教学活动中需要改进之处。

笔算两位数乘两位数教学设计篇七

三位数乘两位数笔算的基本方法,是在学生掌握了三位数乘一位数、两位数乘两位数笔算方法的基础上安排的。这样安排进一步完善和提升整数乘法的笔算能力,为以后进步学习乘法计算打好基础。

教学时先复习已有知识,三位数乘一位数,帮助学生知识复苏,引导学生进行知识迁移。出示三位数乘两位数的横式,从口算、估算、计算三方面让孩子算出得数。我认为竖式是乘法的一种计算方法,对其他方法也不可忽视。在估算时,基本上所有的估算方法都出现了。我设计的问题“说出准确值的范围”难度相当大,目的是可以帮助验算准确值,还能培养学生的抽象思维。

让孩子探究算出准确值的方法,孩子想出的方法出乎我和听课老师的意料,有的方法和估算相结合,有的用了拆分法,口算法,笔算法……,让大家体会到了算法多样性。当然我们这节课的重点还是笔算过程,说出先算……,再算……,通过交流,帮助学生明确三位数乘两位数笔算的基本方法。在45×123计算时不妨列123×45的竖式,对计算技巧进行了指导。但是因时间关系,只做了小结没有进行巩固练习,就直接当堂检测了,导致成绩不是很理想。在学生的作业中,反映出许多的问题。主要是计算能力不过关,还有第一课时,学生还没掌握内化为自己的技能等原因。在今后要加强训练强度,使之形成技能,达到熟练掌握的程度。

从小组合作来说,我认为小组交流的形式还是比较单一,此课没有发挥出小组合作的优势。学生在怎么合作和交流方式、关注弱势群体方面还有改进的空间,在今后的课堂教学还要继续探索。

将本文的word文档下载到电脑,方便收藏和打印。

笔算两位数乘两位数教学设计篇八

一、教学内容:

二、教材分析:

本内容在教科书的第85页的例4。例4是除数是两位数、商是一位数除法的最后一个例题。除数是两位数的除法,当除数十位上的数较少,个位上又不接近整十数,如14、15、16、24、25、26等数。如果用“四舍五入”的方法把除数看作整十数来试商,往往需要多次调商。因此,通过例4的教学,要让学生学会灵活的试商方法,能根据具体情况采用不同的方法来试商。更进一步提高学生在试商、调商过程中的熟练程度。

三、目标导航。

1、知识与技能:通过解决实际问题,能根据具体情况,灵活地进行试商,掌握除数不接近整十数的两位数除法笔算。

2、数学思考:能探索出解决问题的有效方法、并鼓励学生寻找其他方法。

3、解决问题:能合理利用现实生活中有关的数字信息,会用两位数除法解决现实世界中的简单问题。

4、情感与态度:通过解决实际问题进一步培养学生的数感,增进学生对运算意义的理解。

四、重难点分析:

教学重点:提高学生试商、调商的熟练程度。

教学难点:教会学生在用“四舍五入”法进行试商时更快更灵活地试商和调商。

教学关键:利用榜样激励作用调动学生解决问题探索问题的积极性。

五、学法点拨:

在课堂教学中,教师要结合学生学习的`知识,采用轻松、活泼的形式引出知识。听故事一向是学生喜闻乐见的形式,因此,本节课教师以故事引入新课,利用故事人物的榜样作用,激发学生学习积极性。把计算教学置入现实情境之中,把探讨计算方法的活动与解决实际问题融于一体,促使学生积极主动地参与学习活动。注重培养学生灵活的计算能力,发展学生的数感。

(一)复习准备,铺垫新知。

口算:25×215×535×715×645×325×5。

55×335×425×645×465×245×5。

(二)故事引入游戏先行。

1、教师为学生讲述《韩信点兵》的数学故事。

2、激发学生学习的兴趣。

同学们,听了《韩信点兵》的故事,你佩服韩信的智慧吗?作为一名优秀的军事将领必须具有丰富的知识,要上知天文,下知地理,还要精通数学。在古代,将军指挥作战时很重要的一项工作就是将士兵“列阵”。比如说把100名士兵,列成“方阵”。方阵的每一面都是十个士兵。这样不管敌人从东南西北哪个方向对这个“方阵”进攻,都会遭到十个士兵的抵抗。

那今天,你想不想像韩信将军一样来“排兵布阵”一番呢?(想)机会来了!

3、“小试牛刀”。

学校里很快就要进行广播操比赛了,老师决定把这个比赛排队的任务交给大家来完成,你们行不行?(当然行)要赢得老师的信任,你们得先拿出点真本事来给老师看看。

(1)8个人怎样排队?

如果你们8个人参加广播操比赛,你们准备怎样排队?

(2)如果是全班参加广播操比赛,你们准备怎样排队?

(三)排队布阵游戏导学。

1、提出排队的问题。

学生提出可以用除法算式来解决。

教师可以根据学生的回答,板书算式:140÷26=。

2、估算。140÷26≈150÷30=5。

3、尝试练习,讨论方法。

谁能试着计算这道除法题?学生在自己的本子上计算,然后把学生做题时出现的各种情况写在黑板上。

学生可能出现以下几种算法:

笔算两位数乘两位数教学设计篇九

一、教学目标:

1.知识与技能目标:

(2)、通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。

2.过程与方法目标:学生通过观察、猜想、验证、得出结论、提出质疑、完善结论,上孩子们经历一个完整的过程,体验到探究的乐趣,感受数学的魅力。

3.情感态度和价值观目标:学生在自主探究解决问题的过程中,体验成功的喜悦或失败的教训,体会数学在日常生活中的应用价值。

二、教学重难点。

教学重点:让孩子们学会观察、学会思考、敢于质疑,培养探究意识。

教学难点:通过引导,得出十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等,并理解掌握此结论。

三、教学方法。

启发诱导法、讲授法、探究法。

四、学习方法。

练习法、探究法、小组交流法、观察法。

五、教学过程:

(一)引入新课。

师:同学们,今天的数学课,我们先从画画开始!

(老师在黑板上画出对称图形的一半)。

师:如果老师画的是整个图形的一半,谁愿意帮老师画出图形的另一半?

(让学生补充完整)。

师:同学们,这位同学画的对吗?是的,图形当中有这样的对称现象!其实,在我们的语言当中也有这样的对称现象。

(老师点击屏幕,出现——好人)。

师:大家想象着:如果在好人的后面也存在着那么一条对称轴的话,根据读音对称应该是:(大家一块说)人好。(点击第二个)我爱你——你爱我蓝天——天蓝,喜欢我——我欢喜,老师希望我们整节课都欢欢喜喜!好,上课!

(二)新课教学。

学生猜想:每组两对称算式的乘积是否相等?(老师复述)如果让你去研究,你就会研究它们的积是不是一样的,对不对?哦,我觉得这是个有价值的问题,我们可以去研究!

哎,我想问一问同学们,你们学过估算吗?对于这位同学提出的问题,我们可以先用估算来试试看!

生1:第一组算式,可以把21看作20,36×20=720;把63看作60,12×60=720,两道算式的得数相等。

生2:如果把21看作20、36看作40,20×40=800;把63看作60、12看作10,60×10=600,两道算式的得数不相等。

生3:我想把每个数都往小了估:如果把21看作20、36看作30,20×30=600;把63看作60、12看作10,60×10=600,两道算式的得数相等。

生:笔算。

那同学们还等什么,拿出你手中的笔和纸,选择其中的一组,算一算,好吗?(学生练习)算好的。可以坐直,心里已经有结论的,我们先把笑藏在心里。

看到同学们都算的这样认真,我心里非常感动,同学们,我们只有准确的计算,才能得到正确的结论。

(学生交流计算结果)那通过我们的计算,你们能得出什么结论?

(如果孩子们得不出结论,让提出猜想的孩子复述他的猜想)。

(学生得出结论)对称算式的乘积是相等的!(电脑呈现结论):

(老师反问)同学们现在都相信这个结论吗?相信吗?我再问一问,有没有人怀疑这个结论的?要不,老师再写一个试一试,好不好?(老师又写了一个算式62×39),孩子们写出了对称算式,并通过计算,得出结论依然正确。

老师:现在还有没有怀疑的?看来同学们对这个结论已经深信不疑了。像刚才那样通过几个例子得出结论的方法叫做“不完全归纳法。”

故事是这样的:有一个主人买回了一只公鸡,第一天,主人给公鸡为了一把大米,第二天,主人仍然给公鸡为了一把大米,到了第三天,主人依旧给公鸡为一把大米,主人每天都给公鸡一把大米,连续给了九十九天,公鸡每天都会从主人那儿得到一把大米,此时,公鸡想:我每天都会从主人那儿得到一把大米,可是结果却不在美丽,到了第一百天,家里来了客人,公鸡没有再得到那把大米,而是被主人杀了。

好了,同学们,公鸡通过九十九天的得到的结论居然是错误的,是的,不完全归纳法,有时能得到正确的结论,而有时得到的结论却是错误的,后来人们把不完全归纳法得到错误结论的那一种情况戏称为“公鸡归纳法”。

师:好了,现在我想问一问大家:你们对这个结论还深信不疑的请坐直,有怀疑的请举手?

(大部分孩子都举手)怎么现在个个都怀疑了?为什么都怀疑了?如果你怀疑了,请说出你的理由!

(一个孩子举例说明14×16不等于61×41)。

师:同学们,某某某不仅提出了质疑,而且他还在举例子,如果他举得例子是特殊的。你们试一试,看能不能找到一个反例!(同学们拿出笔试着举例)同学们,你们找到反例了吗?其实。我们只要找到一个反例,是不是就可以推翻刚才的结论,哎呀,我看到同学们兴奋地眼神了,如果你真找到反例了,你可以先和你的同桌交流交流了!我看到每个人都在交流,我让几个同学来和大家分享一下!

提问:(一个孩子举例)46×61不等于16×64。

我看到已经有同学举起了智慧的手!

(小组之间进行讨论)我发现一些同学已经有想法了,难道老师写的算式里真有一些秘密呀?(学生交流发现的秘密)这位同学说:老师写的算式都符合十位上的数乘十位上的数等于个位上的数乘个位上的数,真的是这样吗?(老师同学一块验证)。

师:那大家既然已经发现了这个秘密,那你们觉得我们这个结论该怎么改才能完善?(学生补充,老师总结)。

得出结论:十位乘积等于个位乘积的两位数乘两位数的对称算式的乘积相等。

师:现在大家对于这个结论,你们怀疑吗?如果还有怀疑,怎么办?大家商量商量,再举例验证。

……。

好了,同学们,思考是美丽的,看到同学们都能认真的思考。我很欣慰!我想,同学们心里可能都在想:这个结论到底正确与否?为什么会是这样?在乘法中怎么会有这么有趣的现象?在除法中、加法中、减法中是不是也有一些有趣的现象等待我们去发现?还有多少问题等待我们去探索、去研究,希望同学们在以后的数学学习中,都能带着这种精神,真正走进我们的数学世界!

笔算两位数乘两位数教学设计篇十

1、理解和掌握两位数与两位数相乘的计算方法,并能正确地进行计算。

3、根据具体题目情景,合理选择解题策略。

经历自主探索、合作交流两位数与两位数相乘的计算过程,体验算法多样化,培养学生的算法思维,提高数学交流能力,逐步养成自觉选择合理算法,发展计算的灵活性。

情感态度与价值观:

调动学生学习的积极性,激发学生学习兴趣,养成自主探索的学习习惯;通过估算,培养学生良好的计算习惯。

自主探究出多种两位数乘两位数的计算方法,并能正确地进行计算。

通过让学生亲身经历两位数乘两位数的计算过程,培养他们的算法思维。

一、情景导入,激发学生学习兴趣。

师:小朋友还记得小动物们在谁跑得快比赛中,谁获得了冠军?今天小牛要主持一场动物团体操比赛。

瞧!小刺猬上场了!每行12只,排了14行,共有多少只小刺猬参加团体操比赛?

二、自主探究。

(一)、探究算法。

1、列式:14×12=。

2、14×12等于多少呢?

(1)学生独立尝试,教师巡视,及时捕捉学生生成性资源,对有困难学生进行指导。

(3)对有意见或有疑惑的算法展开讨论与质疑,在讨论与质疑中引出课题,引出估算,引出范围。

(4)将上述方法进行整理归类(小组讨论)。

(5)同桌说说自己认为那种方法比较方便,最喜欢哪种方法?为什么?

(二)、体会算法;体验不同的题,最优的方法也不同。

交流:你的同桌是怎么算的?(指他的同桌)他又是怎么算的?

师:看来小朋友不但会用自己喜欢的方法来算,而且还能从别人那里学到不一样的方法,很会学习。

2、制造矛盾冲突,引发思考:是不是对每题都能用你觉得喜欢的方法来计算呢?

3、学生自己例举判断(如不行,教师出题:17×29)。

(1)、学生独立计算17×29。

(2)、不同的题,有不同的好方法。

(3)、小结:先要观察题目数字的特点,根据题目数字的特点选择计算起来比较快的好方法。

4、出示25×24。

(1)思考:观察题目数字的特点,对这题你会选择那种方法呢?

(2)计时赛一赛,选前10名,统计不同算法名次。

(3)思考:这是巧合么?是这些同学写字速度快,还是……?

(三)、练习47×7325×3285×16。

三、整理归纳,探究规律。

2、制造矛盾冲突,引发理性思考。

师:两位数与两位数相乘的积一定是三位数或四位数吗?肯定吗?

3、学生展开争论。

4、获得结论。

5、99×99怎样计算会更方便?

四、课堂总结。

笔算两位数乘两位数教学设计篇十一

18×26=15×21≈39×60≈16×42=。

师:能将上面的计算题按一定的规律重新分类吗?

生:(教师依据学生的回答板书,若与教师思路发生冲突可逐步引导)。

课件显示:(按一定的先后顺序出现)。

口算估算笔算。

40×60=39×60≈18×26=。

15×20=15×21≈16×42=。

700×50=19×52≈。

口算估算。

解决问题。

二,重点复习,强化提高。

不同的题目有不同的解决方法,我们先来算一下第一组的题目要用什么方法呢?

1、口算的判断及方法的梳理。

2、(1)学生独立计算,开火车交流,选二题说说算理。

(2)师:说说这类题目的特点生:他们的末位都是零,是整十、整百数乘整十数。

师:能说说你算这种题目的思路吗?

生:用0前面的数去相乘,再在乘得的数的末尾。

添写0,两个因数末尾共有几个0,就在得数末尾添几个0。

师:什么样的计算题用口算?怎么口算的?

生:比较简单的计算,也即数字是整十整百的计算。

3、估算的判断及方法的梳理。

(1)学生独立计算。

师:那38和19离39和21也很近啊?生:它们虽说也很近但数字计算起来不方便。

师:那也就是说我们在估算时所看作的数字既要比较接近原数也要计算起来比较简便,最好是看作整十整百的数。

师:那你是怎么知道这组题要用估算来计算的?生:因为它是约等于。

师:(归纳)题目对结果的要求不是很精确的情况下我们用估算就可以了,估算应遵循简单好算、离准确值近的原则。

3.笔算方法的回顾。

(1)指名2位同学上台板演,其他学生做在练习本上。

(2)展示计算结果,同时说说笔算两位数乘两位数要注意什么?

正确处理进位问题。

(4)像这样比较难算得要用笔算。

4.解决问题。

三(2)班去春游,每人交12元钱,如果全班53人参加,。

共收到:。

面值/元502010521。

张数/张21215241814。

(1)学生独立思考,再把你的想法跟小组里人员交流。

(2)组长汇报交流结果。

三,自主检评,完善提高。

1、口算。

70×30=90×30=20×60=80×40=80×80=。

50×70=15×20=400×20=23×20=。

2、估算19×29≈12×41≈11×89≈99×91≈39×33≈45×29≈。

3、笔算:

16×42=18×65=31×32=27×34=。

4、比较大小。

12×13○21×13。

15×24○24×15。

61×35○35×62。

54×12○540。

21×43○20×43+43。

(1)同桌讨论后,把答案写在答题纸上。

(2)21×4320×43+43提示学生从乘法的意义来思考。

师:这题如何思考?

生:先求出31辆大客车能坐多少人?然后与1200比较大小。

师:很好,那么用什么方法来计算31乘42呢?

小组交流。反馈:

生甲:用笔算最好了,只有算出准确值与1200比较大小才能知道是否坐得下。

生乙:不必要那样做,用估算更快。

生丙:估算的不是准确得数怎么能知道是否坐得下呢?

生乙:因为31看作30,42看作40,估算得1200,得出的得数肯定比准确的得数小,看小了之后都有1200,人数也是1200,所以能坐下,用估算也可以。

师小结:说的真好,题目也没有一定要求我们算出准确值,而我们用估算也能更好更快的解决问题,当然可以用估算了。

四、拓展练习思考题。

三(2)班去春游,每人交12元钱,如果全班53人参加,共收到:。

面值/元502010521。

张数/张21215241814。

请你们帮他们算一算,他们交上来的钱对吗?

(1)学生独立思考,再把你的想法跟小组里人员交流。

(2)组长汇报交流结果。

五、总结并揭题。

这节课我们复习了两位数乘两位数的口算、估算、笔算(板书课题),并用这些知识解决了一些生活中的问题。

笔算两位数乘两位数教学设计篇十二

课前构思:

这部分内容是在万以内数的认识以及100以内的加减法的基础上教学的,起着承上启下的作用。口算两位数加减两位数是100以内口算的延续,是在100以内口算和笔算的基础上教学的。这部分内容不仅在实际中应用广泛,而且是以后学习笔算的基础,必须切实学好。教材以“二年级四个班的同学准备去鸟岛乘船”为素材引导学生在现实在情境中提出问题、探究算法,在多种口算方法中选择适合自己的方法正确地进行口算。我班学生对“整十数加减整十数”、“两位数加一位数和整十数”、“两位数减一位数和整十数”的口算掌握得较好,90%的学生能正确、快速地口算,所以我认为这部分知识的学习对他们来说不是一个难题,能通过自已的努力自主探究口算的方法,即使最差的学生也会用想竖式的方法来进行口算。为此我设想采用“创设情境,提出问题——自主探究交流完善——多项训练巩固提高”的程序开展教学。通过教学不仅使学生掌握两位数加两位的口算方法,能正确地口算,培养学生在具体的情境中提出问题的能力、在交流中培养学生的表达能力,并且使学生体验运用“迁移、转化”的方法来解决新问题的数学学习方法。教学目标:

1、知识与能力:使学生在经历两位数加两位数口算方法的探索和交流过程中,掌握其口算方法,并在解决问题过程中,体验数学与生活实际的密切联系,进一步发展解决问题的策略。

2、过程与方法:在复习两位数加一位数,整十数加整十数口算的基础上,经历探索,交流两位数加两位数的口算方法过程。教学方法:合作式学习、探索式学习、小组活动式学习。

2、难点:理解两位数加两位数的算理,进一步强化计算方法,逐步提高计算能力。

一、游戏导入。

(一)猜歌名。

大屏幕上有4组题目,每组有2个算式,只要你回答对了,后面就会有一段音乐,这4组算式都回答出来,并且猜出是什么歌曲,闯关就成功了!成功了会有惊喜哦!

这是什么歌?(郊游)。

(二)说数的组成1.()个十和()个一组成45.2.31由()个十和()个一组成。

二、探索新知。

(一)创设情境,揭示课题。

同学们成功闯关,那这节课老师就要带同学们去郊游了,在郊游之前,我们要来说一说,出去郊游的时候要注意些什么呢?(生自由发言)。

我们要去什么地方郊游啊?二年级这么多人怎么去呢?

嗯,鸟岛在湖中央,所以我们要坐船去,而且老师已经把船都租来了。每条船限乘68人,我租来两条船,怎样乘船比较合理呢?(两个班级合乘一条船)你想让哪两个班合乘一条船?(讨论后设计以下三种方案)。

(1)23+31。

(2)23+32。

(3)23+39。

32+39。

31+39。

要想知道哪种方案最合理,就必须算出每种情况下的乘船总人数,如果总人数接近或等于68人,才能既舒服又省钱得到达目的地。

(二)教学不进位加现在让我妈一起来验证吧!

我们先来看第一种方案:23+31怎样计算?自己先想一想,然后和你的同桌讨论一下,说一说你是怎么算的。(1、相同数位相加的方法。

2、先加整十数,再加一位数的方法。(既把一个数拆为整十数和一位数,再和另一个数分别相加。由于计算顺序不同,所以有以下4种算法。))。

23+31=54,二(1)班和二(2)班可以合乘一条船。

(三)教学进位加。

那我们再来看看二(3)班和二(4)班可不可以合乘一条船呢?

32+39怎么计算?((1、相同数位相加的方法。

2、先加整十数,再加一位数的方法。

3、凑整十数的方法。)。

(四)小结计算方法。

(五)分组验证。

下面请同学们用你们学到的方法计算方案二和方案三的算式。请第一组验证方案二,第二组验证方案三。

指名学生汇报:哪两个班可以合乘一条船。

1、23+31红灯。

2、23+32。

红灯。

3、23+39绿灯。

32+39。

31+39。

31+32。

三、应用与拓展。

(一)乘船问题解决了,快让我们排队上船。船开起来了!

我们一路欢歌笑语,很快来到闻名中外的鸟岛。鸟儿们正列队欢迎我们呢!

快向他们问好吧!

导游告诉我们,在湖中有28种鸟,在湖面的岛上有65种鸟,我想知道一共有多少种鸟呢?(用前面学过的口算方法试一试)。

(二)在我们前面飞来了6只小鸟,它们说:“亲爱的小朋友们,我们迷路了,你们能送我们回家吗?”

17+5836+3227+5451+2439+2933+42。

(三)把小鸟们送回了家,一转眼,我们回家的时间到了。今天你们玩得开心吗?

(四)通过今天的学习,你学会了什么?

学生在已有一位数加一位数、整十数加整十数、两位数加一位数的口算基础,口算两位数加两位数口算对学生而言并不难,本节课的重点就是意在创设情境在激发学生兴趣的基础上,让学生通过自主探究、合作学习,明确算法的多样性,并能通过比较得出最佳的方法,在多种形式的练习中进行巩固,达到能够准确而熟练地进行计算。

在情境创设方面,我始终以学生最感兴趣的旅游为切入点,从出发到结束把数学知识始终贯穿于始终。而数学最注重的说算理,所以在教学中我始终把说理放在首位,让学生既知其然,更要知其所以然。同时我也极力做到把学习的主动权交给学生,让学生在自主探究、合作学习中学到新知。

不足之处,练习题设计还缺少点梯度,这是我今后对应注意改进的地方。

笔算两位数乘两位数教学设计篇十三

一、教材:

1、教学内容及简析:

本课的教学内容是两位数乘两位数的笔算,它是学生在已经掌握了两位数乘一位数和两位数乘整十数的口算的基础上进一步学习的,为后面学习乘数数位是更多位的笔算乘法垫定基础。这部分内容是学生计算方面学习的重要转折点。

2、教学目标:

知识目标:经历探索两位数乘两位数笔算方法的过程,会笔算两位数乘两位数,会用交换乘数位置的方法验算乘法。

能力目标:培养观察力、探究能力、抽象概括能力。

情感目标:获得成功的体验,树立学习的信心。

3、教学重点、难点:

难点:理解乘的顺序及第二部分积的书写方法。

二、教法、学法:

针对这样的教学目标、教学重难点,在教法上,我个人认为,在教学中应当突出学生的主体地位,通过启发、引导、设疑等教学手段及方法进行教学。

在学法指导上,让学生掌握观察、比较、发现、交流、合作等学习方法。

课本中以订牛奶为情境,我进行了改编,以学生献爱心活动为研究题材,贴合学生实际,通过四个环节进行教学:创设情境,激发兴趣;自主探索,研究算法;巩固强化,拓展延伸。

(一)创设情境,以旧引新。

在教学的导入环节,老师充分依据学生原有的知识和经验,从复习两位数乘一位数、两位数乘整十数,在此基础上,再引出两位数乘两位数。老师有意识提问:你想怎样学习新知识?让他们运用已有知识经验将难点转化,以旧知解决新问题,从而渗透数学学习的方法。

(二)自主探索,研究算法。

1、渗透估算意识。教学过程中先让学生估算,再尝试用笔算,这样使估算、笔算有机结合。

2、计算方法的多样化到优化。计算教学,内容比较枯燥乏味。为激发学生的求知欲望,老师通过充分创设问题情境,多种方式体会两位数乘两位数的计算方法。学生可能出现3种情况,情况一:28×6×2;情况二:28×4×3;情况三:28×10+28×2。让学生从不同的角度、运用不同的策略去思考、探索计算的方法,通过比较认识到笔算方法的重要性,从而一起探索竖式计算的方法。

3、注重沟通,理解算理。在师生共同交流中引导学生理解把两位数乘两位数的计算分成三个部分,前面两部分都可以看成是两位数乘一位数、整十数,但着重让学生明确第二次计算的书写,第三部分,将两次计算的结果相加。竖式计算的算理与学生前面的方法是一致的,教师要注重沟通,让学生更好地理解算理,掌握每一步计算的意义。

4、归纳总结。两位数乘两位数的计算方法的叙述对三年级学生来说,有点困难,要求学生根据对算理的理解用自己的话来讲就行了,教师简要的板书为学生提供思考方向。

5、验证结果,提高效率。在笔算中,验算是最好的验证方法。因此,让学生交换48和12的位置再乘一遍,然后引导学生观察:你发现了什么?总结出乘法的验算方法。

(三)有效练习,巩固延伸。

第一组安排的4题不同的练习,主要是让学生在理解的基础上从而进行独立的计算过程,第1题明确得数数字相同意义却是不同的,3、4两题的计算都有向前一位进位的问题,拓展了例题的教学。

第2题纠错题,让学生进一步理解每一步计算的意义。

第3题解决问题部分的设计,是为了增加数学计算的趣味性,让学生觉得数学学习与生活的紧密联系。

第4题是开放性练习,也是提高了计算难度,有基础练习、有提高性的进位练习,自己出题时还有可能两次相乘都有进位。

练习中的习题从不进位到进位,主要是基于这样的考虑,因为对于学生来说,顺序方法都是一样的,进位的问题也是在多位数乘一位数中学过了,对于学生来说,不是新问题,但会感觉有点困难。当然,计算要达到一定的正确率和熟练程度,必须要相当的练习量。

将本文的word文档下载到电脑,方便收藏和打印。

笔算两位数乘两位数教学设计篇十四

教学目标:

知识与技能:

1、理解和掌握两位数与两位数相乘的计算方法,并能正确地进行计算。

3、根据具体题目情景,合理选择解题策略。

过程与方法:

经历自主探索、合作交流两位数与两位数相乘的计算过程,体验算法多样化,培养学生的算法思维,提高数学交流能力,逐步养成自觉选择合理算法,发展计算的灵活性。

情感态度与价值观:

调动学生学习的积极性,激发学生学习兴趣,养成自主探索的学习习惯;通过估算,培养学生良好的计算习惯。

教学重点:

自主探究出多种两位数乘两位数的计算方法,并能正确地进行计算。

教学难点:

通过让学生亲身经历两位数乘两位数的计算过程,培养他们的算法思维。

教学过程:

一、情景导入,激发学生学习兴趣。

师:小朋友还记得小动物们在谁跑得快比赛中,谁获得了冠军?今天小牛要主持一场动物团体操比赛。

瞧!小刺猬上场了!每行12只,排了14行,共有多少只小刺猬参加团体操比赛?

二、自主探究。

(一)、探究算法。

1、列式:14×12=。

2、14×12等于多少呢?

(1)学生独立尝试,教师巡视,及时捕捉学生生成性资源,对有困难学生进行指导。

(3)对有意见或有疑惑的算法展开讨论与质疑,在讨论与质疑中引出课题,引出估算,引出范围。

(4)将上述方法进行整理归类(小组讨论)。

(5)同桌说说自己认为那种方法比较方便,最喜欢哪种方法?为什么?

(二)、体会算法;体验不同的题,最优的方法也不同。

交流:你的同桌是怎么算的?(指他的同桌)他又是怎么算的?

师:看来小朋友不但会用自己喜欢的方法来算,而且还能从别人那里学到不一样的方法,很会学习。

2、制造矛盾冲突,引发思考:是不是对每题都能用你觉得喜欢的方法来计算呢?

3、学生自己例举判断(如不行,教师出题:17×29)。

(1)、学生独立计算17×29。

(2)、不同的题,有不同的好方法。

(3)、小结:先要观察题目数字的特点,根据题目数字的特点选择计算起来比较快的好方法。

4、出示25×24。

(1)思考:观察题目数字的特点,对这题你会选择那种方法呢?

(2)计时赛一赛,选前10名,统计不同算法名次。

(3)思考:这是巧合么?是这些同学写字速度快,还是……?

(三)、练习47×7325×3285×16。

三、整理归纳,探究规律。

2、制造矛盾冲突,引发理性思考。

师:两位数与两位数相乘的积一定是三位数或四位数吗?肯定吗?

3、学生展开争论。

4、获得结论。

5、99×99怎样计算会更方便?

四、课堂总结。

【本文地址:http://www.xuefen.com.cn/zuowen/15566295.html】

全文阅读已结束,如果需要下载本文请点击

下载此文档